八年級數(shù)學(xué)教案范文集錦七篇
作為一名人民教師,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以有效提升自己的教學(xué)能力。那么問題來了,教案應(yīng)該怎么寫?以下是小編為大家整理的八年級數(shù)學(xué)教案7篇,僅供參考,歡迎大家閱讀。
八年級數(shù)學(xué)教案 篇1
【教學(xué)目標(biāo)】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質(zhì)
3、探索三角形的中位線的性質(zhì)的一些簡單的應(yīng)用
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):三角形的中位線定理。
難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。
【教學(xué)過程】
(一)創(chuàng)設(shè)情景,引入新課
1、如圖,為了測量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>
。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
。2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導(dǎo)學(xué)生概括出中位線的概念。
問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?
啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的'一個(gè)頂點(diǎn)。
4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)
。ǘ、師生互動(dòng),探究新知
1、證明你的猜想
引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。
。ㄒ阎酣SABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)
啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)
啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補(bǔ)短)
學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強(qiáng)調(diào)有其他證法。
證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),
∴DF∥BC(根據(jù)什么?),
∴DE 1/2BC
2、啟發(fā)學(xué)生歸納定理,并用文字語言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。
。ㄈ⿲W(xué)以致用、落實(shí)新知
1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長是多少?
2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。
求證:四邊形EFGH是平行四邊形。
啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?
啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,
∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG 1/2AC。
∴EF HG。
∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)
挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?
(四)學(xué)生練習(xí),鞏固新知
1、請回答引例中的問題(1)
2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點(diǎn)。求證:∠PNM=∠PMN
。ㄎ澹┬〗Y(jié)回顧,反思提高
今天你學(xué)到了什么?還有什么困惑?
八年級數(shù)學(xué)教案 篇2
八年級數(shù)學(xué)上冊第三章平移與旋轉(zhuǎn)復(fù)習(xí)教案
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡單的平移作圖
①確定個(gè)圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對應(yīng)點(diǎn)的位置。
、谧髌揭坪蟮膱D形的方法:
、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對應(yīng)點(diǎn);⑶將所作的對應(yīng)點(diǎn)按原來方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
、侨我庖粚(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所 成的`角都是旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個(gè)圖形全等。
3.簡單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的基本圖案
、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。
一.選擇題:
1.下列圖形中,是由(1)僅通過平移得到的是( )
2.在以下現(xiàn)象中,
、 溫度計(jì)中,液柱的上升或下降; ② 打氣筒打氣時(shí),活塞的運(yùn)動(dòng);
③ 鐘擺的擺動(dòng); ④ 傳送帶上,瓶裝飲料的移動(dòng)
屬于平移的是( )
(A)① ,② (B)①, ③ (C)②, ③ (D)② ,④
3. 將長度為5cm 的線段向上平移10cm所得線段長度是( )
(A)10cm (B)5c m (C)0cm (D)無法確定
4. 如圖可以看作正△OAB繞點(diǎn)O通過( )旋轉(zhuǎn) 所得到的
A.3次 B.4次 C.5次 D.6次
5.下列運(yùn)動(dòng)是屬于旋轉(zhuǎn)的是( )
A.滾動(dòng)過程中的籃球的滾動(dòng) B.鐘表的鐘擺的擺動(dòng)
C.氣球升空的運(yùn)動(dòng) D.一個(gè)圖形沿某直線 對折過程
6.ABC是直角三角形,如圖(a),先將它以AB為對稱軸作出它的軸對稱圖形,然后再平移
得 到的圖形應(yīng)該是( );
(a) A B C D
7.下列說法正確的是( )
A.平移不改變圖形的形狀和大小,而旋轉(zhuǎn)則改
變圖形的形狀和大小
B.平移和旋轉(zhuǎn)的共同點(diǎn)是改變圖形的位置
C.圖形可以向某方向平移一定距離,也可以向某方向旋轉(zhuǎn)一定 距離
D.由平移得到的圖形也一定可由旋轉(zhuǎn)得到
8.將圖形按順時(shí)針方向旋轉(zhuǎn)900后的 圖形是( )
A B C D
9. 下列圖形中只能用其中一部分平移可以得到的是 ( ).
