精選八年級(jí)數(shù)學(xué)教案范文七篇
作為一位杰出的老師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,借助教案可以有效提升自己的教學(xué)能力。我們?cè)撛趺慈?xiě)教案呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)教案7篇,希望能夠幫助到大家。
八年級(jí)數(shù)學(xué)教案 篇1
教學(xué)建議
1、平行線等分線段定理
定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。
注意事項(xiàng):定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。
定理的作用:可以用來(lái)證明同一直線上的線段相等;可以等分線段。
2、平行線等分線段定理的推論
推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。
推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊。
記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。
推論的用途:(1)平分已知線段;(2)證明線段的倍分。
重難點(diǎn)分析
本節(jié)的'重點(diǎn)是平行線等分線段定理。因?yàn)樗粌H是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。
本節(jié)的難點(diǎn)也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識(shí)和理解上有一定的難度,在加上平行線等分線段定理的兩個(gè)推論以及各種變式,學(xué)生難免會(huì)有應(yīng)接不暇的感覺(jué),往往會(huì)有感覺(jué)新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。
教法建議
平行線等分線段定理的引入
生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個(gè)角度考慮:
、?gòu)纳顚?shí)例引入,如刻度尺、作業(yè)本、柵欄、等等;
、诳捎脝(wèn)題式引入,開(kāi)始時(shí)設(shè)計(jì)一系列與平行線等分線段定理概念相關(guān)的問(wèn)題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。
教學(xué)設(shè)計(jì)示例
一、教學(xué)目標(biāo)
1、使學(xué)生掌握平行線等分線段定理及推論。
2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。
3、通過(guò)定理的變式圖形,進(jìn)一步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
4、通過(guò)本節(jié)學(xué)習(xí),體會(huì)圖形語(yǔ)言和符號(hào)語(yǔ)言的和諧美
二、教法設(shè)計(jì)
學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析
三、重點(diǎn)、難點(diǎn)
1、教學(xué)重點(diǎn):平行線等分線段定理
2、教學(xué)難點(diǎn):平行線等分線段定理
四、課時(shí)安排
l課時(shí)
五、教具學(xué)具
計(jì)算機(jī)、投影儀、膠片、常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師復(fù)習(xí)引入,學(xué)生畫(huà)圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)
七、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1、什么叫平行線?平行線有什么性質(zhì)。
2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
【引入新課】
由學(xué)生動(dòng)手做一實(shí)驗(yàn):每個(gè)同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫(huà)一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫(huà)一條與橫線相交的直線 ,測(cè)量它被相鄰橫線截得的線段是否也相等?
。ㄒ龑(dǎo)學(xué)生把做實(shí)驗(yàn)的條件和得到的結(jié)論寫(xiě)成一個(gè)命題,教師總結(jié),由此得到平行線等分線段定理)
平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。
注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確。
下面我們以三條平行線為例來(lái)證明這個(gè)定理(由學(xué)生口述已知,求證)。
已知:如圖,直線 , 。
求證: 。
分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過(guò)全等三角形性質(zhì),即可得到要證的結(jié)論。
。ㄒ龑(dǎo)學(xué)生找出另一種證法)
分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識(shí)即可證得 。
證明:過(guò) 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學(xué)生對(duì)定理加深理解和掌握,把知識(shí)學(xué)活,可讓學(xué)生認(rèn)識(shí)幾種定理的變式圖形,如圖(用計(jì)算機(jī)動(dòng)態(tài)演示)。
引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。
推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。
再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。
推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。
注意:推論1和推論2也都是很重要的定理,在今后的論證和計(jì)算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。
接下來(lái)講如何利用平行線等分線段定理來(lái)任意等分一條線段。
例 已知:如圖,線段 。
求作:線段 的五等分點(diǎn)。
作法:①作射線 。
②在射線 上以任意長(zhǎng)順次截取 。
、圻B結(jié) 。
④過(guò)點(diǎn) 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 。
、 、 、 就是所求的五等分點(diǎn)。
。ㄕf(shuō)明略,由學(xué)生口述即可)
【總結(jié)、擴(kuò)展】
小結(jié):
(l)平行線等分線段定理及推論。
。2)定理的證明只取三條平行線,是在較簡(jiǎn)單的情況下證明的,對(duì)于多于三條的平行線的情況,也可用同樣方法證明。
(3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。
。4)應(yīng)用定理任意等分一條線段。
八、布置作業(yè)
教材P188中A組2、9
九、板書(shū)設(shè)計(jì)
十、隨堂練習(xí)
教材P182中1、2
八年級(jí)數(shù)學(xué)教案 篇2
教學(xué)目標(biāo)
一、教學(xué)知識(shí)點(diǎn):
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過(guò)具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個(gè)圖形對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價(jià)值觀要求
1.經(jīng)歷對(duì)生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動(dòng)手操作、畫(huà)圖等過(guò)程,掌握有關(guān)畫(huà)圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí).
