有關(guān)八年級數(shù)學教案錦集十篇
作為一名老師,就不得不需要編寫教案,借助教案可以有效提升自己的教學能力。來參考自己需要的教案吧!以下是小編精心整理的八年級數(shù)學教案10篇,歡迎閱讀與收藏。
八年級數(shù)學教案 篇1
一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達定理(韋達是法國數(shù)學家)。韋達定理是初中代數(shù)中的一個重要定理。這是因為通過韋達定理的'學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數(shù)學中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數(shù)的學習研究也是作用非凡。
通過近些年的中考數(shù)學試卷的分析可以得出:韋達定理及其應(yīng)用是各地市中考數(shù)學命題的熱點之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達定理的教學,可以培養(yǎng)學生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學問題的能力,也為學生今后學習方程理論打下基礎(chǔ)。
(二)重點、難點
一元二次方程根與系數(shù)的關(guān)系是重點,讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
(三)教學目標
1、知識目標:要求學生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
八年級數(shù)學教案 篇2
教學目標:
1、經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強對圖形欣賞的意識。
2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計軸對稱圖形。
教學重點:本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關(guān)于L的軸對稱點的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計軸對稱圖形是本節(jié)課的難點。
教學方法:動手實踐、討論。
教學工具:課件
教學過程:
一、 先復習軸對稱圖形的定義,以及軸對稱的相關(guān)的性質(zhì):
1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________
2.軸對稱的三個重要性質(zhì)______________________________________________
_____________________________________________________________________
二、提出問題:
二、探索練習:
1. 提出問題:
如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。
你能畫出這個圖案的另一半嗎?
吸引學生讓學生有一種解決難點的想法。
2.分析問題:
分析圖案:這個圖案是由重要六個點構(gòu)成的,要將這個圖案的'另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個圖案中六個點的對應(yīng)點即可
問題轉(zhuǎn)化成:已知對稱軸和一個點A,要畫出點A關(guān)于L的對應(yīng)點 ,可采用如下方法:`
在學生掌握已知一個點畫對應(yīng)點的基礎(chǔ)上,解決上述給出的問題,使學生有一條較明確的思路。
三、對所學內(nèi)容進行鞏固練習:
1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。
2. 試畫出與線段AB關(guān)于直線L的線段
3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形
小 結(jié): 本節(jié)課學習了已知對稱軸L和一個點如何畫出它的對應(yīng)點,以及如何補全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計軸對稱圖形。
教學后記:學生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學生上課積極性較高
八年級數(shù)學教案 篇3
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?
通過討論得到矩形的判定方法.
矩形判定方法1:對角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個角是直角的四邊形是矩形.
。ㄖ赋觯号卸ㄒ粋四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)
二、例習題分析
例1(補充)下列各句判定矩形的說法是否正確?為什么?
(1)有一個角是直角的四邊形是矩形;(×)
。2)有四個角是直角的四邊形是矩形;(√)
。3)四個角都相等的四邊形是矩形;(√)
。4)對角線相等的四邊形是矩形;(×)
。5)對角線相等且互相垂直的'四邊形是矩形;(×)
。6)對角線互相平分且相等的四邊形是矩形;(√)
。7)對角線相等,且有一個角是直角的四邊形是矩形;(×)
。8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)
。9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)
指出:
(l)所給四邊形添加的條件不滿足三個的肯定不是矩形;
。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.
例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明
八年級數(shù)學教案 篇4
一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡單的平移作圖
、俅_定個圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應(yīng)點的位置。
、谧髌揭坪蟮腵圖形的方法:
⑴找出關(guān)鍵點;⑵作出這些點平移后的對應(yīng)點;⑶將所作的對應(yīng)點按原來方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
、判D(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。
、侨我庖粚(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
⑷旋轉(zhuǎn)前后的兩個圖形全等。
3.簡單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。
八年級數(shù)學教案 篇5
一、教學目標
1.理解一個數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓練,提高學生的邏輯思維能力;
4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學生探索數(shù)學奧秘的興趣。
二、教學重點和難點
教學重點:平方根和算術(shù)平方根的概念及求法。
教學難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學方法
講練結(jié)合
四、教學手段
幻燈片
五、教學過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?
這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學習的。下面作一個小練習:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學時應(yīng)注意糾正。
由練習引出平方根的概念。
(二)平方根概念
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學語言表達即為:若x2=a,則x叫做a的平方根。
由練習知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
( )2=—4
學生思考后,得到結(jié)論此題無答案。反問學生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結(jié)論,負數(shù)是沒有平方根的'。下面總結(jié)一下平方根的性質(zhì)(可由學生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負數(shù)沒有平方根。
。ㄋ模╅_平方
求一個數(shù)a的平方根的運算,叫做開平方的運算。
由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結(jié)果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。
練習:1.用正確的符號表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
、0。2的平方根是
、3的平方根是
、 的平方根是
由學生說出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。
六、總結(jié)
本節(jié)課主要學習了平方根的概念、性質(zhì),以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。
七、作業(yè)
教材P。127練習1、2、3、4。
八、板書設(shè)計
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級數(shù)學教案 篇6
分式方程
教學目標
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應(yīng)用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應(yīng)用價值.
教學重點:
將實際問題中的等量 關(guān)系用分式方程表示
教學難點:
找實際問題中的'等量關(guān)系
教學過程:
情境導入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
五、 隨堂練習
(1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
六、學 習小結(jié)
本節(jié)課你學到了哪些知識?有什么感想?
七.作業(yè)布置
八年級數(shù)學教案 篇7
教學建議
知識結(jié)構(gòu)
重難點分析
本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.
本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.