(A) (B) (C) (D)
10. 下列標(biāo)志既是軸對稱圖形又是中心對稱圖形的是 ( ).
(A) (B) (C) (D)
11. 如圖1,四邊形EFGH是由四邊形ABCD平移得到的,
已知,AD=5,B=70,則下列說法中正確的是 ( ).
(A)FG=5, G=70 (B)EH=5, F=70
(C)EF=5,F(xiàn)=70 (D) EF=5,E=70
12. 如圖3,△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90到△OCD的位置,
已知AOB=45,則AOD的度數(shù)為( ).
(A)55(B)45(C)40(D)35
13. 同學(xué)們曾玩過萬花筒,它是由三塊等寬等長的玻璃
片圍成的.如圖是看到的萬花筒的一個(gè)圖案,如圖3中
所有小三角形均是全等的等邊三角形,其中的菱形
AEFG可以看成是把菱形ABCD以A為中心( ).
(A)順時(shí)針旋轉(zhuǎn)60得到 (B)逆時(shí)針旋轉(zhuǎn)60得到
(C)順時(shí)針旋轉(zhuǎn)120得到 (D)逆時(shí)針旋轉(zhuǎn)120得到
14. 如圖,甲圖案變成乙圖案,既能用平移,又能用旋轉(zhuǎn)的是( ).
15. 下列圖形中,繞某個(gè)點(diǎn)旋轉(zhuǎn)180能與自身重合的圖形有 ( ).
(1)正方形;(2)等邊三角形;(3)長方形;(4)角;(5)平行四邊形;(6)圓
. (A)2個(gè) (B)3個(gè) (C)4個(gè) (D)5個(gè)
16. 如圖4, △ABC沿直角邊BC所在直線向右平移到
△DEF,則下列結(jié)論中,錯(cuò)誤的是 ( ).
(A)BE=EC (B)BC=EF (C)AC=DF(D)△ABC≌△DEF
二、填空題.
1.平移是由_________________________________________所決定。
2. 平移不改變圖形的 和 ,只改變圖形的 。
3.鐘表的分針勻速旋轉(zhuǎn)一周需要60分,它的旋轉(zhuǎn)中心是_______,經(jīng)過20分,分針旋轉(zhuǎn)________度。
4.如圖四邊形ABCD是旋轉(zhuǎn)對稱圖形,點(diǎn)__________是旋轉(zhuǎn)中心,旋轉(zhuǎn)了_________度后能與自身重合,則AD=____ ______,AO=__________,BO =_____________。
5.△ 是△ 平移后得到的三角形,則△ ≌△ ,理由是
6.△ABC和△DCE是等邊三角形,則在此圖中,△ACE繞著c點(diǎn) 旋轉(zhuǎn) 度可得到△BCD.
7. 如圖,四邊形AOBC,它繞 著O點(diǎn) 旋轉(zhuǎn)到四邊形DOEF位置,在這個(gè)旋轉(zhuǎn)過程中:旋轉(zhuǎn)中心是_________,旋轉(zhuǎn)角是_________經(jīng)過旋轉(zhuǎn)點(diǎn) A轉(zhuǎn)到__________,點(diǎn)C轉(zhuǎn)到__________,點(diǎn)B轉(zhuǎn)到__________線段OA與線段________ ,線段OB與線段_ _______,線段BC與線段________是對應(yīng)線段。四邊形OACB與四邊形ODFE的形狀、大小______________。
8.如圖,圖案繞中心旋轉(zhuǎn)_______度(填最小度數(shù)) 次和原來圖案互相重合.
9. 如圖7,已知面積為1的正方形 的對角線相交于點(diǎn) ,過點(diǎn) 任作
一條直線分別交 于 ,則陰影部分的面積是 .
10. 如圖9,P是正方形ABCD內(nèi)一點(diǎn),將△ABP繞點(diǎn)B順時(shí)針方向旋
轉(zhuǎn)一定的角度后能與△CB 重合.若PB=3,則P = .
