關(guān)于八年級數(shù)學(xué)教案范文集錦7篇
作為一名無私奉獻(xiàn)的老師,通常需要準(zhǔn)備好一份教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。如何把教案做到重點(diǎn)突出呢?以下是小編收集整理的八年級數(shù)學(xué)教案7篇,僅供參考,大家一起來看看吧。
八年級數(shù)學(xué)教案 篇1
一、知識與技能
1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
二、過程與方法
1、經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).
2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識.
三、情感態(tài)度與價值觀
1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.
2、通過分組討論,培養(yǎng)學(xué)生合作交流意識和探索精神.
教學(xué)重點(diǎn):理解和領(lǐng)會反比例函數(shù)的概念.
教學(xué)難點(diǎn):領(lǐng)悟反比例的概念.
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動1
問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?
(1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流.學(xué)生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.
教師組織學(xué)生討論,提問學(xué)生,師生互動.
在此活動中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:
、倌芊穹e極主動地合作交流.
、谀芊裼谜Z言說明兩個變量間的關(guān)系.
、勰芊窳私馑懻摰暮瘮(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.
分析及解答:(1)
。唬2)
;(3)
其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);
上面的'函數(shù)關(guān)系式,都具有
的形式,其中k是常數(shù).
二、聯(lián)系生活,豐富聯(lián)想
活動2
下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?
。1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;
。2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;
(3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.
師生行為
學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.
教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:
(1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關(guān)系;
(2)能否積極主動地參與小組活動;
(3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.
分析及解答:(1)
。唬2)
。唬3)
概念:如果兩個變量x,y之間的關(guān)系可以表示成
的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.
活動3
做一做:
一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
師生行為:
學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動中教師應(yīng)重點(diǎn)關(guān)注:
、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否順利抽象反比例函數(shù)的模型;
、蹖W(xué)生能否積極主動地合作、交流;
活動4
問題1:下列哪個等式中的y是x的反比例函數(shù)?
問題2:已知y是x的反比例函數(shù),當(dāng)x=2時,y=6
(1)寫出y與x的函數(shù)關(guān)系式:
(2)求當(dāng)x=4時,y的值.
師生行為:
學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時引導(dǎo).在此活動中教師應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;
②學(xué)生能否積極主動地參與小組活動.
分析及解答:
1、只有xy=123是反比例函數(shù).
2、分析:因為y是x的反比例函數(shù),所以
,再把x=2和y=6代入上式就可求出常數(shù)k的值.
解:(1)設(shè)
,因為x=2時,y=6,所以有
解得k=12
因此
。2)把x=4代入
,得
三、鞏固提高
活動5
1、已知y是x的反比例函數(shù),并且當(dāng)x=3時,y=8.
。1)寫出y與x之間的函數(shù)關(guān)系式.
(2)求y=2時x的值.
2、y是x的反比例函數(shù),下表給出了x與y的一些值:
(1)寫出這個反比例函數(shù)的表達(dá)式;
。2)根據(jù)函數(shù)表達(dá)式完成上表.
學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.
四、課時小結(jié)
反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認(rèn)識到理發(fā)認(rèn)識一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動,感知數(shù)學(xué)眼光,審視某些實際現(xiàn)象.
八年級數(shù)學(xué)教案 篇2
菱形
學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):
1.經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習(xí)慣;
2.運(yùn)用菱形的識別方法進(jìn)行有關(guān)推理.
補(bǔ)充例題:
例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的.理由.
例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F.
四邊形AFCE是菱形嗎?說明理由.
例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)
(1)試說明四邊形AECG是平行四邊形;
(2)若AB=4cm,BC=3cm,求線段EF的長;
(3)當(dāng)矩形兩邊AB、BC具備怎樣的關(guān)系時,四邊形AECG是菱形.
課后續(xù)助:
一、填空題
1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形
2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),
且DE∥BA,DF∥ CA
(1)要使四邊形AFDE是菱形,則要增加條件______________________
(2)要使四邊形AFDE是矩形,則要增加條件______________________
二、解答題
1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。
2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.
(1) AC,BD互相垂直嗎?為什么?
(2) 四邊形ABCD是菱形 嗎?
3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。
4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
、徘笞C:ABF≌
、迫魧⒄郫B的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
八年級數(shù)學(xué)教案 篇3
課題:一元二次方程實數(shù)根錯例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習(xí)】
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。
【典型例題】
例1 下列方程中兩實數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯答: B
正解: C
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯解 :B
正解:D
錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。
錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。
錯解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
。絒-(2m+1)]2-2(m2+1)
。2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。
錯解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負(fù)數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的.實數(shù)根x1、x2。
。1)求k的取值范圍;
(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。
(2)存在。
如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。
∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
(1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。
。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?
解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=
。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。
又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。
【小結(jié)】
以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。
1、運(yùn)用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。
2、運(yùn)用根與系數(shù)關(guān)系時,△≥0是前提條件。
3、條件多面時(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。
求證:關(guān)于x的方程
。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
。1)若方程的一個根為1,求m的值。
。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級數(shù)學(xué)教案 篇4
活動一、創(chuàng)設(shè)情境
引入:首先我們來看幾道練習(xí)題(幻燈片)
。◤(fù)習(xí):平行線及三角形全等的知識)
下面我們一起來欣賞一組圖片(幻燈片)
[學(xué)生活動]觀看后答問題:你看到了哪些圖形?
。ǜ魇礁鳂拥膱D案裝點(diǎn)著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的'三角板,看能拼出哪些圖案?)
