高三數(shù)學(xué)教案
在教學(xué)工作者開展教學(xué)活動前,時(shí)常需要用到教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那要怎么寫好教案呢?以下是小編精心整理的高三數(shù)學(xué)教案,希望能夠幫助到大家。
高三數(shù)學(xué)教案1
命題及其關(guān)系
1、1、1命題及其關(guān)系
一、課前小練:閱讀下列語句,你能判斷它們的真假嗎?
。1)矩形的對角線相等;
。2)3;
。3)3嗎?
。4)8是24的約數(shù);
。5)兩條直線相交,有且只有一個(gè)交點(diǎn);
。6)他是個(gè)高個(gè)子、
二、新課內(nèi)容:
1、命題的概念:
、倜}:可以判斷真假的陳述句叫做命題(proposition)、
上述6個(gè)語句中,哪些是命題、
、谡婷}:判斷為真的語句叫做真命題(true proposition);
假命題:判斷為假的語句叫做假命題(false proposition)、
上述5個(gè)命題中,哪些為真命題?哪些為假命題?
、劾1:判斷下列語句中哪些是命題?是真命題還是假命題?
。1)空集是任何集合的子集;
。2)若整數(shù)是素?cái)?shù),則是奇數(shù);
。3)2小于或等于2;
(4)對數(shù)函數(shù)是增函數(shù)嗎?
。5);
。6)平面內(nèi)不相交的兩條直線一定平行;
。7)明天下雨、
。▽W(xué)生自練個(gè)別回答教師點(diǎn)評)
、芴骄浚簩W(xué)生自我舉出一些命題,并判斷它們的真假、
2、將一個(gè)命題改寫成“若,則”的形式:
三、練習(xí):教材P4 1、2、3
四、作業(yè):
1、教材P8第1題
2、作業(yè)本1—10
五、課后反思
命題教案
課題1、1、1命題及其關(guān)系(一)課型新授課
目標(biāo)
1)知識方法目標(biāo)
了解命題的概念,
2)能力目標(biāo)
會判斷一個(gè)命題的真假,并會將一個(gè)命題改寫成“若,則”的形式、
重點(diǎn)
難點(diǎn)
1)重點(diǎn):命題的改寫
2)難點(diǎn):命題概念的理解,命題的條件與結(jié)論區(qū)分
教法與學(xué)法
教法:
教學(xué)過程備注
1、課題引入
(創(chuàng)設(shè)情景)
閱讀下列語句,你能判斷它們的真假嗎?
。1)矩形的對角線相等;
(2)3;
(3)3嗎?
(4)8是24的約數(shù);
(5)兩條直線相交,有且只有一個(gè)交點(diǎn);
。6)他是個(gè)高個(gè)子、
2、問題探究
1)難點(diǎn)突破
2)探究方式
3)探究步驟
4)高潮設(shè)計(jì)
1、命題的概念:
①命題:可以判斷真假的陳述句叫做命題(proposition)、
上述6個(gè)語句中,(1)(2)(4)(5)(6)是命題、
、谡婷}:判斷為真的語句叫做真命題(true proposition);
假命題:判斷為假的語句叫做假命題(false proposition)、
上述5個(gè)命題中,(2)是假命題,其它4個(gè)都是真命題、
、劾1:判斷下列語句中哪些是命題?是真命題還是假命題?
(1)空集是任何集合的子集;
。2)若整數(shù)是素?cái)?shù),則是奇數(shù);
。3)2小于或等于2;
。4)對數(shù)函數(shù)是增函數(shù)嗎?
。5);
。6)平面內(nèi)不相交的兩條直線一定平行;
(7)明天下雨、
(學(xué)生自練個(gè)別回答教師點(diǎn)評)
、芴骄浚簩W(xué)生自我舉出一些命題,并判斷它們的真假、
2、將一個(gè)命題改寫成“若,則”的形式:
、倮1中的(2)就是一個(gè)“若,則”的命題形式,我們把其中的叫做命題的'條件,叫做命題的結(jié)論、
②試將例1中的命題(6)改寫成“若,則”的形式、
③例2:將下列命題改寫成“若,則”的形式、
。1)兩條直線相交有且只有一個(gè)交點(diǎn);
。2)對頂角相等;
。3)全等的`兩個(gè)三角形面積也相等、
。▽W(xué)生自練個(gè)別回答教師點(diǎn)評)
3、 小結(jié):命題概念的理解,會判斷一個(gè)命題的真假,并會將命題改寫“若,則”的形式、
引導(dǎo)學(xué)生歸納出命題的概念,強(qiáng)調(diào)判斷一個(gè)語句是不是命題的兩個(gè)關(guān)鍵點(diǎn):是否符合“是陳述句”和“可以判斷真假”。
通過例子引導(dǎo)學(xué)生辨別命題,區(qū)分命題的條件和結(jié)論。改寫為“若,則”的形式,為后續(xù)的學(xué)習(xí)打好基礎(chǔ)。
3、練習(xí)提高1、練習(xí):教材P4 1、2、3
師生互動
4、作業(yè)設(shè)計(jì)
作業(yè):
1、教材P8第1題
2、作業(yè)本1—10
5、課后反思
本節(jié)課是一堂概念課,比較枯燥,在教學(xué)時(shí)應(yīng)充分調(diào)動學(xué)生的積極性,比如引例中的“他是個(gè)高個(gè)子、”例1中的“(7)明天下雨、”等比較有趣的生活問題,和學(xué)生有充分的語言交流,在一問一答中,引導(dǎo)學(xué)生完成本節(jié)課的學(xué)習(xí)。
高三數(shù)學(xué)教案2
一、教學(xué)過程
1、復(fù)習(xí)。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2、新課。
先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象(圖1):
教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對,但是怎么會得到這個(gè)圖象,請大家討論。
。▽W(xué)生展開討論,但找不出原因。)
師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>
。ㄉ1將他的制作過程重新重復(fù)了一次。)
生3:問題出在他選擇的次序不對。
師:哪個(gè)次序?
生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時(shí),他先選擇xA3,后選擇xA,作出來的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
。ㄟ@次生1在做的過程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來問題確實(shí)是出在這個(gè)地方,那么請同學(xué)再想想,為什么他采用了錯(cuò)誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
(學(xué)生再次陷入思考,一會兒有學(xué)生舉手。)
師:我們請生4來告訴大家。
生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學(xué)們能不能看出這兩個(gè)函數(shù)的圖象有什么樣的關(guān)系?
。ǘ鄶(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。
師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?
。▽W(xué)生一時(shí)未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進(jìn)一步明確。)
師:我其實(shí)是想問大家這兩個(gè)函數(shù)的圖象有沒有對稱關(guān)系,有的.話,是什么樣的對稱關(guān)系?
。▽W(xué)生重新開始觀察這兩個(gè)函數(shù)的圖象,一會兒有學(xué)生舉手。)
生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對稱。
師:能說說是關(guān)于哪條直線對稱嗎?