三、解答題
1.如圖,經(jīng)過平移,△ABC的頂點(diǎn)A移
到了點(diǎn)D,請作出平移后的三角形。
2.如圖,把 繞B點(diǎn)逆時(shí)針方向旋轉(zhuǎn)30后,
畫出旋轉(zhuǎn)后的三角形。
3.在下圖中,將大寫字母E繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)
90后,再向左平移4個(gè)格,請作出最后得到的圖案.
4.如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG。
(1)觀察猜想BE與DG之間的大小關(guān)系,并證明;
(2)圖中是否存在通過旋轉(zhuǎn)能夠互相重合的兩個(gè)三角形?若存在,
請說出旋轉(zhuǎn)過程,若不存在,請說明理由。
5.如圖, ABC中, BAC= ,以BC為邊向外作等邊 BCD,把 ABD繞著點(diǎn)D按
順時(shí)針方向向旋轉(zhuǎn) 得到 ECD的位置。若AB=3,AC=2,求 BAD的度數(shù)和線段AD
的長度。(A、C、E在同一直線上)
6如圖,四邊形ABCD的BAD=C=90,AB=AD,AEBC于E, 旋轉(zhuǎn)后能與 重合。
(1)旋轉(zhuǎn)中心是哪一點(diǎn)? (2)旋轉(zhuǎn)了多少度? (3)若AE =5㎝,求四邊形AECF的面積。
7.如圖,梯形ABCD的周長為30cm,AD∥BC ,現(xiàn)將DC平移到AE處,AD=5cm ,求 ABE有周長。
八年級數(shù)學(xué)教案 篇3
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形,F(xiàn)在請同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。
動(dòng)畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點(diǎn)到各頂點(diǎn)的長度。
[學(xué)生活動(dòng):各自測量。]
鼓勵(lì)學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注重糾正其語言的規(guī)范性。
動(dòng)畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的.定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個(gè)角是直角的菱形叫做正方形。”
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
動(dòng)畫演示:
場景五:平行四邊形、矩形、菱形、正方形之間的關(guān)系
場景六:平行四邊形、矩形、菱形、正方形之間的性質(zhì)關(guān)系
師:當(dāng)然平行四邊形、矩形、菱形和正方形它們之間的關(guān)系還可以用下圖(圖1)表示:
圖1
師:請同學(xué)們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系以及平行四邊形、矩形、菱形和正方形它們之間的性質(zhì)關(guān)系整理在筆記本上。
例題講解
例1 在已知銳角三角形ABC外邊作正方形ABDE和正方形ACFG,求證:BG=CE
分析:據(jù)已知條件畫出圖形,如圖2所示,要證實(shí)線段相等,與圖形可以證實(shí)二個(gè)三角形全等,即只需證實(shí)△ABG≌△AEC。
證實(shí):∵四邊形ABDE和ACFG都是正方形
∴AB=AE,AG=AC
∠BAE=∠CAG=90°
∴∠BAE ∠BAC=∠CAG ∠BAC
即∠BAG=∠EAC
∴△ABG≌△AEC ∴BG=CE
圖2
說明:應(yīng)用正方形的性質(zhì),可以為證實(shí)全等提供條件,要注重等式性質(zhì)的應(yīng)用,這與向銳角三角形ABC外作等邊三角形的結(jié)論完全相同,證法是可以借鑒的。
鞏固練習(xí)
鞏固練習(xí)題目可有教師根據(jù)學(xué)生情況自主選擇。
講解新課
師:正方形是非凡的平行四邊形、矩形、菱形,那么根據(jù)平行四邊形、矩形、菱形和正方形它們之間的關(guān)系,怎么判定一個(gè)矩形是正方形?
生:證一組鄰邊相等。
師:怎么判定一個(gè)菱形是正方形?
生:證有一個(gè)角是直角。
師:怎么判定一個(gè)平行四邊形是正方形?
生:根據(jù)定義,證有一組鄰邊相等且有一個(gè)角是直角。
師:那么,剛才的結(jié)論假如用圖來表示,是不是如圖2所示?