2.通過(guò)學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問(wèn)題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點(diǎn):旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點(diǎn):探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過(guò)程:
一.巧設(shè)情景問(wèn)題,引入課題
日常生活中,我們經(jīng)常見(jiàn)到以下情景(出示圖示:鐘表、汽車(chē)方向盤(pán)、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動(dòng)、汽車(chē)方向盤(pán)的轉(zhuǎn)動(dòng)、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動(dòng)現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,其形狀、大小、位置是否發(fā)生改變?汽車(chē)方向盤(pán)的'轉(zhuǎn)動(dòng)呢?
1.在這些轉(zhuǎn)動(dòng)的現(xiàn)象中,它們都是繞著一個(gè)點(diǎn)轉(zhuǎn)動(dòng)的.
2.每個(gè)物體的轉(zhuǎn)動(dòng)都是向同一個(gè)方向轉(zhuǎn)動(dòng).
3.鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過(guò)程中,它的形狀、大小沒(méi)有變化,只是它的位置有所改變.
4.汽車(chē)的方向盤(pán)在轉(zhuǎn)動(dòng)過(guò)程中,同樣它的形狀、大小沒(méi)有改變,方向盤(pán)上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動(dòng)叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來(lái)探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個(gè)圖形繞著一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn)(circumrotate).這個(gè)定點(diǎn)稱(chēng)為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱(chēng)為旋轉(zhuǎn)角.注意:“將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度”意味著圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方式轉(zhuǎn)動(dòng)相同的角度.在物體繞著一個(gè)定點(diǎn)轉(zhuǎn)動(dòng)時(shí),它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁(yè))答:(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時(shí)點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長(zhǎng)短、形狀沒(méi)有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過(guò)程中,圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.
(4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A移動(dòng)到點(diǎn)D的位置,點(diǎn)B移動(dòng)到點(diǎn)E的位置,點(diǎn)C移動(dòng)到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對(duì)應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對(duì)應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長(zhǎng)度是相等的.
因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過(guò)旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度.任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
。劾1](課本68頁(yè)例1)
[師生共析]經(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤(pán)的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時(shí)的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過(guò)的度數(shù)是6°,這樣20分時(shí),分針逆轉(zhuǎn)的角度即可求出.
解:(見(jiàn)課本68頁(yè))
書(shū)上68頁(yè)做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時(shí)小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動(dòng)與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過(guò)程:讓學(xué)生畫(huà)圖、找規(guī)律,也可讓他們通過(guò)剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個(gè)圖形可以看做是圖形的八分之一(一組大小不等的三個(gè)“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個(gè)圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個(gè)圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個(gè)三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的?
過(guò)程:同樣讓學(xué)生在畫(huà)圖過(guò)程中體會(huì)圖形中每個(gè)三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個(gè)是另一個(gè)通過(guò)旋轉(zhuǎn)得到的.
整個(gè)圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個(gè)圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書(shū)設(shè)計(jì):略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動(dòng)形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
八年級(jí)數(shù)學(xué)教案 篇3
一、教學(xué)目標(biāo)
1.理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;
2.理解根號(hào)的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的平方根和算術(shù)平方根;
3.通過(guò)本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過(guò)學(xué)習(xí)乘方和開(kāi)方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對(duì)立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。
教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過(guò)程
(一)提問(wèn)
1、已知一正方形面積為50平方米,那么它的邊長(zhǎng)應(yīng)為多少?