生6:我還沒找出來。
(接下來,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)
學(xué)生通過移動點(diǎn)A(點(diǎn)B、C隨之移動)后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。
師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。
。▽W(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)
還是有部分學(xué)生舉手,因?yàn)樗麄儺嫵隽巳缦聢D象(圖3):
教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。
最后教師與學(xué)生一起總結(jié):
點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對稱;
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。
二、反思與點(diǎn)評
1、在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進(jìn)行教學(xué)。
2、荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念。
計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。
在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。
3、在引出兩個(gè)函數(shù)圖象對稱關(guān)系的時(shí)候,問題設(shè)計(jì)不甚妥當(dāng),本來是想要學(xué)生回答兩個(gè)函數(shù)圖象對稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。
高三數(shù)學(xué)教案3
一、教學(xué)內(nèi)容分析
本小節(jié)是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標(biāo)函數(shù)的最值與解問題;運(yùn)用線性規(guī)劃知識解決一些簡單的實(shí)際問題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學(xué)知識解決實(shí)際問題的典例,它體現(xiàn)了數(shù)學(xué)源于生活而用于生活的特性。
二、學(xué)生學(xué)習(xí)情況分析
本小節(jié)內(nèi)容建立在學(xué)生學(xué)習(xí)了一元不等式(組)及其應(yīng)用、直線與方程的基礎(chǔ)之上,學(xué)生對于將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,數(shù)形結(jié)合思想有所了解。但從數(shù)學(xué)知識上看學(xué)生對于涉及多個(gè)已知數(shù)據(jù)、多個(gè)字母變量,多個(gè)不等關(guān)系的知識接觸尚少,從數(shù)學(xué)方法上看,學(xué)生對于圖解法還缺少認(rèn)識,對數(shù)形結(jié)合的思想方法的掌握還需時(shí)日,而這些都將成為學(xué)生學(xué)習(xí)中的難點(diǎn)。
三、設(shè)計(jì)思想
以問題為載體,以學(xué)生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發(fā)學(xué)生的動手、觀察、思考、猜想探究的興趣。注重引導(dǎo)學(xué)生充分體驗(yàn)“從實(shí)際問題到數(shù)學(xué)問題”的數(shù)學(xué)建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學(xué)生應(yīng)用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學(xué)生的分析問題、解決問題的能力。
四、教學(xué)目標(biāo)
1、知識與技能:了解二元一次不等式(組)的'概念,掌握用平面區(qū)域刻畫二元一次不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和解等概念;理解線性規(guī)劃問題的圖解法;會利用圖解法求線性目標(biāo)函數(shù)的最值與相應(yīng)解;
2、過程與方法:從實(shí)際問題中抽象出簡單的線性規(guī)劃問題,提高學(xué)生的數(shù)學(xué)建模能力;在探究的過程中讓學(xué)生體驗(yàn)到數(shù)學(xué)活動中充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力、化歸能力、探索能力、合情推理能力;
3、情態(tài)與價(jià)值:在應(yīng)用圖解法解題的過程中,培養(yǎng)學(xué)生的化歸能力與運(yùn)用數(shù)形結(jié)合思想的能力;體會線性規(guī)劃的基本思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識;體驗(yàn)數(shù)學(xué)來源于生活而服務(wù)于生活的特性。
五、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):從實(shí)際問題中抽象出二元一次不等式(組),用平面區(qū)域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規(guī)劃問題;
難點(diǎn):二元一次不等式所表示的平面區(qū)域的探究,從實(shí)際情境中抽象出數(shù)學(xué)問題的過程探究,簡單的二元線性規(guī)劃問題的圖解法的探究。
六、教學(xué)基本流程
第一課時(shí),利用生動的情景激起學(xué)生求知的__,從中抽象出數(shù)學(xué)問題,引出二元一次不等式(組)的基本概念,并為線性規(guī)劃問題的引出埋下伏筆。通過學(xué)生的自主探究,分類討論,大膽猜想,細(xì)心求證,得出二元一次不等式所表示的平面區(qū)域,從而突破本小節(jié)的第一個(gè)難點(diǎn);通過例1、例2的討論與求解引導(dǎo)學(xué)生歸納出畫二元一次不等式(組)所表示的平面區(qū)域的具體解答步驟(直線定界,特殊點(diǎn)定域);最后通過練習(xí)加以鞏固。
第二課時(shí),重現(xiàn)引例,在學(xué)生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結(jié)出從實(shí)際問題中抽象出數(shù)學(xué)問題的基本過程:理清數(shù)據(jù)關(guān)系(列表)→設(shè)立決策變量→建立數(shù)學(xué)關(guān)系式→畫出平面區(qū)域。讓學(xué)生對例3、例4進(jìn)行分析與討論進(jìn)一步完善這一過程,突破本小節(jié)的第二個(gè)難點(diǎn)。
第三課時(shí),設(shè)計(jì)情景,借助前兩個(gè)課時(shí)所學(xué),設(shè)立決策變量,畫出平面區(qū)域并引出新的問題,從中引出線性規(guī)劃的相關(guān)概念,并讓學(xué)生思考探究,利用特殊值進(jìn)行猜測,找到方案;再引導(dǎo)學(xué)生對目標(biāo)函數(shù)進(jìn)行變形轉(zhuǎn)化,利用直線的圖象對上述問題進(jìn)行幾何探究,把最值問題轉(zhuǎn)化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個(gè)探究過程,讓學(xué)生在討論中達(dá)成共識,總結(jié)出簡單線性規(guī)劃問題的圖解法的基本步驟。通過例5的展示讓學(xué)生從動態(tài)的角度感受圖解法。最后再現(xiàn)情景1,并對之作出完美的解答。
第四課時(shí),給出新的引例,讓學(xué)生體會到線性規(guī)劃問題的普遍性。讓學(xué)生討論分析,對引例給出解答,并綜合前三個(gè)課時(shí)的教學(xué)內(nèi)容,連綴成線,總結(jié)出簡單線性規(guī)劃的應(yīng)用性問題的一般解答步驟,通過例6,例7的分析與展示進(jìn)一步完善這一過程?偨Y(jié)線性規(guī)劃的應(yīng)用性問題的幾種類型,讓學(xué)生更深入的體會到優(yōu)化理論,更好的認(rèn)識到數(shù)學(xué)來源于生活而運(yùn)用于生活的特點(diǎn)。
高三數(shù)學(xué)教案4
教學(xué)目標(biāo):
結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡單推理。
教學(xué)重點(diǎn):
掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡單推理。
教學(xué)過程
一、復(fù)習(xí)
二、引入新課
1.假言推理
假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。
(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結(jié)論就肯定大前提的后件;小前提否定大前提的后件,結(jié)論就否定大前提的前件。
(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結(jié)論就要肯定大前提的前件;小前提否定大前提的前件,結(jié)論就要否定大前提的后件。
2.三段論
三段論是指由兩個(gè)簡單判斷作前提和一個(gè)簡單判斷作結(jié)論組成的`演繹推理。三段論中三個(gè)簡單判斷只包含三個(gè)不同的概念,每個(gè)概念都重復(fù)出現(xiàn)一次。這三個(gè)概念都有專門名稱:結(jié)論中的賓詞叫“大詞”,結(jié)論中的主詞叫“小詞”,結(jié)論不出現(xiàn)的那個(gè)概念叫“中詞”,在兩個(gè)前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。
3.關(guān)系推理指前提中至少有一個(gè)是關(guān)系判斷的推理,它是根據(jù)關(guān)系的邏輯性質(zhì)進(jìn)行推演的?煞譃榧冴P(guān)系推理和混合關(guān)系推理。純關(guān)系推理就是前提和結(jié)論都是關(guān)系判斷的推理,包括對稱性關(guān)系推理、反對稱性關(guān)系推理、傳遞性關(guān)系推理和反傳遞性關(guān)系推理。
(1)對稱性關(guān)系推理是根據(jù)關(guān)系的對稱性進(jìn)行的推理。
(2)反對稱性關(guān)系推理是根據(jù)關(guān)系的反對稱性進(jìn)行的推理。
(3)傳遞性關(guān)系推理是根據(jù)關(guān)系的傳遞性進(jìn)行的推理。
(4)反傳遞性關(guān)系推理是根據(jù)關(guān)系的反傳遞性進(jìn)行的推理。
4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個(gè)別對象的考察,已知它們都具有某種性質(zhì),由此得出結(jié)論說:該類事物都具有某種性質(zhì)。
オネ耆歸納推理可用公式表示如下:
オS1具有(或不具有)性質(zhì)P
オS2具有(或不具有)性質(zhì)P……
オSn具有(或不具有)性質(zhì)P
オ(S1S2……Sn是S類的所有個(gè)別對象)
オニ以,所有S都具有(或不具有)性質(zhì)P
オタ杉,完全歸納推理的基本特點(diǎn)在于:前提中所考察的個(gè)別對象,必須是該類事物的全部個(gè)別對象。否則,只要其中有一個(gè)個(gè)別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結(jié)論所斷定的范圍,并未超出前提所斷定的范圍。所以,結(jié)論是由前提必然得出的。應(yīng)用完全歸納推理,只要遵循以下兩點(diǎn),那末結(jié)論就必然是真實(shí)的:(1)對于個(gè)別對象的斷定都是真實(shí)的;(2)被斷定的個(gè)別對象是該類的全部個(gè)別對象。
小結(jié):本節(jié)課學(xué)習(xí)了演繹推理的基本模式.
