【精選】八年級(jí)數(shù)學(xué)教案四篇
作為一名人民教師,時(shí)常需要編寫(xiě)教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。寫(xiě)教案需要注意哪些格式呢?以下是小編為大家收集的八年級(jí)數(shù)學(xué)教案4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
八年級(jí)數(shù)學(xué)教案 篇1
數(shù)據(jù)的波動(dòng)
教學(xué)目標(biāo):
1、經(jīng)歷數(shù)據(jù)離散程度的探索過(guò)程
2、了解刻畫(huà)數(shù)據(jù)離散程度的三個(gè)量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。
教學(xué)重點(diǎn):會(huì)計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。
教學(xué)難點(diǎn):理解數(shù)據(jù)離散程度與三個(gè)差之間的關(guān)系。
教學(xué)準(zhǔn)備:計(jì)算器,投影片等
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境
1、投影課本P138引例。
(通過(guò)對(duì)問(wèn)題串的解決,使學(xué)生直觀(guān)地估計(jì)從甲、乙兩廠(chǎng)抽取的20只雞腿的平均質(zhì)量,同時(shí)讓學(xué)生初步體會(huì)平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫(huà)數(shù)據(jù)離散程度的一個(gè)量度極差)
2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來(lái)刻畫(huà)數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。
二、活動(dòng)與探究
如果丙廠(chǎng)也參加了競(jìng)爭(zhēng),從該廠(chǎng)抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁(yè)圖)
問(wèn)題:1、丙廠(chǎng)這20只雞腿質(zhì)量的平均數(shù)和極差是多少?
2、如何刻畫(huà)丙廠(chǎng)這20只雞腿質(zhì)量與其平均數(shù)的`差距?分別求出甲、丙兩廠(chǎng)的20只雞腿質(zhì)量與對(duì)應(yīng)平均數(shù)的差距。
3、在甲、丙兩廠(chǎng)中,你認(rèn)為哪個(gè)廠(chǎng)雞腿質(zhì)量更符合要求?為什么?
(在上面的情境中,學(xué)生很容易比較甲、乙兩廠(chǎng)被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個(gè)丙廠(chǎng),其平均質(zhì)量和極差與甲廠(chǎng)相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識(shí)上的矛盾,為引出另兩個(gè)刻畫(huà)數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。
三、講解概念:
方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2
設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為
則s2= ,
而s= 稱(chēng)為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)
從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
四、做一做
你能用計(jì)算器計(jì)算上述甲、丙兩廠(chǎng)分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個(gè)廠(chǎng)的雞腿規(guī)格更好一些?說(shuō)說(shuō)你是怎樣算的?
(通過(guò)對(duì)此問(wèn)題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)
五、鞏固練習(xí):課本第172頁(yè)隨堂練習(xí)
六、課堂小結(jié):
1、怎樣刻畫(huà)一組數(shù)據(jù)的離散程度?
2、怎樣求方差和標(biāo)準(zhǔn)差?
七、布置作業(yè):習(xí)題5.5第1、2題。
八年級(jí)數(shù)學(xué)教案 篇2
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書(shū)從畢達(dá)哥拉斯觀(guān)察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀(guān)察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
[教學(xué)目標(biāo)]
一、 知識(shí)與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理
二、 過(guò)程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、 情感與態(tài)度目標(biāo)
通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、 重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2熟練運(yùn)用勾股定理
[教學(xué)過(guò)程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話(huà),為勾股定理的出現(xiàn)埋下伏筆。
周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!
2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問(wèn)題
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋?zhuān)?由于我國(guó)古代把直角三角形中較短的'直角邊稱(chēng)為勾,較長(zhǎng)的邊稱(chēng)為股,斜邊稱(chēng)為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線(xiàn)表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。
因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
這種證明方法很簡(jiǎn)明,很直觀(guān),它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
例題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀(guān)察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
八年級(jí)數(shù)學(xué)教案 篇3
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱(chēng)為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線(xiàn)段平行且相等;⑵對(duì)應(yīng)線(xiàn)段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡(jiǎn)單的平移作圖
①確定個(gè)圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。
②作平移后的圖形的方法:
、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn),這個(gè)定點(diǎn)稱(chēng)為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱(chēng)為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
、判D(zhuǎn)變化前后,對(duì)應(yīng)線(xiàn)段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的'連線(xiàn)所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個(gè)圖形全等。
3.簡(jiǎn)單的旋轉(zhuǎn)作圖
⑴已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
⑵已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線(xiàn)段,求作旋轉(zhuǎn)后的圖形。
、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
、厶剿髟搱D案的形成過(guò)程,類(lèi)型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱(chēng)變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對(duì)稱(chēng)變換的組合;⑹軸對(duì)稱(chēng)變換與平移變換的組合。
八年級(jí)數(shù)學(xué)教案 篇4
教學(xué)目標(biāo):
1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過(guò)程,在活動(dòng)中發(fā)展學(xué)生的探究意識(shí)和合作交流的習(xí)慣;
2。索并掌握平行四邊形的性質(zhì),并能簡(jiǎn)單應(yīng)用;
3。在探索活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí)。
教學(xué)重點(diǎn):平行四邊形性質(zhì)的探索。
教學(xué)難點(diǎn):平行四邊形性質(zhì)的理解。
教學(xué)準(zhǔn)備:多媒體課件
教學(xué)過(guò)程
第一環(huán)節(jié):實(shí)踐探索,直觀(guān)感知(5分鐘,動(dòng)手實(shí)踐、探索、感知,學(xué)生進(jìn)一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)
1。小組活動(dòng)一
內(nèi)容:
問(wèn)題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對(duì)折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個(gè)四邊形。
。1)你拼出了怎樣的四邊形?與同桌交流一下;
(2)給出小明拼出的四邊形,它們的對(duì)邊有怎樣的位置關(guān)系?說(shuō)說(shuō)你的理由,請(qǐng)用簡(jiǎn)捷的語(yǔ)言刻畫(huà)這個(gè)圖形的特征。
2。小組活動(dòng)二
內(nèi)容:生活中常見(jiàn)到平行四邊形的實(shí)例有什么呢?你能舉例說(shuō)明嗎?