教法建議
1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學生情況參考采用
2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解
教學設(shè)計示例
一、教學目標
1.掌握中位線的概念和三角形中位線定理
2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”
3.能夠應(yīng)用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學生的計算能力
4.通過定理證明及一題多解,逐步培養(yǎng)學生的分析問題和解決問題的'能力
5. 通過一題多解,培養(yǎng)學生對數(shù)學的興趣
二、教學設(shè)計
畫圖測量,猜想討論,啟發(fā)引導.
三、重點、難點
1.教學重點:三角形中位線的概論與三角形中位線性質(zhì).
2.教學難點:三角形中位線定理的證明.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具
六、教學步驟
【復習提問】
1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).
2.說明定理的證明思路.
3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?
分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.
4.什么叫三角形中線?(以上復習用投影儀打出)
【引入新課】
1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.
(結(jié)合三角形中線的定義,讓學生明確兩者區(qū)別,可做一練習,在 中,畫出中線、中位線)
2.三角形中位線性質(zhì)
了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).
如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.
三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.
應(yīng)注意的兩個問題:①為便于同學對定理能更好的掌握和應(yīng)用,可引導學生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.
由學生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).
(l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.
(2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.
(3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.
上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .
(證明過程略)
例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.
(由學生根據(jù)命題,說出已知、求證)
已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.
求證:四邊形EFGH是平行四邊形.‘
分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.
證明:連結(jié)AC.
∴ (三角形中位線定理).
同理,
∴GH EF
∴四邊形EFGH是平行四邊形.
【小結(jié)】
1.三角形中位線及三角形中位線與三角形中線的區(qū)別.
2.三角形中位線定理及證明思路.
七、布置作業(yè)
教材P188中1(2)、4、7
八年級數(shù)學教案 篇8
11.1 與三角形有關(guān)的線段
11.1.1 三角形的邊
1.理解三角形的概念,認識三角形的頂點、邊、角,會數(shù)三角形的個數(shù).(重點)
2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點)
3.三角形在實際生活中的應(yīng)用.(難點)
一、情境導入
出示金字塔、戰(zhàn)機、大橋等圖片,讓學生感受生活中的三角形,體會生活中處處有數(shù)學.
教師利用多媒體演示三角形的形成過程,讓學生觀察.
問:你能不能給三角形下一個完整的定義?
二、合作探究
探究點一:三角形的概念
圖中的銳角三角形有( )
A.2個
B.3個
C.4個
D.5個
解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數(shù)有2+1=3(個).故選B.
方法總結(jié):數(shù)三角形的個數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.
探究點二:三角形的三邊關(guān)系
【類型一】 判定三條線段能否組成三角形
以下列各組線段為邊,能組成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.
方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.
【類型二】 判斷三角形邊的取值范圍
一個三角形的三邊長分別為4,7,x,那么x的取值范圍是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.
方法總結(jié):判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結(jié)合不等式的知識進行解決.
【類型三】 等腰三角形的三邊關(guān)系
已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.
解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.
解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.
方法總結(jié):在求三角形的邊長時,要注意利用三角形的三邊關(guān)系驗證所求出的邊長能否組成三角形.
【類型四】 三角形三邊關(guān)系與絕對值的綜合
若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.
解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負,然后去絕對值符號進行計算即可.
解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負,然后進行化簡.
三、板書設(shè)計
三角形的'邊
1.三角形的概念:
由不在同一直線上的三條線段首尾順次相接所組成的圖形.
2.三角形的三邊關(guān)系:
兩邊之和大于第三邊,兩邊之差小于第三邊.
本節(jié)課讓學生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學符合學生的認知特點,既提高了學生學習的興趣,又增強了學生的動手能力.
八年級數(shù)學教案 篇9
一、教學目標
(一)、知識與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
。2)認識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。
(二)、過程與方法:
。1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。
。2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。
。3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應(yīng)用能力。
。ㄈ、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。
二、教學重點和難點
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學過程
教學環(huán)節(jié):
活動1:復習引入
看誰算得快:用簡便方法計算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
。2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
設(shè)計意圖:
如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應(yīng)該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題
P165的探究(略);
2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
設(shè)計意圖:
引導學生把這個式子分解成幾個數(shù)的積的.形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
。1)3x(x-1)= ;
(2)(a+b+c)= ;
。3)(+4)(-4)= ;
。4)(-3)2= ;
。5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
(1)a+b+c= ;
(2)3x2-3x= ;
。3)2-16= ;
(4)a3-a= ;
。5)2-6+9= 。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
八年級數(shù)學教案 篇10
一、素質(zhì)教育目標
(一)知識教學點
1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.
2.使學生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.
3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.
(二)能力訓練點
1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.
2.通過教學,使學生逐步學會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的`能力.
(三)德育滲透點
通過一題多解激發(fā)學生的學習興趣.
(四)美育滲透點
通過學習,體會幾何證明的方法美.
二、學法引導
構(gòu)造逆命題,分析探索證明,啟發(fā)講解.
三、重點·難點·疑點及解決辦法
1.教學重點:平行四邊形的判定定理1、2、3的應(yīng)用.
2.教學難點:綜合應(yīng)用判定定理和性質(zhì)定理.
3.疑點及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理
(強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).
【八年級數(shù)學教案】相關(guān)文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
【熱門】八年級數(shù)學教案11-29
八年級數(shù)學教案人教版01-03
八年級下冊數(shù)學教案01-01
八年級數(shù)學教案【熱】11-29
【薦】八年級數(shù)學教案12-03
八年級數(shù)學教案【薦】12-06
八年級的數(shù)學教案15篇12-14
八年級數(shù)學教案【推薦】12-04