高三數(shù)學(xué)教案5
一、教材與學(xué)情分析
《隨機(jī)抽樣》是人教版職教新教材《數(shù)學(xué)(必修)》下冊第六章第一節(jié)的內(nèi)容,“簡單隨機(jī)抽樣”是“隨機(jī)抽樣”的基礎(chǔ),“隨機(jī)抽樣”又是“統(tǒng)計(jì)學(xué)‘的基礎(chǔ),因此,在“統(tǒng)計(jì)學(xué)”中,“簡單隨機(jī)抽樣”是基礎(chǔ)的基礎(chǔ)針對這樣的情況,我做了如下的教學(xué)設(shè)想。
二、教學(xué)設(shè)想
(一)教學(xué)目標(biāo):
(1)理解抽樣的必要性,簡單隨機(jī)抽樣的概念,掌握簡單隨機(jī)抽樣的兩種方法;
(2)通過實(shí)例分析、解決,體驗(yàn)簡單隨機(jī)抽樣的科學(xué)性及其方法的可靠性,培養(yǎng)分析問題,解決問題的能力;
(3)通過身邊事例研究,體會抽樣調(diào)查在生活中的應(yīng)用,培養(yǎng)抽樣思考問題意識,養(yǎng)成良好的個(gè)性品質(zhì)。
(二)教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):掌握簡單隨機(jī)抽樣常見的兩種方法(抽簽法、隨機(jī)數(shù)表法)
難點(diǎn):理解簡單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性
為了突出重點(diǎn),突破難點(diǎn),達(dá)到預(yù)期的教學(xué)目標(biāo),我再從教法、學(xué)法上談?wù)勎业慕虒W(xué)思路及設(shè)想。
下面我再具體談?wù)劷虒W(xué)實(shí)施過程,分四步完成。
三、教學(xué)過程
(一)設(shè)置情境,提出問題
〈屏幕出示〉例1:請問下列調(diào)查宜“普查”還是“抽樣”調(diào)查?
A、一鍋水餃的味道
B、旅客上飛機(jī)前的安全檢查
C、一批炮彈的殺傷半徑
D、一批彩電的質(zhì)量情況
E、美國總統(tǒng)的`民意支持率
學(xué)生討論后,教師指出生活中處處有“抽樣”,并板書課題——XXXX抽樣
「設(shè)計(jì)意圖」
生活中處處有“抽樣”調(diào)查,明確學(xué)習(xí)“抽樣”的必要性。
(二)主動探究,構(gòu)建新知
〈屏幕出示〉例2:語文老師為了了解電(1)班同學(xué)對某首詩的背誦情況,應(yīng)采用下列哪種抽查方式?為什么?
A、在班級12名班委名單中逐個(gè)抽查5位同學(xué)進(jìn)行背誦
B、在班級45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦
先讓學(xué)生分析、選擇B后,師生一起歸納其特征:
(1)不放回逐一抽樣,
(2)抽樣有代表性(個(gè)體被抽到可能性相等),
學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡單隨機(jī)抽樣,并復(fù)習(xí)初中講過的有關(guān)概念,最后教師補(bǔ)充板書課題——(簡單隨機(jī))抽樣及其定義。
從例1、例2中的正反兩方面,讓學(xué)生體驗(yàn)隨機(jī)抽樣的科學(xué)性。這是突破教學(xué)難點(diǎn)的重要環(huán)節(jié)之一。
復(fù)習(xí)基本概念,如“總體”、“個(gè)體”、“樣本”、“樣本容量”等。
〈屏幕出示〉例4我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會,要使每名學(xué)生的機(jī)會均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>
先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納“抽簽法”步驟:
(1)編號制簽
(2)攪拌均勻
(3)逐個(gè)不放回抽取n次。教師板書上面步驟。
請一位同學(xué)說說例3采用“抽簽法”的實(shí)施步驟。
「設(shè)計(jì)意圖」
1、反饋練習(xí)落實(shí)知識點(diǎn)突出重點(diǎn)。
2、體會“抽簽法”具有“簡單、易行”的優(yōu)點(diǎn)。
〈屏幕出示〉例5、第07374期特等獎號碼為08+25+09+21+32+27+13,本期銷售金額19872409元,中獎金額500萬。
提問:特等獎號碼如何確定呢?彩票中獎號碼適合用抽簽法確定嗎?
讓學(xué)生觀看觀看電視搖獎過程,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個(gè)數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:
(1)編號
(2)在隨機(jī)數(shù)表上確定起始位置
(3)取數(shù)。教師板書上面步驟。
請一位同學(xué)說說例3采用“隨機(jī)數(shù)表法”的實(shí)施步驟。
高三數(shù)學(xué)教案6
教學(xué)目標(biāo)
掌握等差數(shù)列與等比數(shù)列的性質(zhì),并能靈活應(yīng)用等差(比)數(shù)列的性質(zhì)解決有關(guān)等差(比)數(shù)列的綜合性問題。
教學(xué)重難點(diǎn)
掌握等差數(shù)列與等比數(shù)列的性質(zhì),并能靈活應(yīng)用等差(比)數(shù)列的'性質(zhì)解決有關(guān)等差(比)數(shù)列的綜合性問題。
教學(xué)過程
【示范舉例】
例1:數(shù)列是首項(xiàng)為23,公差為整數(shù),
且前6項(xiàng)為正,從第7項(xiàng)開始為負(fù)的等差數(shù)列
(1)求此數(shù)列的公差d;
(2)設(shè)前n項(xiàng)和為Sn,求Sn的值;
(3)當(dāng)Sn為正數(shù)時(shí),求n的值.
高三數(shù)學(xué)教案7
一、教學(xué)目標(biāo)
1、把握菱形的判定、
2、通過運(yùn)用菱形知識解決具體問題,提高分析能力和觀察能力、
3、通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好、
4、根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想、
二、教法設(shè)計(jì)
觀察分析討論相結(jié)合的方法
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1、教學(xué)重點(diǎn):菱形的判定方法、
2、教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用、
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具預(yù)備
教具(做一個(gè)短邊可以運(yùn)動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設(shè)計(jì)
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥
七、教學(xué)步驟
復(fù)習(xí)提問
1、敘述菱形的定義與性質(zhì)、
2、菱形兩鄰角的比為1:2,較長對角線為,則對角線交點(diǎn)到一邊距離為________、
引入新課
師問:要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法、
此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法、
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形、
菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形、圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形、
分析判定2:
師問:本定理有幾個(gè)條件?
生答:兩個(gè)、
師問:哪兩個(gè)?
生答:(1)是平行四邊形(2)兩條對角線互相垂直、
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等、
。ㄓ蓪W(xué)生口述證實(shí))
證實(shí)時(shí)讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形、
菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):
注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的`題沒條件都包含有平行四邊形的判定條件、
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖、
求證:四邊形是菱形(按教材講解)、
總結(jié)、擴(kuò)展
1、小結(jié):
。1)歸納判定菱形的四種常用方法、
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系、
2、思考題:已知:如圖4△中,,平分,,,交于、
求證:四邊形為菱形、
八、布置作業(yè)
九、板書設(shè)計(jì)
十、隨堂練習(xí)
教材P153中1、2、3
高三數(shù)學(xué)教案8
1.導(dǎo)數(shù)概念及其幾何意義
(1)了解導(dǎo)數(shù)概念的實(shí)際背景;
(2)理解導(dǎo)數(shù)的幾何意義.
2.導(dǎo)數(shù)的運(yùn)算
(1)能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=c(c為常數(shù)),y=x,y=x2,y=x3,y= ,y= 的導(dǎo)數(shù);
(2)能利用基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù),能求簡單的復(fù)合函數(shù)(僅限于形如f(ax+b)的復(fù)合函數(shù))的導(dǎo)數(shù).
3.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
(1)了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過三次);
(2)了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過三次).
4.生活中的優(yōu)化問題
會利用導(dǎo)數(shù)解決某些實(shí)際問題.
5.定積分與微積分基本定理
(1)了解定積分的實(shí)際背景,了解定積分的基本思想,了解定積分的概念;
(2)了解微積分基本定理的含義. 本章重點(diǎn):
1.導(dǎo)數(shù)的概念;
2.利用導(dǎo)數(shù)求切線的斜率;
3.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性或求單調(diào)區(qū)間;
4.利用導(dǎo)數(shù)求極值或最值;
5.利用導(dǎo)數(shù)求實(shí)際問題最優(yōu)解.