第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動(dòng)手、動(dòng)嘴,全班交流)
小組活動(dòng)3:
用 一張半透明的紙復(fù)制你剛才畫(huà)的平行四邊形,并將復(fù)制 后的四邊形繞一個(gè)頂點(diǎn)旋轉(zhuǎn)180,你能平移該紙片,使它與你畫(huà)的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對(duì)邊、對(duì)角分別有什么關(guān)系?能用別的方法驗(yàn)證你的結(jié)論嗎?
(1)讓學(xué)生動(dòng)手操作、復(fù)制、旋轉(zhuǎn) 、觀(guān)察、分析;
(2)學(xué)生交流、議論;
。3)教師利用多媒體展示實(shí)踐的過(guò)程。
第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過(guò)說(shuō)理,由直觀(guān)感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)
實(shí)踐 探索內(nèi)容
。1)通過(guò)剪紙,拼紙片,及旋轉(zhuǎn),可以觀(guān)察到平行四邊行的對(duì)角線(xiàn)把它分成的兩個(gè)三角形全等。
。2)可以通過(guò)推理來(lái)證明這個(gè)結(jié)論,如圖連結(jié)AC。
∵ 四邊形ABCD是平行四邊形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過(guò)議一議,練一練,學(xué)生進(jìn)一步理解平行四邊形的性質(zhì),并進(jìn)行簡(jiǎn)單合情推理,體現(xiàn)性質(zhì)的.應(yīng)用,同時(shí)從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識(shí)平行四邊形的本質(zhì)特征。)
1。活動(dòng)內(nèi)容:
(1)議一議:如果已知平行四邊形的一個(gè)內(nèi)角度數(shù),能確定其它三個(gè)內(nèi)角的度數(shù)嗎?
A(學(xué)生思考、議論)
B總結(jié)歸納:可以確定其它三個(gè)內(nèi)角的度數(shù)。
由平行四邊形對(duì) 邊分邊平行 得到鄰角互補(bǔ);又由于平行四邊形對(duì)角相等,由此已知平行四邊形的一個(gè)內(nèi)角的度數(shù),可以確定其它三個(gè)角度數(shù)。
(2)練一練(P99隨堂練習(xí))
練1 如圖:四邊形ABCD是平行四邊形。
。1)求ADC、BCD度數(shù)
(2)邊AB、BC的度數(shù)、長(zhǎng)度。
練2 四邊形ABCD是平行四邊形
。1)它的四條邊中哪些 線(xiàn)段可以通過(guò)平移相到得到?
。2)設(shè)對(duì)角線(xiàn)AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說(shuō)說(shuō)理由。
歸 納:平行四邊形的性質(zhì):平行四邊形的對(duì)角線(xiàn)互相平分。
第五環(huán)節(jié) 評(píng)價(jià)反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)
活動(dòng)內(nèi)容
師生相互交流、反思、總結(jié)。
。1)經(jīng)歷了對(duì)平行四邊形的特征探索,你有什么感受和收獲?給自己一個(gè)評(píng)價(jià)。
。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點(diǎn)?
。3)本節(jié)學(xué)習(xí)到了什么?(知識(shí)上、方法上)
考一考:
1。 ABCD中,B=60,則A= ,C= ,D= 。
2。 ABCD中,A比B大20,則C= 。
3。 ABCD中,AB=3,BC=5,則AD= CD= 。
4。 ABCD中,周長(zhǎng)為40cm,△ABC周長(zhǎng)為25,則對(duì)角線(xiàn)AC=( )cm。
布置作業(yè)
課本習(xí)題4。1
A組(學(xué)優(yōu)生)1 、2
B組(中等生)1、2
C組(后三分之一生)1、2
教學(xué)反思
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
八年級(jí)的數(shù)學(xué)教案15篇12-14