2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長(zhǎng)應(yīng)為多少?
這些問(wèn)題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問(wèn)題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個(gè)小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語(yǔ)言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的.平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學(xué)生思考后,得到結(jié)論此題無(wú)答案。反問(wèn)學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒(méi)有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。
2.0有一個(gè)平方根,它是0本身。
3.負(fù)數(shù)沒(méi)有平方根。
(四)開(kāi)平方
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方的運(yùn)算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見(jiàn)平方運(yùn)算與開(kāi)平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過(guò)平方運(yùn)算來(lái)求一個(gè)數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對(duì)非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個(gè)。
。ㄎ澹┢椒礁谋硎痉椒
一個(gè)正數(shù)a的正的平方根,用符號(hào)“ ”表示,a叫做被開(kāi)方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號(hào)“— ”表示,a的平方根合起來(lái)記作 ,其中 讀作“二次根號(hào)”, 讀作“二次根號(hào)下a”。根指數(shù)為2時(shí),通常將這個(gè)2省略不寫(xiě),所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號(hào)a”。
練習(xí):1.用正確的符號(hào)表示下列各數(shù)的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
、0。2的平方根是
、3的平方根是
、 的平方根是
由學(xué)生說(shuō)出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個(gè)正數(shù)的平方根有兩個(gè)。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書(shū),鞏固所學(xué)知識(shí)。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書(shū)設(shè)計(jì)
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
(三)開(kāi)平方
探究活動(dòng)
求平方根近似值的一種方法
求一個(gè)正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級(jí)數(shù)學(xué)教案 篇4
教學(xué)指導(dǎo)思想與理論依據(jù)
《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過(guò)程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具。” 教師運(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來(lái),可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺(jué)化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過(guò)程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過(guò)程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
教學(xué)內(nèi)容分析:
本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過(guò)《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫(xiě)順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
學(xué)生情況分析:
本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫(huà)板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂(lè)于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過(guò)程。
教學(xué)方式與教學(xué)手段說(shuō)明:
本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫(huà)板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門(mén)的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過(guò)程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度等數(shù)據(jù),并總結(jié)其性質(zhì),通過(guò)人機(jī)對(duì)話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來(lái)。在此過(guò)程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺(jué)主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。
知識(shí)與技能:
1、初步理解特殊四邊形性質(zhì);
2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
過(guò)程與方法:
1、了解特殊四邊形性質(zhì)的形成過(guò)程;
2、初步了解探究新知識(shí)的一些方法;
情感與價(jià)值觀:
1、了解特殊四邊形在日常生活中的應(yīng)用;
2、學(xué)生在觀察、歸納、類(lèi)比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;
3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
教學(xué)環(huán)境:
多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室
教學(xué)課型:
試驗(yàn)探究式
教學(xué)重點(diǎn):
特殊四邊形性質(zhì)
教學(xué)難點(diǎn):
特殊四邊形性質(zhì)的發(fā)現(xiàn)
一、設(shè)置情景,提出問(wèn)題
提出問(wèn)題:
知識(shí)已生活,又服務(wù)于生活。我們經(jīng)過(guò)校門(mén)時(shí),是否注意到電動(dòng)門(mén)的機(jī)械工作原理(教師用幾何畫(huà)板演示)?
1、電動(dòng)門(mén)的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?
2、在開(kāi)(關(guān))門(mén)過(guò)程中這些四邊形是如何變化的?
3、你還發(fā)現(xiàn)了什么?
解決問(wèn)題:
學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問(wèn)題就容易解決了。
。ㄒ鈭D:用《幾何畫(huà)板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問(wèn)題的求知欲望。)
二、整體了解,形成系統(tǒng)
本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
提出問(wèn)題:
1、本章主要研究哪些特殊四邊形?
2、從哪幾方面研究這些特殊四邊形?
3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設(shè)有是什么圖形呢?如果沒(méi)有,為什么?