本章難點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用. 導(dǎo)數(shù)與定積分是微積分的核心概念之一,也是中學(xué)選學(xué)內(nèi)容中較為重要的知識之一.由于其應(yīng)用的廣泛性,為我們解決有關(guān)函數(shù)、數(shù)列問題提供了更一般、更有效的方法.因此,本章知識在高考題中常在函數(shù)、數(shù)列等有關(guān)最值不等式問題中有所體現(xiàn),既考查數(shù)形結(jié)合思想,分類討論思想,也考查學(xué)生靈活運(yùn)用所學(xué)知識和方法的.能力.考題可能以選擇題或填空題的形式來考查導(dǎo)數(shù)與定積分的基本運(yùn)算與簡單的幾何意義,而以解答 題的形式來綜合考查學(xué)生的分析問題和解決問題的能力.
知識網(wǎng)絡(luò)
3 .1 導(dǎo)數(shù)的概念與運(yùn)算
典例精析
題型一 導(dǎo)數(shù) 的概念
【例1】 已知函數(shù)f(x)=2ln 3x+8x,
求 f(1-2Δx)-f(1)Δx的值.
【解析】由導(dǎo)數(shù)的定義知:
f(1-2Δx)-f(1)Δx=-2 f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.
【點(diǎn)撥】導(dǎo)數(shù)的實(shí)質(zhì)是求函數(shù)值相對于自變量的變化率,即求當(dāng)Δx→0時(shí), 平均變化率ΔyΔx的極限.
【變式訓(xùn)練1】某市在一次降雨過程中,降雨量y(mm)與時(shí)間t(min)的函數(shù)關(guān)系可以近似地表示為f(t)=t2100,則在時(shí)刻t=10 min的降雨強(qiáng)度為( )
A.15 mm/min B.14 mm/min
C.12 mm/min D.1 mm/min
【解析】選A.
題型二 求導(dǎo)函數(shù)
【例2】 求下列函數(shù)的導(dǎo)數(shù).
(1)y=ln(x+1+x2);
(2)y=(x2-2x+3)e2x;
(3)y=3x1-x.
【解析】運(yùn)用求導(dǎo)數(shù)公式及復(fù)合函數(shù)求導(dǎo)數(shù)法則.
(1)y′=1x+1+x2(x+1+x2)′
=1x+1+x2(1+x1+x2)=11+x2.
(2)y′=(2x-2)e2x+2(x2-2x+3)e2x
=2(x2-x+2)e2x.
(3)y′=13(x1-x 1-x+x(1-x)2
=13(x1-x 1(1-x)2
=13x (1-x)
【變式訓(xùn)練2】如下圖,函數(shù)f(x)的圖象是折線段ABC,其中A、B、C的坐標(biāo)分別為(0,4),(2,0),(6,4),則f(f(0))= ; f(1+Δx)-f(1)Δx= (用數(shù)字作答).
【解析】f(0)=4,f(f(0))=f(4)=2,
由導(dǎo)數(shù)定義 f(1+Δx)-f(1)Δx=f′(1).
當(dāng)0≤x≤2時(shí),f(x)=4-2x,f′(x)=-2,f′(1)=-2.
題型三 利用導(dǎo)數(shù)求切線的斜率
【例3】 已知曲線C:y=x3-3x2+2x, 直線l:y=kx,且l與C切于點(diǎn)P(x0,y0) (x0≠0),求直線l的方程及切點(diǎn)坐標(biāo).
【解析】由l過原點(diǎn),知k=y0x0 (x0≠0),又點(diǎn)P(x0,y0) 在曲線C上,y0=x30-3x20+2x0,
所以 y0x0=x20-3x0+2.
而y′=3x2-6x+2,k=3x20-6x0+2.
又 k=y0x0,
所以3x20-6x0+2=x20-3x0+2,其中x0≠0,
解得x0=32.
所以y0=-38,所以k=y0x0=-14,
所以直線l的方程為y=-14x,切點(diǎn)坐標(biāo)為(32,-38).
【點(diǎn)撥】利用切點(diǎn)在曲線上,又曲線在切點(diǎn)處的切線的斜率為曲線在該點(diǎn)處的導(dǎo)數(shù)來列方程,即可求得切點(diǎn)的坐標(biāo).
【變式訓(xùn)練3】若函數(shù)y=x3-3x+4的切線經(jīng)過點(diǎn)(-2,2),求此切線方程.
【解析】設(shè)切點(diǎn)為P(x0,y0),則由
y′=3x2-3得切線的斜率為k=3x20-3.
所以函數(shù)y=x3-3x+4在P(x0,y0)處的切線方程為
y-y0=(3x20-3)(x-x0).
又切線經(jīng)過點(diǎn)(-2,2),得
2-y0=(3x20-3)(-2-x0),①
而切點(diǎn)在曲線上,得y0=x30-3x0+4, ②
由①②解得x0=1或x0=-2.
則切線方程為y=2 或 9x-y+20=0.
總結(jié)提高
1.函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)通常有以下兩種求法:
(1) 導(dǎo)數(shù)的定義,即求 ΔyΔx= f(x0+Δx)-f(x0)Δx的值;
(2)先求導(dǎo)函數(shù)f′(x),再將x=x0的值代入,即得f′(x0)的值.
2.求y=f(x)的導(dǎo)函數(shù)的幾種方法:
(1)利用常見函數(shù)的導(dǎo)數(shù)公式;
(2)利用四則運(yùn)算的導(dǎo)數(shù)公式;
(3)利用復(fù)合函數(shù)的求導(dǎo)方法.
3.導(dǎo)數(shù)的幾何意義:函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)f′(x0),就是函數(shù)y=f(x)的曲線在點(diǎn)P(x0,y0)處的切線的斜率.
高三數(shù)學(xué)教案9
【學(xué)習(xí)目標(biāo)】
一、過程目標(biāo)
1通過師生之間、學(xué)生與學(xué)生之間的互相交流,培養(yǎng)學(xué)生的數(shù)學(xué)交流能力和與人合作的精神。
2通過對對數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系、相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
3通過對對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察、分析、歸納的思維能力。
二、識技能目標(biāo)
1理解對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖象,感受研究對數(shù)函數(shù)的意義。
2掌握對數(shù)函數(shù)的性質(zhì),并能初步應(yīng)用對數(shù)的性質(zhì)解決簡單問題。
三、情感目標(biāo)
1通過學(xué)習(xí)對數(shù)函數(shù)的概念、圖象和性質(zhì),使學(xué)生體會知識之間的有機(jī)聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2在教學(xué)過程中,通過對數(shù)函數(shù)有關(guān)性質(zhì)的'研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學(xué)交流能力,增強(qiáng)學(xué)習(xí)的積極性,同時(shí)培養(yǎng)學(xué)生傾聽、接受別人意見的優(yōu)良品質(zhì)。
教學(xué)重點(diǎn)難點(diǎn):
1對數(shù)函數(shù)的定義、圖象和性質(zhì)。
2對數(shù)函數(shù)性質(zhì)的初步應(yīng)用。
教學(xué)工具:多媒體
【學(xué)前準(zhǔn)備】對照指數(shù)函數(shù)試研究對數(shù)函數(shù)的定義、圖象和性質(zhì)。
高三數(shù)學(xué)教案10
學(xué)習(xí)目標(biāo)
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問題是排列問題還是組合問題;能運(yùn)用所學(xué)的排列組合知識,正確地解決的實(shí)際問題、
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1、(課本P28A13)填空:
。1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;
。2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是;
。3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;
。4)集合A有個(gè)元素,集合B有個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的`種數(shù)是;
二、新課導(dǎo)學(xué)
探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個(gè)是排列問題,哪個(gè)是組合問題:
(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?
。2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?
應(yīng)用示例
例1、從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法?
例2、7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù)、
。1)甲站在中間;
。2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
。4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
。5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
反饋練習(xí)
1、(課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項(xiàng)活動,其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?
2、5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3、馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種、
當(dāng)堂檢測
1、某班新年聯(lián)歡會原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目、如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()
A、42 B、30 C、20 D、12
2、(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業(yè)
1、(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個(gè)六位奇數(shù)?(2)能夠組成多少個(gè)大于201345的正整數(shù)?