[學(xué)生活動]小組合作交流,拼出圖案的類型。
同學(xué)們所拼的圖形中,除了有我們學(xué)過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)
活動二、合作交流,探求新知
問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)
[學(xué)生活動]認(rèn)真觀察、討論、思考、推理。
鼓勵學(xué)生交流,并是試著用自己的語言概括出平行四邊形的定義。
學(xué)生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。
并說明:平行四邊形不相鄰的兩個頂點(diǎn)連成的線段叫它的對角線。
平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)
問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?
[學(xué)生活動]動手操作,小組演示交流。鼓勵學(xué)生用多種方法探究。
小結(jié)平行四邊形的性質(zhì):
平行四邊形的對邊相等
平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)
你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)
你能證明嗎?(幻燈片出示證明題)
[學(xué)生活動]先分析思路尤其是輔助線,請學(xué)生上黑板證明。
自己完成性質(zhì)2的證明。
活動三、運(yùn)用新知
性質(zhì)掌握了嗎?一起來看一道題目:
嘗試練習(xí)(幻燈片)例1
[學(xué)生活動]作嘗試性解答。
八年級數(shù)學(xué)教案 篇5
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:啟發(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
(一)導(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的`兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級數(shù)學(xué)教案 篇6
一、教學(xué)目標(biāo):
1、知識目標(biāo):能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):①,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系;
、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強(qiáng)對圖形欣賞的意識。
二、重點(diǎn)與難點(diǎn):
重點(diǎn):圖形連續(xù)變化的特點(diǎn);
難點(diǎn):圖形的`劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
八年級數(shù)學(xué)上冊教案四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計:
教師活動
學(xué)生活動
設(shè)計意圖
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問:(1)這個圖案有什么特點(diǎn)?(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調(diào)動學(xué)生的積極性,發(fā)掘他們的想象力。
(演示課件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的?
暢所欲言,互相補(bǔ)充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
(演示課件)教材65頁“隨堂練習(xí)”。
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。
八年級數(shù)學(xué)教案 篇7
教學(xué)內(nèi)容和地位:
眾數(shù)、中位數(shù)是描述一組數(shù)據(jù)的集中趨勢的兩個統(tǒng)計特征量,是幫助學(xué)生學(xué)會用數(shù)據(jù)說話的基本概念。本節(jié)課的教學(xué)內(nèi)容和現(xiàn)實生活密切相關(guān),是培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識和創(chuàng)新能力的最好素材。
教學(xué)重點(diǎn)和難點(diǎn):
本節(jié)課的重點(diǎn)是眾數(shù)和中位數(shù)兩概念的形成過程及兩概念的運(yùn)用。本節(jié)課的難點(diǎn)是對統(tǒng)計數(shù)據(jù)從多角度進(jìn)行全面地分析。因為利用數(shù)據(jù)進(jìn)行分析,對剛剛接觸統(tǒng)計的學(xué)生來說,他們原有的認(rèn)知結(jié)構(gòu)中缺乏這方面的知識經(jīng)驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學(xué)生突破這一知識難點(diǎn)。
教學(xué)目標(biāo)分析:
認(rèn)知目標(biāo):
。1)使學(xué)生認(rèn)知眾數(shù)、中位數(shù)的意義;
(2)會求一組數(shù)據(jù)的眾數(shù)、中位數(shù)。
能力目標(biāo):
(1)讓學(xué)生接觸并解決一些社會生活中的問題,為學(xué)生創(chuàng)新學(xué)數(shù)學(xué)、用數(shù)學(xué)的情境,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識。
。2)在問題解決的過程中,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力;
(3)在問題分析的過程中,培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作精神。
情感目標(biāo):
(1)通過多媒體網(wǎng)絡(luò)課件,提供適當(dāng)?shù)膯栴}情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;
(2)在合作學(xué)習(xí)中,學(xué)會交流,相互評價,提高學(xué)生的合作意識與能力。
教學(xué)輔助:網(wǎng)絡(luò)教室、多媒體輔助網(wǎng)絡(luò)教學(xué)課件、BBS電子公告欄、學(xué)習(xí)資源庫
教法與學(xué)法:
根據(jù)本節(jié)課的教學(xué)內(nèi)容,主要采用了討論發(fā)現(xiàn)法。即課堂上,教師(或?qū)W生)提出適當(dāng)?shù)膯栴},通過學(xué)生與學(xué)生(或教師)之間相互交流,相互學(xué)習(xí),相互討論,在問題解決的過程中發(fā)現(xiàn)概念的產(chǎn)生過程,體現(xiàn)“數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的過程的教學(xué)”。在教學(xué)活動中,通過學(xué)生的'自主學(xué)習(xí)來體現(xiàn)他們的主體地位,而教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的主導(dǎo)作用。另外,在學(xué)生合作學(xué)習(xí)的同時,始終堅持對學(xué)生進(jìn)行“學(xué)疑結(jié)合”、“學(xué)思結(jié)合”、“學(xué)用結(jié)合”的學(xué)法指導(dǎo),這對學(xué)生的主體意識的培養(yǎng)和創(chuàng)新能力的培養(yǎng)都有積極的意義。
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
初中八年級數(shù)學(xué)教案11-03
八年級數(shù)學(xué)教案【熱】11-29
八年級數(shù)學(xué)教案【薦】12-06
【熱】八年級數(shù)學(xué)教案12-07
八年級上冊數(shù)學(xué)教案11-09
人教版八年級數(shù)學(xué)教案11-04