- 相關(guān)推薦
一元二次方程的應用
第一課時
一、教學目標
1.使學生會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應用題。
2.通過列方程解應用問題,進一步體會提高分析問題、解決問題的能力。
3.通過列方程解應用問題,進一步體會代數(shù)中方程的思想方法解應用問題的優(yōu)越性。
二、重點·難點·疑點及解決辦法
1.教學重點:會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應用題。
2.教學難點:根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學疑點:學生對列一元二次方程解應用問題中檢驗步驟的理解。
4.解決辦法:列方程解應用題,就是先把實際問題抽象為數(shù)學問題,然后由數(shù)學問題的解決而獲得對實際問題的解決。列方程解應用題,最重要的是審題,審題是列方程的基礎,而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎上,才能恰當?shù)卦O出未知數(shù),準確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學過程
1.復習提問
。1)列方程解應用問題的步驟?
、賹忣},②設未知數(shù),③列方程,④解方程,⑤答。
。2)兩個連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個連續(xù)奇數(shù)的積是323,求這兩個數(shù)。
分析:(1)兩個連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設元(幾種設法)a.設較小的奇數(shù)為x,則另一奇數(shù)為,b.設較小的奇數(shù)為,則另一奇數(shù)為;c.設較小的奇數(shù)為,則另一個奇數(shù)。
以上分析是在教師的引導下,學生回答,有三種設法,就有三種列法,找三位學生使用三種方法,然后進行比較、鑒別,選出最簡單解法。
解法(一) 設較小奇數(shù)為x,另一個為,
據(jù)題意,得
整理后,得
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二) 設較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個方程,得。
當時,
當時,。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設較小的奇數(shù)為,則另一個奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當時,。
當時,。
答:兩個奇數(shù)分別為17,19;-19,-17。
引導學生觀察、比較、分析解決下面三個問題:
1.三種不同的設元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負整數(shù)。
3.選出三種方法中最簡單的一種。
練習1.兩個連續(xù)整數(shù)的積是210,求這兩個數(shù)。
2.三個連續(xù)奇數(shù)的和是321,求這三個數(shù)。
3.已知兩個數(shù)的和是12,積為23,求這兩個數(shù)。
學生板書,練習,回答,評價,深刻體會方程的思想方法。
例2 有一個兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個位數(shù)字。
解:設個位數(shù)字為x,則十位數(shù)字為,這個兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個方程,得(不合題意,舍去)
當時,
答:這個兩位數(shù)是24。
以上分析,解答,教師引導,板書,學生回答,體會,評價。
注意:在求得解之后,要進行實際題意的檢驗。
練習1 有一個兩位數(shù),它們的十位數(shù)字與個位數(shù)字之和為8,如果把十位數(shù)字與個位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來的兩位數(shù)就得1855,求原來的兩位數(shù)。(35)
教師引導,啟發(fā),學生筆答,板書,評價,體會。
四、布置作業(yè)
教材P42A 1、2
補充:一個兩位數(shù),其兩位數(shù)字的差為5,把個位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個兩位數(shù)。
五、板書設計
探究活動
將進貨單價為40元的商品按50元售出時,能賣500個,已知該商品每漲價1元時,其銷售量就減少10個,為了賺8000元利潤,售價應定為多少,這時應進貨為多少個?
參考答案:
精析:此題屬于經(jīng)營問題.設商品單價為(50+)元,則每個商品得利潤元,因每漲1元,其銷售量會減少10個,則每個漲價元,其銷售量會減少10個,故銷售量為(500)個,為賺得8000元利潤,則應有(500).故有=8000
當時,50+=60,500=400
當時,50+=80,500=200
所以,要想賺8000元,若售價為60元,則進貨量應為400個,若售價為80元,則進貨量應為200個.
【一元二次方程的應用】相關(guān)文章:
《一元二次方程》教學反思08-22
一元二次方程教學反思04-04
《一元二次方程》教學反思11-10
《一元二次方程》數(shù)學教學反思06-07
解一元二次方程教學反思04-01
一元二次方程的解法教學反思04-04
一元二次方程的概念教學反思04-07
《一元二次方程》數(shù)學教案02-12
實際問題與一元二次方程教學反思04-02
一元二次方程的教學反思(通用19篇)09-23