2、(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
高三數(shù)學(xué)教案11
一. 教學(xué)設(shè)計(jì)理念
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生交往、互動、共同發(fā)展的過程。有效的數(shù)學(xué)教學(xué)應(yīng)當(dāng)從學(xué)生的生活經(jīng)驗(yàn)和已有的知識水平出發(fā),向他們提供充分地從事數(shù)學(xué)活動的機(jī)會,在活動中激發(fā)學(xué)生的學(xué)習(xí)潛能,促使學(xué)生在自主探索與合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識、技能和思想方法。提高解決問題的能力,并進(jìn)一步使學(xué)生在意志力、自信心、理性精神等情感、態(tài)度方面都得到良好的發(fā)展。
二.對教學(xué)內(nèi)容的認(rèn)識
1.教材的地位和作用
本節(jié)課是在學(xué)生學(xué)習(xí)過“一百萬有多大”之后,繼續(xù)研究日常生活中所存在的較小的數(shù),進(jìn)一步發(fā)展學(xué)生的數(shù)感,并在學(xué)完負(fù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的基礎(chǔ)上,嘗試用科學(xué)記數(shù)法來表示百萬分之一等較小的數(shù)。學(xué)生具備良好的數(shù)感,不僅對于其正確理解數(shù)據(jù)所要表達(dá)的信息具有重要意義,而且對于發(fā)展學(xué)生的統(tǒng)計(jì)觀念也具有重要的價(jià)值。
2.教材處理
基于設(shè)計(jì)理念,我在尊重教材的基礎(chǔ)上,適時(shí)添加了“銀河系的直徑”這一問題,以向?qū)W生滲透辯證的研究問題的思想方法,幫助學(xué)生正確認(rèn)識百萬分之一。
通過本節(jié)課的教學(xué),我力爭達(dá)到以下教學(xué)目標(biāo):
3. 教學(xué)目標(biāo)
。1)知識技能:
借助自身熟悉的事物,從不同角度來感受百萬分之一,發(fā)展學(xué)生的數(shù)感。能運(yùn)用科學(xué)記數(shù)法來表示百萬分之一等較小的.數(shù)。
(2)數(shù)學(xué)思考:
通過對較小的數(shù)的問題的學(xué)習(xí),尋求科學(xué)的記數(shù)方法。
。3)解決問題:
能解決與科學(xué)記數(shù)有關(guān)的實(shí)際問題。
。4)情感、態(tài)度、價(jià)值觀:
使學(xué)生體會科學(xué)記數(shù)法的科學(xué)性和辯證的研究問題的思想方法。培養(yǎng)學(xué)生的合作交流意識與探究精神。
4. 教學(xué)重點(diǎn)與難點(diǎn)
根據(jù)教學(xué)目標(biāo),我確定本節(jié)課的重點(diǎn)、難點(diǎn)如下:
重點(diǎn):對較小數(shù)據(jù)的信息做合理的解釋和推斷,會用科學(xué)記數(shù)法來表示絕對值較小的數(shù)。
難點(diǎn):感受較小的數(shù),發(fā)展數(shù)感。
三.教法、學(xué)法與教學(xué)手段
1.教法、學(xué)法:
本節(jié)課的教學(xué)對象是七年級的學(xué)生,這一年級的學(xué)生對于周圍世界和社會環(huán)境中的實(shí)際問題具有越來越強(qiáng)烈的興趣。他們對于日常生活中一些常見的數(shù)據(jù)都想嘗試著來加以分析和說明,但又缺乏必要的感知較大數(shù)據(jù)或較小數(shù)據(jù)的方法及感知這些數(shù)據(jù)的活動經(jīng)驗(yàn)。
因此根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容,及學(xué)生的認(rèn)知特點(diǎn),教學(xué)上以“問題情境——設(shè)疑誘導(dǎo)——引導(dǎo)發(fā)現(xiàn)——合作交流——形成結(jié)論和認(rèn)識”為主線,采用“引導(dǎo)探究式”的教學(xué)方法。學(xué)生將主要采用“動手實(shí)踐——自主探索——合作交流”的學(xué)習(xí)方法,使學(xué)生在直觀情境的觀察和自主的實(shí)踐活動中獲取知識,并通過合作交流來深化對知識的理解和認(rèn)識。
2.教學(xué)手段:
1.采用現(xiàn)代化的教學(xué)手段——多媒體教學(xué),能直觀、生動地反映問題情境,充分調(diào)動學(xué)生學(xué)習(xí)的積極性。
2.以常見的生活物品為直觀教具,豐富了學(xué)生感知認(rèn)識對象的途徑,使學(xué)生對百萬分之一的認(rèn)識更貼近生活。
四.教學(xué)過程
(一).復(fù)習(xí)舊知,鋪墊新知
問題1:光的速度為300 000km/s
問題2:地球的半徑約為6 400km
問題3:中國的人口約為1300 000 000人
(十).教學(xué)設(shè)計(jì)說明
本節(jié)課我以貼近學(xué)生生活的數(shù)據(jù)及問題背景為依托,使學(xué)生學(xué)會用數(shù)學(xué)的方法來認(rèn)識百萬分之一,豐富了學(xué)生對數(shù)學(xué)的認(rèn)識,提高了學(xué)生應(yīng)用數(shù)學(xué)的能力,并為培養(yǎng)學(xué)生的終身學(xué)習(xí)奠定了基礎(chǔ)。在授課時(shí)相信會有一些預(yù)見不到的情況,我將在課堂上根據(jù)學(xué)生的實(shí)際情況做相應(yīng)的處理。
高三數(shù)學(xué)教案12
根據(jù)學(xué)科特點(diǎn),結(jié)合我校數(shù)學(xué)教學(xué)的實(shí)際情況制定以下教學(xué)計(jì)劃,第二學(xué)期高三數(shù)學(xué)教學(xué)計(jì)劃。
一、教學(xué)內(nèi)容 高中數(shù)學(xué)所有內(nèi)容:
抓基礎(chǔ)知識和基本技能,抓數(shù)學(xué)的通性通法,即教材與課程目標(biāo)中要求我們把握的數(shù)學(xué)對象的基本性質(zhì),處理數(shù)學(xué)問題基本的、常用的數(shù)學(xué)思想方法,如歸納、演繹、分析、綜合、分類討論、數(shù)形結(jié)合等。提高學(xué)生的思維品質(zhì),以不變應(yīng)萬變,使數(shù)學(xué)學(xué)科的復(fù)習(xí)更加高效優(yōu)質(zhì)。研究《考試說明》,全面掌握教材知識,按照考試說明的要求進(jìn)行全面復(fù)習(xí)。把握課本是關(guān)鍵,夯實(shí)基礎(chǔ)是我們重要工作,提高學(xué)生的解題能力是我們目標(biāo)。研究《課程標(biāo)準(zhǔn)》和《教材》,既要關(guān)心《課程標(biāo)準(zhǔn)》中調(diào)整的內(nèi)容及變化的要求,又要重視今年數(shù)學(xué)不同版本《考試說明》的比較。結(jié)合上一年的新課改區(qū)高考數(shù)學(xué)評價(jià)報(bào)告,對《課程標(biāo)準(zhǔn)》進(jìn)行橫向和縱向的分析,探求命題的變化規(guī)律。
二、學(xué)情分析:
我今年教授兩個(gè)班的數(shù)學(xué):(17)班和(18)班,經(jīng)過與同組的其他老師商討后,打算第一輪20xx年2月底;第二輪從20xx年2月底至5月上旬結(jié)束;第三輪從20xx年5月上旬至5月底結(jié)束。
。ㄒ唬┩瑐湔n組老師之間加強(qiáng)研究
1、研究《課程標(biāo)準(zhǔn)》、參照周邊省份20xx年《考試說明》,明確復(fù)習(xí)教學(xué)要求。