師:圖3表現(xiàn)出由平行四邊形、矩形、菱形分別得到正方形的三種方法。這是我們根據(jù)平行四邊形、矩形、菱形和正方形它們之間的關(guān)系得到的,但似乎有缺憾,能不能同樣根據(jù)平行四邊形、矩形、菱形和正方形它們之間的關(guān)系把圖3補(bǔ)全?
[學(xué)生活動(dòng):積極思考,部分學(xué)生迷惑不解。]
師點(diǎn)取上等學(xué)生回答問題,根據(jù)回答得圖4。
學(xué)生恍然大悟。
學(xué)生思路得到啟發(fā),中上等及上等學(xué)生意猶未盡,鼓勵(lì)他們根據(jù)矩形、菱形的判定方法直接得到正方形的判定思路,并要求其舉出簡單示例。
就勢跟進(jìn),要求學(xué)生思考,給定四邊形,有什么樣的邊、角、對角線條件可判定四邊形是正方形?要求給出簡單圖例,并說出相應(yīng)證實(shí)思路。
為進(jìn)一步理解正方形的判定方法,可研究以下幾個(gè)問題:
(1)對角線相等的菱形是正方形嗎?
。2)對角線互相垂直的矩形是正方形嗎?
(3)對角線互相垂直且相等的四邊形是正方形嗎?若不是,還需增加什么條件?
。4)能說“四條便都相等的四邊形是正方形嗎?”
。5)四個(gè)角都相等的四邊形是正方形嗎?
小結(jié):證實(shí)正方形的思路,總體講三種思路,如圖4所示;碰到具體條件要學(xué)會(huì)具體分析,規(guī)定條件和隱含條件不外乎邊、角、對角線,或者把他們攪和在一起。這是一定要都要冷靜,學(xué)會(huì)去分析。
動(dòng)畫演示:
場景七:正方形的判定
例題講解
例2 如圖所示,在正方形ABCD中,E、F分別是BC、AB的中點(diǎn),DE、CF相交于M,
求證:AD=AM。
分析:欲證AD=AM,只需證實(shí)∠1=∠2,但要根據(jù)題目條件直接證實(shí)∠1=∠2比較困難,考慮到E、F是正方形的兩邊中點(diǎn),輕易證實(shí)得:△BCF≌△CDF,得∠3=∠4,而∠4 ∠BCF=90°。由此DE⊥CF,這是要證AD=AM,是否想到與直角有關(guān)的等腰三角形?只需延長CF、DA交于N,即可出現(xiàn)直角三角形MND,只要證實(shí)A是ND中點(diǎn)即可。這是是否發(fā)現(xiàn)△BCF≌△ANF?由AN=BC=AD,從而A是ND中點(diǎn),MA是直角三角形MND的斜邊ND上的中線。問題得證。
證實(shí):略。
說明:將此題中的中點(diǎn)E、F進(jìn)行變化:E、F分別為正方形ABCD的邊BC、AB上的點(diǎn),且BE=AF,則有DE⊥CF。這個(gè)變化后的圖形在正方形中經(jīng)常出現(xiàn),要注重隱含的這個(gè)垂直條件。
課堂練習(xí)題及課后作業(yè)可由教師根據(jù)學(xué)生情況自主選擇。
八年級數(shù)學(xué)教案 篇4
一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點(diǎn)、難點(diǎn)
一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的`根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
(三)教學(xué)目標(biāo)
1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。
八年級數(shù)學(xué)教案 篇5
知識(shí)要點(diǎn)
1、函數(shù)的概念:一般地,在某個(gè)變化過程中,有兩個(gè) 變量x和 y,如果給定一個(gè)x值,
相應(yīng)地就確定了一個(gè)y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。
2、一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時(shí),稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).
3、正比例函數(shù)y=kx的性質(zhì)
(1)、正比例函數(shù)y=kx的圖象都經(jīng)過
原點(diǎn)(0,0),(1,k)兩點(diǎn)的一條直線;
(2)、當(dāng)k0時(shí),圖象都經(jīng)過一、三象限;
當(dāng)k0時(shí),圖象都經(jīng)過二、四象限
(3)、當(dāng)k0時(shí),y隨x的增大而增大;
當(dāng)k0時(shí),y隨x的增大而減小。
4、一次函數(shù)y=kx+b的性質(zhì)
(1)、經(jīng)過特殊點(diǎn):與x軸的交點(diǎn)坐標(biāo)是 ,
與y軸的交點(diǎn)坐標(biāo)是 .
