有關(guān)八年級數(shù)學(xué)教案集合5篇
作為一名為他人授業(yè)解惑的教育工作者,時常需要編寫教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。教案應(yīng)該怎么寫呢?下面是小編收集整理的八年級數(shù)學(xué)教案5篇,希望對大家有所幫助。
八年級數(shù)學(xué)教案 篇1
教學(xué)目標(biāo):
1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).
2.掌握整數(shù)指數(shù)冪的運算性質(zhì).
3.會用科學(xué)計數(shù)法表示小于1的數(shù).
教學(xué)重點:
掌握整數(shù)指數(shù)冪的運算性質(zhì).
難點:
會用科學(xué)計數(shù)法表示小于1的數(shù).
情感態(tài)度與價值觀:
通過學(xué)習(xí)課堂知識使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務(wù)于實踐.能利用事物之間的類比性解決問題.
教學(xué)過程:
一、課堂引入
1.回憶正整數(shù)指數(shù)冪的運算性質(zhì): (1)同底數(shù)的`冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));
2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時,a0 = 1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計算當(dāng)a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).
二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立. 事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.
三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學(xué)記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應(yīng)該是?m?1.
八年級數(shù)學(xué)教案 篇2
學(xué)習(xí)目標(biāo)
1、在同一直角坐標(biāo)系中,感受圖形上點的坐標(biāo)變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關(guān)系并能找出變化規(guī)律。
2、由坐標(biāo)的變化探索新舊圖形之間的變化。
重點
1、 作某一圖形關(guān)于對稱軸的對稱圖形,并能寫出所得圖形相應(yīng)各點的坐標(biāo)。
2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標(biāo)確定另一邊的圖形或坐標(biāo)。
難點
體會極坐標(biāo)和直角坐標(biāo)思想,并能解決一些簡單的問題
學(xué)習(xí)過程(導(dǎo)入、探究新知、即時練習(xí)、小結(jié)、達(dá)標(biāo)檢測、作業(yè))
第一課時
學(xué)習(xí)過程:
一、舊知回顧:
1、平面直角坐標(biāo)系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標(biāo)系。
2、坐標(biāo)平面內(nèi)點的坐標(biāo)的表示方法____________。
3、各象限點的坐標(biāo)的特征:
二、新知檢索:
1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1) 將魚的頂點的縱坐標(biāo)保持不變,橫坐標(biāo)分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標(biāo)保持不變,橫坐標(biāo)分別減2呢?
(2)將魚的頂點的橫坐標(biāo)保持不變,縱坐標(biāo)分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標(biāo)保持不變,縱坐標(biāo)減2呢?
例2、(1)將魚的'頂點的縱坐標(biāo)保持不變,橫坐標(biāo)分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2)將魚的頂點的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?
四、題組訓(xùn)練
1、在平面直角坐標(biāo)系中,將坐標(biāo)為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。
(1)這四個點的縱坐標(biāo)保持不變,橫坐標(biāo)變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來的2倍呢?
歸納:圖形坐標(biāo)變化規(guī)律
1、 平移規(guī)律:2、圖形伸長與壓縮:
第二課時
一、舊知回顧:
1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。
中心對稱圖形定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形
二、新知檢索:
1、如圖,左邊的魚與右邊的魚關(guān)于y軸對稱。
1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?
2、各個對應(yīng)頂點的坐標(biāo)有怎樣的關(guān)系?
3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關(guān)于y軸對稱,那么左邊的魚各個頂點的坐標(biāo)將發(fā)生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的魚是通過什么樣的變換得到 左圖的魚的。
2、如果將右邊的魚的橫坐標(biāo)保持不變,縱坐標(biāo)分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。
3、如果將右邊的魚的縱、橫坐標(biāo)都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系
四、題組練習(xí)
1、將坐標(biāo)作如下變化時,圖形將怎樣變化?