2、研究高中數(shù)學(xué)教材。
處理好幾種關(guān)系:課標(biāo)、考綱與教材的關(guān)系;教材與教輔資料的關(guān)系;重視基礎(chǔ)知識與培養(yǎng)能力的關(guān)系。
3、研究08年新課程地區(qū)高考試題,把握考試趨勢。
特別是山東、廣東、江蘇、海南、寧夏等課改地區(qū)的試卷。
4、研究高考信息,關(guān)注考試動向。
及時(shí)了解09高考動態(tài),適時(shí)調(diào)整復(fù)習(xí)方案。
5、研究本校數(shù)學(xué)教學(xué)情況、尤其是本屆高三學(xué)生的學(xué)情。
有的放矢地制訂切實(shí)可行的校本復(fù)習(xí)教學(xué)計(jì)劃。
。ㄒ唬┲匾曊n本,夯實(shí)基礎(chǔ),建立良好知識結(jié)構(gòu)和認(rèn)知結(jié)構(gòu)體系 課本是考試內(nèi)容的載體,是高考命題的依據(jù),也是學(xué)生智能的生長點(diǎn),是最有參考價(jià)值的資料。
。ǘ┨嵘芰,適度創(chuàng)新 考查能力是高考的重點(diǎn)和永恒主題。
教育部已明確指出高考從“以知識立意命題”轉(zhuǎn)向“以能力立意命題”。
。ㄈ⿵(qiáng)化數(shù)學(xué)思想方法 數(shù)學(xué)不僅僅是一種重要的工具,更重要的是一種思維模式,一種思想。
注重對數(shù)學(xué)思想方法的考查也是高考數(shù)學(xué)命題的顯著特點(diǎn)之一。
數(shù)學(xué)思想方法是對數(shù)學(xué)知識最高層次上的概括提煉,它蘊(yùn)涵于數(shù)學(xué)知識的發(fā)生、發(fā)展和應(yīng)用過程中,能夠遷移且廣泛應(yīng)用于相關(guān)科學(xué)和社會生活,教學(xué)工作計(jì)劃《第二學(xué)期高三數(shù)學(xué)教學(xué)計(jì)劃》。
在復(fù)習(xí)備考中,要把數(shù)學(xué)思想方法滲透到每一章、每一節(jié)、每一課、每一套試題中去,任何一道精心編擬的數(shù)學(xué)試題,均蘊(yùn)涵了極其豐富的數(shù)學(xué)思想方法,如果注意滲透,適時(shí)講解、反復(fù)強(qiáng)調(diào),學(xué)生會深入于心,形成良好的思維品格,考試時(shí)才會思如泉涌、駕輕就熟,數(shù)學(xué)思想方法貫穿于整個(gè)高中數(shù)學(xué)的始終,因此在進(jìn)入高三復(fù)習(xí)時(shí)就需不斷利用這些思想方法去處理實(shí)際問題,而并非只在高三復(fù)習(xí)將結(jié)束時(shí)去講一兩個(gè)專題了事。
。ㄋ模⿵(qiáng)化思維過程,提高解題質(zhì)量 數(shù)學(xué)基礎(chǔ)知識的學(xué)習(xí)要充分重視知識的形成過程,解數(shù)學(xué)題要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,注意多題一解、一題多解和一題多變。
多題一解有利于培養(yǎng)學(xué)生的求同思維;一題多解有利于培養(yǎng)學(xué)生的求異思維;一題多變有利于培養(yǎng)學(xué)生思維的靈活性與深刻性。
在分析解決問題的'過程中既構(gòu)建知識的橫向聯(lián)系,又養(yǎng)成學(xué)生多角度思考問題的習(xí)慣。
(五)認(rèn)真總結(jié)每一次測試的得失,提高試卷的講評效果 試卷講評要有科學(xué)性、針對性、輻射性。
講評不是簡單的公布正確答案,一是幫學(xué)生分析探求解題思路,二是分析錯(cuò)誤原因,吸取教訓(xùn),三是適當(dāng)變通、聯(lián)想、拓展、延伸,以例及類,探求規(guī)律。還可橫向比較,與其他班級比較,尋找個(gè)人教學(xué)的薄弱環(huán)節(jié)。根據(jù)所教學(xué)生實(shí)際有針對性地組題進(jìn)行強(qiáng)化訓(xùn)練,抓基礎(chǔ)題,得到基礎(chǔ)分對大部分學(xué)校而言就是高考成功,這已是不爭的共識。第二輪專題過關(guān),對于高考數(shù)學(xué)的復(fù)習(xí),應(yīng)在一輪系統(tǒng)學(xué)習(xí)的基礎(chǔ)上,利用專題復(fù)習(xí),更能提高數(shù)學(xué)備考的針對性和有效性。在這一階段,鍛煉學(xué)生的綜合能力與應(yīng)試技巧,不要重視知識結(jié)構(gòu)的先后次序,需配合著專題的學(xué)習(xí),提高學(xué)生采用“配方法、待定系數(shù)法、數(shù)形結(jié)合,分類討論,換元”等方法解決數(shù)學(xué)問題的能力,同時(shí)針對選擇、填空的特色,學(xué)習(xí)一些解題的特殊技巧、方法,以提高在高考考試中的對時(shí)間的掌控力。第三輪綜合模擬,在前兩輪復(fù)習(xí)的基礎(chǔ)上,為了增強(qiáng)數(shù)學(xué)備考的針對性和應(yīng)試功能,做一定量的高考模擬試題是必須的,也是十分有效的。
四、該階段需要解決的問題是:
1、強(qiáng)化知識的綜合性和交匯性,鞏固方法的選擇性和靈活性。
2、檢查復(fù)習(xí)的知識疏漏點(diǎn)和解題易錯(cuò)點(diǎn),探索解題的規(guī)律。
3、檢驗(yàn)知識網(wǎng)絡(luò)的生成過程。
4、領(lǐng)會數(shù)學(xué)思想方法在解答一些高考真題和新穎的模擬試題時(shí)的工具性。
五、在有序做好復(fù)習(xí)工作的同時(shí)注意一下幾點(diǎn):
。1)從班級實(shí)際出發(fā),我要幫助學(xué)生切實(shí)做到對基礎(chǔ)訓(xùn)練限時(shí)完成,加強(qiáng)運(yùn)算能力的訓(xùn)練,嚴(yán)格答題的規(guī)范化,如小括號、中括號等,特別是對那些書寫“像霧像雨又像風(fēng)”的學(xué)生要加強(qiáng)指導(dǎo),確;镜梅。
。2)在考試的方法和策略上做好指導(dǎo)工作,如心理問題的疏導(dǎo),考試時(shí)間的合理安排等等。
(3)與備課組其他老師保持統(tǒng)一,對內(nèi)協(xié)作,對外競爭。自己多做研究工作,如仔細(xì)研讀訂閱的雜志,研究典型試題,把握高考走勢。
(4)做到“有練必改,有改必評,有評必糾”。
(5)課內(nèi)面向大多數(shù)同學(xué),課外抓好優(yōu)等生和邊緣生,尤其是邊緣生。
班級是一個(gè)集體,我們的目標(biāo)是“水漲船高”,而不是“水落石出”。
。6)要改變教學(xué)方式,努力學(xué)習(xí)和實(shí)踐我?偨Y(jié)推出的“221”模式。
教學(xué)是一門藝術(shù),藝術(shù)是無止境的,要一點(diǎn)天份,更要勤奮。
。7)教研組團(tuán)隊(duì)合作 虛心學(xué)習(xí)別人的優(yōu)點(diǎn),博采眾長,對工作是很有利的。
。8)平等對待學(xué)生,關(guān)心每一位學(xué)生的成長,宗旨是教出來的學(xué)生不一定都很優(yōu)秀,但肯定每一位都有進(jìn)步;讓更多的學(xué)生喜歡數(shù)學(xué)。
高三數(shù)學(xué)教案13
典例精析
題型一 求函數(shù)f(x)的單調(diào)區(qū)間
【例1】已知函數(shù)f(x)=x2-ax-aln(x-1)(a∈R),求函數(shù)f(x)的單調(diào)區(qū)間.
【解析】函數(shù)f(x)=x2-ax-aln(x-1)的定義域是(1,+∞).
f′(x)=2x-a-ax-1=2x(x-a+22)x-1,
①若a≤0,則a+22≤1,f′(x)=2x(x-a+22)x-1>0在(1,+∞)上恒成立,所以a≤0時(shí),f(x)的增區(qū)間為(1,+∞).