(2)、當(dāng)k0時(shí),y隨x的增大而增大
當(dāng)k0時(shí),y隨x的增大而減小
(3)、k值相同,圖象是互相平行
(4)、b值相同,圖象相交于同一點(diǎn)(0,b)
(5)、影響圖象的兩個(gè)因素是k和b
、賙的正負(fù)決定直線的方向
②b的正負(fù)決定y軸交點(diǎn)在原點(diǎn)上方或下方
5.五種類型一次函數(shù)解析式的確定
確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。
(1)、根據(jù)直線的解析式和圖像上一個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例1、若函數(shù)y=3x+b經(jīng)過點(diǎn)(2,-6),求函數(shù)的解析式。
解:把點(diǎn)(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函數(shù)的解析式為:y=3x-12
(2)、根據(jù)直線經(jīng)過兩個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例2、直線y=kx+b的圖像經(jīng)過A(3,4)和點(diǎn)B(2,7),
求函數(shù)的表達(dá)式。
解:把點(diǎn)A(3,4)、點(diǎn)B(2,7)代入y=kx+b,得
,解得:
函數(shù)的解析式為:y=-3x+13
(3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式
例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時(shí)間x
(小時(shí))之間的關(guān)系.求油箱里所剩油y(升)與行駛時(shí)間x
(小時(shí))之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。
(4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式
例4、如圖2,將直線 向上平移1個(gè)單位,得到一個(gè)一次
函數(shù)的圖像,那么這個(gè)一次函數(shù)的解析式是 .
解:直線 經(jīng)過點(diǎn)(0,0)、點(diǎn)(2,4),直線 向上平移1個(gè)單位
后,這兩點(diǎn)變?yōu)?0,1)、(2,5),設(shè)這個(gè)一次函數(shù)的解析式為 y=kx+b,
得 ,解得: ,函數(shù)的解析式為:y=2x+1
(5)、根據(jù)直線的對稱性,確定函數(shù)的解析式
例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對稱,求k、b的值。
例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對稱,求k、b的值。
例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點(diǎn)對稱,求k、b的值。
經(jīng)典訓(xùn)練:
訓(xùn)練1:
1、已知梯形上底的長為x,下底的長是10,高是 6,梯形的面積y隨上底x的變化而變化。
(1)梯形的面積y與上底的長x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?
(2)若y是x的函數(shù),試寫出y與x之間的函數(shù)關(guān)系式 。
訓(xùn)練2:
1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函數(shù)有___ __;正比例函數(shù)有____________(填序號).
2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )
A.k1 B.k-1 C.k1 D.k為任意實(shí)數(shù).
3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.
訓(xùn)練3:
1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.
2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過的象限是____,它與x軸的交 點(diǎn)坐標(biāo)是____,與y軸的交點(diǎn)坐標(biāo)是____.
4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過原點(diǎn),則k=_____;
若y隨x的增大而增大,則k__________.
5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )
訓(xùn)練4:
1、 正比例函數(shù)的圖象經(jīng)過點(diǎn)A(-3,5),寫出這正比例函數(shù)的解析式.
2、已知一次函數(shù)的圖象經(jīng)過點(diǎn)(2,1)和(-1,-3).求此一次函數(shù)的解析式 .
3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。
4、已知一次函數(shù)y=kx+b,在x=0時(shí)的值為4,在x=-1時(shí)的值為-2,求這個(gè)一次函數(shù)的解析式。
5、已知y-1與x成正比例,且 x=-2時(shí),y=-4.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=3時(shí),求y的值.
一、填空題(每題2分,共26分)
1、已知 是整數(shù),且一次函數(shù) 的圖象不過第二象限,則 為 .
2、若直線 和直線 的交點(diǎn)坐標(biāo)為 ,則 .
3、一次函數(shù) 和 的圖象與 軸分別相交于 點(diǎn)和 點(diǎn), 、 關(guān)于 軸對稱,則 .