解決問(wèn)題:
學(xué)生操作電腦(用幾何畫(huà)板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。
1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形
2、從邊、角、對(duì)角線、面積、周長(zhǎng)、……等方面研究。本節(jié)課主要從邊、角、對(duì)角線三方面考慮;
3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒(méi)有圖形。
。ㄒ鈭D: 學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過(guò)假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))
三、個(gè)體研究、總結(jié)性質(zhì)
1、平行四邊形性質(zhì)
提出問(wèn)題:
在平行四邊形的形狀、位置、大小變化過(guò)程中,請(qǐng)觀察數(shù)據(jù)并找出邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度相對(duì)不變的性質(zhì)。
解決問(wèn)題:
教師引導(dǎo)學(xué)生拖動(dòng)B點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的'要素。
在圖形變化過(guò)程中,
。1)對(duì)邊相等;
。2)對(duì)角相等;
。3)通過(guò)AO=CO 、BO=DO,可得對(duì)角線互相平分;
。4)通過(guò)鄰角互補(bǔ),可得對(duì)邊平行;
(5)內(nèi)外角和都等于360度;
(6)鄰角互補(bǔ);
……
指導(dǎo)學(xué)生填表:
平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)
菱形性質(zhì)
梯形性質(zhì)等腰梯形性質(zhì)
直角梯形性質(zhì)
(既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫(huà)箭頭)
按照平行四邊形性質(zhì)的探索思路,分別研究:
2、矩形性質(zhì);
3、菱形性質(zhì);
4、正方形性質(zhì);
5、梯形性質(zhì);
6、等腰梯形性質(zhì);
7、直角梯形的性質(zhì)。
。ㄒ鈭D: 學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂(lè)趣。)
教師總結(jié):
。ㄒ鈭D: 掌握畫(huà)箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)
四、聯(lián)系生活,解決問(wèn)題
解決問(wèn)題:
學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。
學(xué)生在分別演示開(kāi)(關(guān))門(mén)過(guò)程中,觀察數(shù)據(jù)并總結(jié):邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度的變化引起四邊形的形狀、大小、位置的變化。
四邊形具有不穩(wěn)定性,而三角形沒(méi)有這個(gè)特點(diǎn)……
。ㄒ鈭D:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力,體會(huì)成功后的喜悅。)
五、小結(jié)
1.研究問(wèn)題從整體到局部的方法;
2.主要從邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度三方面研究特殊四邊形性質(zhì)。
六、作業(yè)
1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
2.觀察實(shí)際生活中的電動(dòng)門(mén),在開(kāi)(關(guān))門(mén)過(guò)程中特殊四邊形的變化。
學(xué)習(xí)效果評(píng)價(jià)
針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:
利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過(guò)學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
在問(wèn)題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過(guò)程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
學(xué)生演示開(kāi)(關(guān))門(mén)過(guò)程中,了解特殊四邊形在日常生活中的應(yīng)用,并用所學(xué)的知識(shí)解釋實(shí)際問(wèn)題,使自身價(jià)值得以實(shí)現(xiàn)并體會(huì)成功后的喜悅;
由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過(guò)師生之間、學(xué)生之間的對(duì)話交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。
八年級(jí)數(shù)學(xué)教案 篇5
11.1 與三角形有關(guān)的線段
11.1.1 三角形的邊
1.理解三角形的概念,認(rèn)識(shí)三角形的頂點(diǎn)、邊、角,會(huì)數(shù)三角形的個(gè)數(shù).(重點(diǎn))
2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點(diǎn))
3.三角形在實(shí)際生活中的應(yīng)用.(難點(diǎn))
一、情境導(dǎo)入
出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會(huì)生活中處處有數(shù)學(xué).
教師利用多媒體演示三角形的形成過(guò)程,讓學(xué)生觀察.
問(wèn):你能不能給三角形下一個(gè)完整的定義?
二、合作探究
探究點(diǎn)一:三角形的概念
圖中的銳角三角形有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
解析:(1)以A為頂點(diǎn)的銳角三角形有△ABC、△ADC共2個(gè);(2)以E為頂點(diǎn)的銳角三角形有△EDC共1個(gè).所以圖中銳角三角形的個(gè)數(shù)有2+1=3(個(gè)).故選B.
方法總結(jié):數(shù)三角形的個(gè)數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個(gè)點(diǎn),那么就有n(n-1)2條線段,也可以與線段外的一點(diǎn)組成n(n-1)2個(gè)三角形.