②若a>0,則a+22>1,
故當(dāng)x∈(1,a+22]時(shí),f′(x)=2x(x-a+22)x-1≤0;
當(dāng)x∈[a+22,+∞)時(shí),f′(x)=2x(x-a+22)x-1≥0,
所以a>0時(shí),f(x)的減區(qū)間為(1,a+22],f(x)的增區(qū)間為[a+22,+∞).
【點(diǎn)撥】在定義域x>1下,為了判定f′(x)符號,必須討論實(shí)數(shù)a+22與0及1的大小,分類討論是解本題的關(guān)鍵.
【變式訓(xùn)練1】已知函數(shù)f(x)=x2+ln x-ax在(0,1)上是增函數(shù),求a的取值范圍.
【解析】因?yàn)閒′(x)=2x+1x-a,f(x)在(0,1)上是增函數(shù),
所以2x+1x-a≥0在(0,1)上恒成立,
即a≤2x+1x恒成立.
又2x+1x≥22(當(dāng)且僅當(dāng)x=22時(shí),取等號).
所以a≤22,
故a的取值范圍為(-∞,22].
【點(diǎn)撥】當(dāng)f(x)在區(qū)間(a,b)上是增函數(shù)時(shí)f′(x)≥0在(a,b)上恒成立;同樣,當(dāng)函數(shù)f(x)在區(qū)間(a,b)上為減函數(shù)時(shí)f′(x)≤0在(a,b)上恒成立.然后就要根據(jù)不等式恒成立的條件來求參數(shù)的取值范圍了.
題型二 求函數(shù)的極值
【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,且f(1)=-1.
(1)試求常數(shù)a,b,c的值;
(2)試判斷x=±1是函數(shù)的極小值點(diǎn)還是極大值點(diǎn),并說明理由.
【解析】(1)f′(x)=3ax2+2bx+c.
因?yàn)閤=±1是函數(shù)f(x)的極值點(diǎn),
所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的兩根.
由根與系數(shù)的關(guān)系,得
又f(1)=-1,所以a+b+c=-1. ③
由①②③解得a=12,b=0,c=-32.
(2)由(1)得f(x)=12x3-32x,
所以當(dāng)f′(x)=32x2-32>0時(shí),有x<-1或x>1;
當(dāng)f′(x)=32x2-32<0時(shí),有-1
所以函數(shù)f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函數(shù),在(-1,1)上是減函數(shù).
所以當(dāng)x=-1時(shí),函數(shù)取得極大值f(-1)=1;當(dāng)x=1時(shí),函數(shù)取得極小值f(1)=-1.
【點(diǎn)撥】求函數(shù)的極值應(yīng)先求導(dǎo)數(shù).對于多項(xiàng)式函數(shù)f(x)來講, f(x)在點(diǎn)x=x0處取極值的必要條件是f′(x)=0.但是, 當(dāng)x0滿足f′(x0)=0時(shí), f(x)在點(diǎn)x=x0處卻未必取得極 值,只有在x0的兩側(cè)f(x)的導(dǎo)數(shù)異號時(shí),x0才是f(x)的極值點(diǎn).并且如果f′(x)在x0兩側(cè)滿足“左正右負(fù)”,則x0是f(x)的極大值點(diǎn),f(x0)是極大值;如果f′(x)在x0兩側(cè)滿足“左負(fù)右正”,則x0是f(x)的極小值點(diǎn),f(x0)是極小值.
【變式訓(xùn)練2】定義在R上的函數(shù)y=f(x),滿足f(3-x)=f(x),(x-32)f′(x)<0,若x13,則有( )
A. f(x1)f(x2)
C. f(x1)=f(x2) D.不確定
【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函數(shù)f(x)的圖象關(guān)于x=32對稱.又因?yàn)?x-32)f′(x)<0,所以當(dāng)x>32時(shí),函數(shù)f(x)單調(diào)遞減,當(dāng)x<32時(shí),函數(shù)f(x)單調(diào)遞增.當(dāng)x1+x22=32時(shí),f(x1)=f(x2),因?yàn)閤1+x2>3,所以x1+x22>32,相當(dāng)于x1,x2的中點(diǎn)向右偏離對稱軸,所以f(x1)>f(x2).故選B.
題型三 求函數(shù)的最值
【例3】 求函數(shù)f(x)=ln(1+x)-14x2在區(qū)間[0,2]上的最大值和最小值.
【解析】f′(x)=11+x-12x,令11+x-12x=0,化簡為x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.
又由f′(x)=11+x-12x>0,且x∈[0,2],得知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),同理, 得知函數(shù)f(x)的單調(diào)遞減區(qū)間是(1,2),所以f(1)=ln 2-14為函數(shù)f(x)的極大值.又因?yàn)閒(0)=0,f(2)=ln 3-1>0,f(1)>f(2),所以,f(0)=0為函數(shù)f(x)在[0,2]上的最小值,f(1)=ln 2-14為函數(shù)f(x)在[0,2]上的最大值.
【點(diǎn)撥】求函數(shù)f(x)在某閉區(qū)間[a,b]上的最值,首先需求函數(shù)f(x)在開區(qū)間(a,b)內(nèi)的極值,然后,將f(x)的各個(gè)極值與f(x)在閉區(qū)間上的端點(diǎn)的函數(shù)值f(a)、f(b)比較,才能得出函數(shù)f(x)在[a,b]上的最值.
【變式訓(xùn)練3】(20xx江蘇)f(x)=ax3-3x+1對x∈[-1,1]總有f(x)≥0成立,則a= .
【解析】若x=0,則無論a為 何值,f(x)≥0恒成立.
當(dāng)x∈(0,1]時(shí),f(x)≥0可以化為a≥3x2-1x3,
設(shè)g(x)=3x2-1x3,則g′(x)=3(1-2x)x4,
x∈(0,12)時(shí),g′(x)>0,x∈(12,1]時(shí),g′(x)<0.
因此g(x)max=g(12)=4,所以a≥4.
當(dāng)x∈[-1,0)時(shí),f(x)≥0可以化為
a≤3x2-1x3,此時(shí)g′(x)=3(1-2x)x4>0,
g(x)min=g(-1)=4,所以a≤4.
綜上可知,a=4.
總結(jié)提高
1.求函數(shù)單調(diào)區(qū)間的步驟是:
(1)確定函數(shù)f(x)的定義域D;
(2)求導(dǎo)數(shù)f′(x);
(3)根據(jù)f′(x)>0,且x∈D,求得函數(shù)f(x)的.單調(diào)遞增區(qū)間;根據(jù)f′(x)<0,且x∈D,求得函數(shù)f(x)的單調(diào)遞減區(qū)間.
2.求函數(shù)極值的步驟是:
(1)求導(dǎo)數(shù)f′(x);
(2)求方程f′(x)=0的根;
(3)判斷f′(x)在方程根左右的值的符號,確定f(x)在這個(gè)根處取極大值還是取極小值.
3.求函數(shù)最值的步驟是:
先求f(x)在(a,b)內(nèi)的極值;再將f(x)的各極值與端點(diǎn)處的函數(shù)值f(a)、f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.
高三數(shù)學(xué)教案14
1.如圖,已知直線L: 的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線 上的射影依次為點(diǎn)D、E。
(1)若拋物線 的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)(理)連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請求出N點(diǎn)的坐標(biāo),并給予證明;否則說明理由。
(文)若 為x軸上一點(diǎn),求證:
2.如圖所示,已知圓 定點(diǎn)A(1,0),M為圓上一動點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足 ,點(diǎn)N的軌跡為曲線E。
(1)求曲線E的方程;
(2)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足 的取值范圍。
3.設(shè)橢圓C: 的左焦點(diǎn)為F,上頂點(diǎn)為A,過點(diǎn)A作垂直于AF的直線交橢圓C于另外一點(diǎn)P,交x軸正半軸于點(diǎn)Q, 且
⑴求橢圓C的離心率;
、迫暨^A、Q、F三點(diǎn)的圓恰好與直線
l: 相切,求橢圓C的方程.
4.設(shè)橢圓 的離心率為e=
(1)橢圓的左、右焦點(diǎn)分別為F1、F2、A是橢圓上的一點(diǎn),且點(diǎn)A到此兩焦點(diǎn)的距離之和為4,求橢圓的方程.
(2)求b為何值時(shí),過圓x2+y2=t2上一點(diǎn)M(2, )處的切線交橢圓于Q1、Q2兩點(diǎn),而且OQ1OQ2.