4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時(shí) , 時(shí), ,則當(dāng) 時(shí), .
5、函數(shù) ,如果 ,那么 的取值范圍是 .
6、一個(gè)長 ,寬 的矩形場地要擴(kuò)建成一個(gè)正方形場地,設(shè)長增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的`取值范圍是 .且 是 的 函數(shù).
7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時(shí), 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .
8、已知一次函數(shù) 和 的圖象交點(diǎn)的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .
9、已知一次函數(shù) 的圖象經(jīng)過點(diǎn) ,且它與 軸的交點(diǎn)和直線 與 軸的交點(diǎn)關(guān)于 軸對稱,那么這個(gè)一次函數(shù)的解析式為 .
10、一次函數(shù) 的圖象過點(diǎn) 和 兩點(diǎn),且 ,則 , 的取值范圍是 .
11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時(shí), 是正比例函數(shù).
12、 為 時(shí),直線 與直線 的交點(diǎn)在 軸上.
13、已知直線 與直線 的交點(diǎn)在第三象限內(nèi),則 的取值范圍是 .
二、選擇題(每題3分,共36分)
14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )
15、若直線 與 的交點(diǎn)在 軸上,那么 等于( )
A.4 B.-4 C. D.
16、直線 經(jīng)過一、二、四象限,則直線 的圖象只能是圖4中的( )
17、直線 如圖5,則下列條件正確的是( )
18、直線 經(jīng)過點(diǎn) , ,則必有( )
A.
19、如果 , ,則直線 不通過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是
A. B. C. D.都不對
21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )
圖6
22、已知一次函數(shù) 與 的圖像都經(jīng)過 ,且與 軸分別交于點(diǎn)B, ,則 的面積為( )
A.4 B.5 C.6 D.7
23、已知直線 與 軸的交點(diǎn)在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
24、已知 ,那么 的圖象一定不經(jīng)過( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時(shí),甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達(dá)距A站22千米處.設(shè)甲從P處出發(fā) 小時(shí),距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )
三、解答題(1~6題每題8分,7題10分,共58分)
26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點(diǎn),直線 與 軸交于點(diǎn)D,四邊形OBCD(O是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)A的橫坐標(biāo)是 ,求這個(gè)一次函數(shù)解析式.
27、一次函數(shù) ,當(dāng) 時(shí),函數(shù)圖象有何特征?請通過不同的取值得出結(jié)論?
28、某油庫有一大型儲(chǔ)油罐,在開始的8分鐘內(nèi),只開進(jìn)油管,不開出油管,油罐的油進(jìn)至24噸(原油罐沒儲(chǔ)油)后將進(jìn)油管和出油管同時(shí)打開16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進(jìn)油管,只開出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.
(1)試分別寫出這一段時(shí)間內(nèi)油的儲(chǔ)油量Q(噸)與進(jìn)出油的時(shí)間t(分)的函數(shù)關(guān)系式.
(2)在同一坐標(biāo)系中,畫出這三個(gè)函數(shù)的圖象.
29、某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月不超過100度時(shí),按每度0.57元計(jì)費(fèi);每月用電超過100度時(shí),其中的100度按原標(biāo)準(zhǔn)收費(fèi);超過部分按每度0.50元計(jì)費(fèi).
(1)設(shè)用電 度時(shí),應(yīng)交電費(fèi) 元,當(dāng) 100和 100時(shí),分別寫出 關(guān)于 的函數(shù)關(guān)系式.
(2)小王家第一季度交納電費(fèi)情況如下:
月份 一月份 二月份 三月份 合計(jì)
交費(fèi)金額 76元 63元 45元6角 184元6角
問小王家第一季度共用電多少度?
30、某地上年度電價(jià)為0.8元,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測算,若電價(jià)調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時(shí), =0.8.
(1)求 與 之間的函數(shù)關(guān)系式;
(2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門的收益將比上年度增加20%?[收益=用電量(實(shí)際電價(jià)-成本價(jià))]
31、汽車從A站經(jīng)B站后勻速開往C站,已知離開B站9分時(shí),汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫出汽車與B站距離 與B站開出時(shí)間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?
