精選八年級數(shù)學(xué)教案集合六篇
作為一無名無私奉獻的教育工作者,常常需要準(zhǔn)備教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么什么樣的教案才是好的呢?下面是小編整理的八年級數(shù)學(xué)教案6篇,歡迎大家分享。
八年級數(shù)學(xué)教案 篇1
知識目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標(biāo):會用變化的量描述事物
情感目標(biāo):回用運動的觀點觀察事物,分析事物
重點:函數(shù)的概念
難點:函數(shù)的概念
教學(xué)媒體:多媒體電腦,計算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍
教學(xué)設(shè)計:
引入:
信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
、 這張圖告訴我們哪些信息?
、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對應(yīng)的數(shù):
、 這表告訴我們哪些信息?
、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?
一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的.值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時,其長與面積;
(6) 等腰三角形的底邊長與面積;
(7) 某人的年齡與身高;
活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時,油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動2:練習(xí)教材9頁練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
八年級數(shù)學(xué)教案 篇2
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).
本節(jié)內(nèi)容的難點是定理及逆定理的關(guān)系. 垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反. 學(xué)生在應(yīng)用它們的'時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
2、 教法建議
本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式. 提出問題讓學(xué)生想,設(shè)計問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納. 教師的作用在于組織、點撥、引導(dǎo),促進學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人. 具體說明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程
學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”. 然后學(xué)生完成證明,找一名學(xué)生的證明過程,進行投影總結(jié). 最后,由學(xué)生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學(xué)生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.
(2)采用“類比”的學(xué)習(xí)方法,獲取逆定理
線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點,教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進行教學(xué),使學(xué)生進一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.
(3) 通過問題的解決,讓學(xué)生學(xué)會從不同角度分析問題、解決問題;讓學(xué)生學(xué)會引申、變更問題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力.
八年級數(shù)學(xué)教案 篇3
一、教學(xué)目標(biāo):
1、知識目標(biāo):能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):
、,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系;
、冢瑢M合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續(xù)變化的特點;
難點:圖形的劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計:
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的.平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調(diào)動學(xué)生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識較強,學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過程中滲透數(shù)學(xué)美學(xué)思想,促進學(xué)生綜合素質(zhì)的提高。
八年級數(shù)學(xué)教案 篇4
一、學(xué)習(xí)目標(biāo)及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。
難點:理解方差公式
二、自主學(xué)習(xí):
(一)知識我先懂:
方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習(xí):
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )
(2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的`極差,你發(fā)現(xiàn)了 )
歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學(xué)中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學(xué)生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結(jié)
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習(xí)1、2 選做題:練習(xí)冊對應(yīng)部分習(xí)題
七、學(xué)習(xí)小札記:
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學(xué)教案 篇5
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點、難點
重點:等腰梯形性質(zhì)的'探索;
難點:梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:啟發(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
(三)質(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級數(shù)學(xué)教案 篇6
一、教學(xué)目標(biāo)
1.靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.進一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.
二、重點、難點
1.重點:靈活應(yīng)用勾股定理及逆定理解決實際問題.
2.難點:靈活應(yīng)用勾股定理及逆定理解決實際問題.
3.難點的突破方法:
三、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.
四、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
、埔李}意畫出圖形;
⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
、纫驗242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.
例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的.形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級下冊數(shù)學(xué)教案01-01
八年級數(shù)學(xué)教案人教版01-03
八年級上冊數(shù)學(xué)教案11-09
人教版八年級數(shù)學(xué)教案11-04
初中八年級數(shù)學(xué)教案11-03
八年級數(shù)學(xué)教案【薦】12-06