探究點(diǎn)二:三角形的三邊關(guān)系
【類(lèi)型一】 判定三條線段能否組成三角形
以下列各組線段為邊,能組成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:選項(xiàng)A中2+3=5,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B中5+6>10,能組成三角形,故此選項(xiàng)正確;選項(xiàng)C中1+1<3,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D中3+4<9,不能組成三角形,故此選項(xiàng)錯(cuò)誤.故選B.
方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長(zhǎng)度之和大于第三條線段的長(zhǎng)度即可.
【類(lèi)型二】 判斷三角形邊的取值范圍
一個(gè)三角形的三邊長(zhǎng)分別為4,7,x,那么x的取值范圍是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三邊長(zhǎng)分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.
方法總結(jié):判斷三角形邊的取值范圍要同時(shí)運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時(shí)還要結(jié)合不等式的知識(shí)進(jìn)行解決.
【類(lèi)型三】 等腰三角形的三邊關(guān)系
已知一個(gè)等腰三角形的兩邊長(zhǎng)分別為4和9,求這個(gè)三角形的周長(zhǎng).
解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長(zhǎng)的兩種情況,再根據(jù)兩邊和大于第三邊來(lái)判斷能否構(gòu)成三角形,從而求解.
解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長(zhǎng)是4+9+9=22.
方法總結(jié):在求三角形的邊長(zhǎng)時(shí),要注意利用三角形的三邊關(guān)系驗(yàn)證所求出的邊長(zhǎng)能否組成三角形.
【類(lèi)型四】 三角形三邊關(guān)系與絕對(duì)值的綜合
若a,b,c是△ABC的三邊長(zhǎng),化簡(jiǎn)|a-b-c|+|b-c-a|+|c+a-b|.
解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來(lái)判定絕對(duì)值里的式子的正負(fù),然后去絕對(duì)值符號(hào)進(jìn)行計(jì)算即可.
解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類(lèi)問(wèn)題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).
三、板書(shū)設(shè)計(jì)
三角形的'邊
1.三角形的概念:
由不在同一直線上的三條線段首尾順次相接所組成的圖形.
2.三角形的三邊關(guān)系:
兩邊之和大于第三邊,兩邊之差小于第三邊.
本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問(wèn)題的過(guò)程,抓住“任意的三條線段能不能?chē)梢粋(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問(wèn)題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能?chē),有的不能(chē),由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能?chē)扇切蔚娜龡l邊之間到底有什么關(guān)系”.通過(guò)觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力.
八年級(jí)數(shù)學(xué)教案 篇6
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱(chēng)為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡(jiǎn)單的平移作圖
①確定個(gè)圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。
、谧髌揭坪蟮膱D形的方法:
、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn),這個(gè)定點(diǎn)稱(chēng)為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱(chēng)為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的`性質(zhì)
、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
⑷旋轉(zhuǎn)前后的兩個(gè)圖形全等。
3.簡(jiǎn)單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
、厶剿髟搱D案的形成過(guò)程,類(lèi)型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱(chēng)變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對(duì)稱(chēng)變換的組合;⑹軸對(duì)稱(chēng)變換與平移變換的組合。
八年級(jí)數(shù)學(xué)教案 篇7
教學(xué)目標(biāo):
1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過(guò)程,在活動(dòng)中發(fā)展學(xué)生的探究意識(shí)和合作交流的習(xí)慣;
2。索并掌握平行四邊形的性質(zhì),并能簡(jiǎn)單應(yīng)用;
3。在探索活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí)。
教學(xué)重點(diǎn):平行四邊形性質(zhì)的探索。
教學(xué)難點(diǎn):平行四邊形性質(zhì)的理解。
教學(xué)準(zhǔn)備:多媒體課件
教學(xué)過(guò)程
第一環(huán)節(jié):實(shí)踐探索,直觀感知(5分鐘,動(dòng)手實(shí)踐、探索、感知,學(xué)生進(jìn)一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)
1。小組活動(dòng)一
內(nèi)容:
問(wèn)題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對(duì)折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個(gè)四邊形。
。1)你拼出了怎樣的四邊形?與同桌交流一下;
。2)給出小明拼出的四邊形,它們的對(duì)邊有怎樣的位置關(guān)系?說(shuō)說(shuō)你的理由,請(qǐng)用簡(jiǎn)捷的語(yǔ)言刻畫(huà)這個(gè)圖形的特征。
2。小組活動(dòng)二
內(nèi)容:生活中常見(jiàn)到平行四邊形的實(shí)例有什么呢?你能舉例說(shuō)明嗎?