32、甲乙兩個(gè)倉庫要向A、B兩地運(yùn)送水泥,已知甲庫可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄元/(噸、千米)表示每噸水泥運(yùn)送1千米所需人民幣)
路程/千米 運(yùn)費(fèi)(元/噸、千米)
甲庫 乙?guī)?甲庫 乙?guī)?/p>
A地 20 15 12 12
B地 25 20 10 8
(1)設(shè)甲庫運(yùn)往A地水泥 噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫出它的圖象(草圖).
(2)當(dāng)甲、乙兩庫各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?
八年級數(shù)學(xué)教案 篇6
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)
1.用分式表示生活中的一些量.
2.分式的基本性質(zhì)及分式的有關(guān)運(yùn)算法則.
3.分式方程的概念及其解法.
4.列分式方程,建立現(xiàn)實(shí)情境中的數(shù)學(xué)模型.
(二)能力訓(xùn)練要求
1.使學(xué)生有目的的梳理知識(shí),形成這一章完整的知識(shí)體系.
2.進(jìn)一步體驗(yàn)“類比”與“轉(zhuǎn)化”在學(xué)習(xí)分式的基本性質(zhì)、分式的'運(yùn)算法則及其分式方程解法過程中的重要作用.
3.提高學(xué)生的歸納和概括能力,形成反思自己學(xué)習(xí)過程的意識(shí).
(三)情感與價(jià)值觀要求
使學(xué)生在總結(jié)學(xué)習(xí)經(jīng)驗(yàn)和活動(dòng)經(jīng)驗(yàn)的過程中,體驗(yàn)因?qū)W習(xí)方法的大力改進(jìn)而帶來的快樂,成為一個(gè)樂于學(xué)習(xí)的人.
●教學(xué)重點(diǎn)
1.分式的概念及其基本性質(zhì).
2.分式的運(yùn)算法則.
3.分式方程的概念及其解法.
4.分式方程的應(yīng)用.
●教學(xué)難點(diǎn)
1.分式的運(yùn)算及分式方程的解法.
2.分式方程的應(yīng)用.
●教學(xué)方法
討論——交流法
討論交流本章學(xué)習(xí)過程中的經(jīng)驗(yàn)和收獲,在反思過程中建立知識(shí)體系.
●教具準(zhǔn)備
投影片兩張,實(shí)物投影儀
第一張:問題串,(記作§3.5A)
第二張:例題分析,(記作§3.5B)
●教學(xué)過程
、.提出問題,回顧本章的知識(shí).
出示投影片(§3.5A)
問題串:
1.實(shí)際生活中的一些量可以用分式表示,一些問題可以通過列分式方程解決,請舉一例.
2.分式的性質(zhì)及有關(guān)運(yùn)算法則與分?jǐn)?shù)有什么異同?
3.如何解分式方程?它與解一元一次方程有何聯(lián)系與區(qū)別?
。蹘煟萃瑢W(xué)們可針對以上問題,以小組為單位討論、交流,然后在全班進(jìn)行交流.
。ń處熆蓞⑴c于學(xué)生的討論中,注意掃除他們學(xué)習(xí)中常犯的錯(cuò)誤)
[生]實(shí)際生活中的一些量可以用分式表示,例如(用實(shí)物投影)
某人在外面晨練,有m分鐘,他每分鐘走a米;有n分鐘,他每分鐘跑b米.求此人晨練平均每分鐘行多少米?
。凵菸覀兘M來回答此問題,此人晨練時(shí)平均每分鐘行米.
我們組也舉出一個(gè)例子:長方形的面積為8m2,長為pm,寬為____________m.
。凵輵(yīng)為m.
。蹘煟萃瑢W(xué)們舉的例子都很有特色,誰還能舉.
。凵萑绻成唐方祪r(jià)x%后的售價(jià)為a元,那么該商品的原價(jià)為多少元?
。凵菰瓋r(jià)為元.……
。蹘煟荻际欠质.分式有什么特點(diǎn)?和整式有何區(qū)別?
。凵菡紸除以整式B,可表示成的形式,如果除式B中含有字母,則稱是分式.而整式分母中不含字母.