、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標(biāo)。
3、 如圖,作字母M關(guān)于y軸的軸對稱圖形,并寫出所得圖形相應(yīng)各端點的坐標(biāo)。
4、 描出下圖中楓葉圖案關(guān)于x軸的軸對稱圖形的簡圖。
學(xué)習(xí)筆記
八年級數(shù)學(xué)教案 篇3
教學(xué)目標(biāo)
1、知識與技能目標(biāo)
學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力.
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.
(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.
教學(xué)重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
教學(xué)難點:
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學(xué)準(zhǔn)備:
多媒體
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算.
學(xué)生匯總了四種方案:
。ǎ保 (2) (3)(4)
學(xué)生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.
學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.
如圖:
。ǎ保┲蠥→B的路線長為:AA’+d;
。ǎ玻┲蠥→B的`路線長為:AA’+A’B>AB;
。ǎ常┲蠥→B的路線長為:AO+OB>AB;
。ǎ矗┲蠥→B的路線長為:AB.
得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學(xué)生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
。1)你能替他想辦法完成任務(wù)嗎?
(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨立完成)
1.甲、乙兩位探險者到沙漠進(jìn)行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠(yuǎn)?
2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
1、如何利用勾股定理及逆定理解決最短路程問題?
第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
內(nèi)容:
作業(yè):1.課本習(xí)題1.5第1,2,3題.
要求:A組(學(xué)優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書設(shè)計:
教學(xué)反思:
八年級數(shù)學(xué)教案 篇4
課題:三角形全等的判定(三)
教學(xué)目標(biāo):
1、知識目標(biāo):
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;
(3)會添加較明顯的輔助線.
2、能力目標(biāo):
(1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.
教學(xué)重點:SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。
教學(xué)難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚三角形全等。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過程:
1、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個元素――三條邊。
2、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實驗,根據(jù)三角形全等定義對公理進(jìn)行驗證。(這里用尺規(guī)畫圖法)
公理:有三邊對應(yīng)相等的兩個三角形全等。
應(yīng)用格式: (略)
強(qiáng)調(diào)說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系
(4)、三角形的'穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
3、公理的應(yīng)用
(1) 講解例1。學(xué)生分析完成,教師注重完成后的點評。
例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架
求證:AD⊥BC
分析:(設(shè)問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1=
只要證什么?(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
八年級數(shù)學(xué)教案 篇5
目標(biāo)設(shè)計
一、情境設(shè)計
、睂滩乃o情境作適當(dāng)解釋;
、惭a(bǔ)充適量其它情境,有利于直及主題或拓展引申.
二、活動設(shè)計
、备拍畹男纬蛇^程;
、卜▌t、定理的推導(dǎo)過程;
⒊方法的提煉與思想形成過程;
、磫栴}串剖析過程(對概念的深化與挖掘).
三、例題設(shè)計
、苯滩睦}分析;(解題格式、要點示范)
、残纬尚岳}訓(xùn)練;(思想方法的應(yīng)用示范)(3題左右)
、踌柟绦钥碱}剖析.(2題左右)
四、拓展設(shè)計(2題左右)
、本C合性訓(xùn)練;
、惨晷、探究性、創(chuàng)新性活動;
、硦W數(shù)問題點擊.(不一定非得設(shè)計)
五、教學(xué)反思
六、檢測設(shè)計(時間30分鐘,得分集中于85/70分左右)
、彪y度與例題設(shè)計、拓展設(shè)計相當(dāng),個性化的題型要在例題中出現(xiàn)過;
、8k紙,正面為例題回眸,內(nèi)容為課堂所講解的.所有例題題目,根據(jù)題型留適量的空白(主要供學(xué)生課后復(fù)習(xí)和考前復(fù)習(xí)用,任何教師一律不得要求學(xué)生完成解答過程,違者按教學(xué)違規(guī)論處);反面為作業(yè)紙,只留標(biāo)題欄,取消邊框.(凸顯分層)
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級數(shù)學(xué)教案人教版01-03
八年級下冊數(shù)學(xué)教案01-01
八年級數(shù)學(xué)教案【薦】12-06
初中八年級數(shù)學(xué)教案11-03
人教版八年級數(shù)學(xué)教案11-04