第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動(dòng)手、動(dòng)嘴,全班交流)
小組活動(dòng)3:
用 一張半透明的紙復(fù)制你剛才畫(huà)的平行四邊形,并將復(fù)制 后的四邊形繞一個(gè)頂點(diǎn)旋轉(zhuǎn)180,你能平移該紙片,使它與你畫(huà)的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對(duì)邊、對(duì)角分別有什么關(guān)系?能用別的方法驗(yàn)證你的結(jié)論嗎?
。1)讓學(xué)生動(dòng)手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;
(2)學(xué)生交流、議論;
。3)教師利用多媒體展示實(shí)踐的'過(guò)程。
第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過(guò)說(shuō)理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)
實(shí)踐 探索內(nèi)容
。1)通過(guò)剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對(duì)角線把它分成的兩個(gè)三角形全等。
。2)可以通過(guò)推理來(lái)證明這個(gè)結(jié)論,如圖連結(jié)AC。
∵ 四邊形ABCD是平行四邊形
AD // BC, AB // CD
2,4
△AB C和△CDA中
1
AC=C A
4
△ABC≌△CDA(ASA)
AB=DC, AD=CB,B
又∵2
4
3=4
即BAD=DCB
第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過(guò)議一議,練一練,學(xué)生進(jìn)一步理解平行四邊形的性質(zhì),并進(jìn)行簡(jiǎn)單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時(shí)從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識(shí)平行四邊形的本質(zhì)特征。)
1;顒(dòng)內(nèi)容:
。1)議一議:如果已知平行四邊形的一個(gè)內(nèi)角度數(shù),能確定其它三個(gè)內(nèi)角的度數(shù)嗎?
A(學(xué)生思考、議論)
B總結(jié)歸納:可以確定其它三個(gè)內(nèi)角的度數(shù)。
由平行四邊形對(duì) 邊分邊平行 得到鄰角互補(bǔ);又由于平行四邊形對(duì)角相等,由此已知平行四邊形的一個(gè)內(nèi)角的度數(shù),可以確定其它三個(gè)角度數(shù)。
。2)練一練(P99隨堂練習(xí))
練1 如圖:四邊形ABCD是平行四邊形。
。1)求ADC、BCD度數(shù)
。2)邊AB、BC的度數(shù)、長(zhǎng)度。
練2 四邊形ABCD是平行四邊形
(1)它的四條邊中哪些 線段可以通過(guò)平移相到得到?
(2)設(shè)對(duì)角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說(shuō)說(shuō)理由。
歸 納:平行四邊形的性質(zhì):平行四邊形的對(duì)角線互相平分。
第五環(huán)節(jié) 評(píng)價(jià)反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)
活動(dòng)內(nèi)容
師生相互交流、反思、總結(jié)。
。1)經(jīng)歷了對(duì)平行四邊形的特征探索,你有什么感受和收獲?給自己一個(gè)評(píng)價(jià)。
。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點(diǎn)?
。3)本節(jié)學(xué)習(xí)到了什么?(知識(shí)上、方法上)
考一考:
1。 ABCD中,B=60,則A= ,C= ,D= 。
2。 ABCD中,A比B大20,則C= 。
3。 ABCD中,AB=3,BC=5,則AD= CD= 。
4。 ABCD中,周長(zhǎng)為40cm,△ABC周長(zhǎng)為25,則對(duì)角線AC=( )cm。
布置作業(yè)
課本習(xí)題4。1
A組(學(xué)優(yōu)生)1 、2
B組(中等生)1、2
C組(后三分之一生)1、2
教學(xué)反思
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
八年級(jí)的數(shù)學(xué)教案15篇12-14
八年級(jí)數(shù)學(xué)教案【推薦】12-04