。凵輰(shí)際生活中的一些問題可用分式方程來解決.例如(用實(shí)物投影儀)
某車間加工1200個(gè)零件后,采用了新工藝,工效是原來的1.5倍,這樣加工同樣多的零件就少用10h,采用新工藝前、后每時(shí)分別加工多少個(gè)零件?
解:設(shè)采用新工藝前、后每時(shí)分別加工x個(gè),1.5x個(gè),根據(jù)題意,得
八年級數(shù)學(xué)教案 篇7
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).
數(shù)學(xué)思考
能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問題能力和計(jì)算能力.
解決問題
通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.
情感態(tài)度
在應(yīng)用等腰梯形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).
重點(diǎn)
等腰梯形的性質(zhì)及其應(yīng)用.
難點(diǎn)
解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)的內(nèi)容和目的
活動(dòng)1想一想
活動(dòng)2說一說
活動(dòng)3畫一畫
活動(dòng)4做—做
活動(dòng)5練一練
活動(dòng)6理一理
觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.
探究得到等腰梯形的性質(zhì).
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識(shí)、提高能力、滲透思想.
教學(xué)過程設(shè)計(jì)
問題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?
演示圖片,學(xué)生欣賞.
結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.
由現(xiàn)實(shí)中實(shí)際問題入手,設(shè)置問題情境,引出本課主題.通過學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.
[活動(dòng)2]
梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.
學(xué)生根據(jù)梯形概念畫出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.
通過類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.
問題與情景
師生行為
設(shè)計(jì)意圖
一些基本概念
(1)(如圖):底、腰、高.
(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
。3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.
學(xué)生在小學(xué)已經(jīng)對梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;
②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.
[活動(dòng)3]
畫一畫
在下列所給圖中的每個(gè)三角形中畫一條線段,
。1)怎樣畫才能得到一個(gè)梯形?
。2)在哪些三角形中,能夠得到一個(gè)等腰梯形?
在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.
教師參與小組活動(dòng),指導(dǎo)、傾聽學(xué)生交流.針對不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.
本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:
。1)學(xué)生在活動(dòng)過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.
。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.
。3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.
等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質(zhì),為活動(dòng)4種開展探究奠定了基礎(chǔ).
問題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)4]
做—做
探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想).
在一張方格紙上作一個(gè)等腰梯形,連接兩條對角線.
。1)這個(gè)圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過觀察猜想;
。2)這個(gè)等腰梯形的兩條對角線的長度有什么關(guān)系?
學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗(yàn)證、歸納結(jié)論.
針對不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).
師生共同歸納:
①等腰梯形是軸對稱圖形,上下底的中點(diǎn)連線是對稱軸.
、诘妊菪蝺裳嗟龋
、鄣妊菪瓮坏咨系膬蓚(gè)角相等.
、艿妊菪蔚膬蓷l對角線相等.
教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的.兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.
[活動(dòng)5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長.
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質(zhì)的直接運(yùn)用,請學(xué)生分析、解答,教師聆聽,同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).
分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問題.
其方法是:平移一腰,過點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問題的基本思想和方法就是通過添加適當(dāng)?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對于學(xué)好梯形內(nèi)容很有幫助.
問題與情景
師生行為
設(shè)計(jì)意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見識(shí).
[活動(dòng)6]
1.小結(jié)
2.布置作業(yè)
。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.
。2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
(3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點(diǎn)F,由全等可得結(jié)論)
師生歸納總結(jié):
解決梯形問題常用的方法:
。1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);
。2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);
。3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);
。4)“平移對角線”:使兩條對角線在同一個(gè)三角形中(圖4);
。5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長與下底延長線交于一點(diǎn),構(gòu)成三角形(圖5).
盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過程.
梳理本節(jié)課應(yīng)用過的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.
學(xué)生通過獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時(shí)查漏補(bǔ)缺.
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
初中八年級數(shù)學(xué)教案11-03
人教版八年級數(shù)學(xué)教案11-04
八年級上冊數(shù)學(xué)教案11-09
八年級下冊數(shù)學(xué)教案01-01
八年級數(shù)學(xué)教案人教版01-03