5.已知曲線 上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(- ,0)和F2( ,0)的距離之和為4.
(1)求曲線 的方程;
(2)設(shè)過(0,-2)的直線 與曲線 交于C、D兩點(diǎn),且 為坐標(biāo)原點(diǎn)),求直線 的方程.
6.已知橢圓 的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B.過F、B、C作⊙P,其中圓心P的坐標(biāo)為(m,n).
(Ⅰ)當(dāng)m+n0時(shí),求橢圓離心率的范圍;
(Ⅱ)直線AB與⊙P能否相切?證明你的結(jié)論.
7.有如下結(jié)論:圓 上一點(diǎn) 處的切線方程為 ,類比也有結(jié)論:橢圓 處的切線方程為 ,過橢圓C: 的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.
(1)求證:直線AB恒過一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積
8.已知點(diǎn)P(4,4),圓C: 與橢圓E: 有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動點(diǎn),求 的取值范圍.
9.橢圓的對稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為 ,右焦點(diǎn) 與點(diǎn) 的距離為 。
(1)求橢圓的方程;
(2)是否存在斜率 的直線 : ,使直線 與橢圓相交于不同的兩點(diǎn) 滿足 ,若存在,求直線 的傾斜角 ;若不存在,說明理由。
10.橢圓方程為 的一個(gè)頂點(diǎn)為 ,離心率 。
(1)求橢圓的方程;
(2)直線 : 與橢圓相交于不同的兩點(diǎn) 滿足 ,求 。
11.已知橢圓 的左焦點(diǎn)為F,左右頂點(diǎn)分別為A,C上頂點(diǎn)為B,過F,B,C三點(diǎn)作 ,其中圓心P的坐標(biāo)為 .
(1) 若橢圓的離心率 ,求 的方程;
(2)若 的圓心在直線 上,求橢圓的方程.
12.已知直線 與曲線 交于不同的兩點(diǎn) , 為坐標(biāo)原點(diǎn).
(Ⅰ)若 ,求證:曲線 是一個(gè)圓;
(Ⅱ)若 ,當(dāng) 且 時(shí),求曲線 的離心率 的取值范圍.
13.設(shè)橢圓 的左、右焦點(diǎn)分別為 、 ,A是橢圓C上的一點(diǎn),且 ,坐標(biāo)原點(diǎn)O到直線 的距離為 .
(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過Q的直線l交x軸于點(diǎn) ,較y軸于點(diǎn)M,若 ,求直線l的方程.
14.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過其上一點(diǎn) 的切線方程為 為常數(shù)).
(I)求拋物線方程;
(II)斜率為 的直線PA與拋物線的另一交點(diǎn)為A,斜率為 的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足 ,求證線段PM的中點(diǎn)在y軸上;
(III)在(II)的條件下,當(dāng) 時(shí),若P的坐標(biāo)為(1,-1),求PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.
15.已知動點(diǎn)A、B分別在x軸、y軸上,且滿足|AB|=2,點(diǎn)P在線段AB上,且
設(shè)點(diǎn)P的軌跡方程為c。
(1)求點(diǎn)P的軌跡方程C;
(2)若t=2,點(diǎn)M、N是C上關(guān)于原點(diǎn)對稱的兩個(gè)動點(diǎn)(M、N不在坐標(biāo)軸上),點(diǎn)Q
坐標(biāo)為 求△QMN的面積S的最大值。
16.設(shè) 上的兩點(diǎn),
已知 , ,若 且橢圓的離心率 短軸長為2, 為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;
(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由
17.如圖,F(xiàn)是橢圓 (a0)的一個(gè)焦點(diǎn),A,B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為 .點(diǎn)C在x軸上,BCBF,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線l1: 相切.
(Ⅰ)求橢圓的方程:
(Ⅱ)過點(diǎn)A的直線l2與圓M交于PQ兩點(diǎn),且 ,求直線l2的方程.
18.如圖,橢圓長軸端點(diǎn)為 , 為橢圓中心, 為橢圓的右焦點(diǎn),且 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為 ,直線 交橢圓于 兩點(diǎn),問:是否存在直線 ,使點(diǎn) 恰為 的垂心?若存在,求出直線 的方程;若不存在,請說明理由.
19.如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在 軸上,離心率為 ,且經(jīng)過點(diǎn) . 直線 交橢圓于 兩不同的點(diǎn).
20.設(shè) ,點(diǎn) 在 軸上,點(diǎn) 在 軸上,且
(1)當(dāng)點(diǎn) 在 軸上運(yùn)動時(shí),求點(diǎn) 的軌跡 的方程;
(2)設(shè) 是曲線 上的點(diǎn),且 成等差數(shù)列,當(dāng) 的垂直平分線與 軸交于點(diǎn) 時(shí),求 點(diǎn)坐標(biāo).
21.已知點(diǎn) 是平面上一動點(diǎn),且滿足
(1)求點(diǎn) 的軌跡 對應(yīng)的方程;
(2)已知點(diǎn) 在曲線 上,過點(diǎn) 作曲線 的兩條弦 和 ,且 ,判斷:直線 是否過定點(diǎn)?試證明你的結(jié)論.
22.已知橢圓 的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過 、 、 三點(diǎn).
(1)求橢圓 的方程:
(2)若點(diǎn)D為橢圓 上不同于 、 的任意一點(diǎn), ,當(dāng) 內(nèi)切圓的面積最大時(shí)。求內(nèi)切圓圓心的坐標(biāo);
(3)若直線 與橢圓 交于 、 兩點(diǎn),證明直線 與直線 的交點(diǎn)在直線 上.
23.過直角坐標(biāo)平面 中的拋物線 的焦點(diǎn) 作一條傾斜角為 的直線與拋物線相交于A,B兩點(diǎn)。
(1)用 表示A,B之間的距離;
(2)證明: 的大小是與 無關(guān)的定值,
并求出這個(gè)值。
24.設(shè) 分別是橢圓C: 的左右焦點(diǎn)
(1)設(shè)橢圓C上的點(diǎn) 到 兩點(diǎn)距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo)
(2)設(shè)K是(1)中所得橢圓上的動點(diǎn),求線段 的中點(diǎn)B的軌跡方程
(3)設(shè)點(diǎn)P是橢圓C 上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM ,PN的斜率都存在,并記為 試探究 的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論。
25.已知橢圓 的離心率為 ,直線 : 與以原點(diǎn)為圓心、以橢圓 的短半軸長為半徑的圓相切.
(I)求橢圓 的方程;
(II)設(shè)橢圓 的左焦點(diǎn)為 ,右焦點(diǎn) ,直線 過點(diǎn) 且垂直于橢圓的長軸,動直線 垂直 于點(diǎn) ,線段 垂直平分線交 于點(diǎn) ,求點(diǎn) 的軌跡 的方程;
(III)設(shè) 與 軸交于點(diǎn) ,不同的兩點(diǎn) 在 上,且滿足 求 的取值范圍.
26.如圖所示,已知橢圓 : , 、 為
其左、右焦點(diǎn), 為右頂點(diǎn), 為左準(zhǔn)線,過 的直線 : 與橢圓相交于 、
兩點(diǎn),且有: ( 為橢圓的半焦距)
(1)求橢圓 的離心率 的最小值;
(2)若 ,求實(shí)數(shù) 的取值范圍;
(3)若 , ,
求證: 、 兩點(diǎn)的縱坐標(biāo)之積為定值;
27.已知橢圓 的左焦點(diǎn)為 ,左右頂點(diǎn)分別為 ,上頂點(diǎn)為 ,過 三點(diǎn)作圓 ,其中圓心 的坐標(biāo)為
(1)當(dāng) 時(shí),橢圓的離心率的取值范圍
(2)直線 能否和圓 相切?證明你的結(jié)論
28.已知點(diǎn)A(-1,0),B(1,-1)和拋物線. ,O為坐標(biāo)原點(diǎn),過點(diǎn)A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.
(I)證明: 為定值;
(II)若△POM的面積為 ,求向量 與 的夾角;
(Ⅲ) 證明直線PQ恒過一個(gè)定點(diǎn).
29.已知橢圓C: 上動點(diǎn) 到定點(diǎn) ,其中 的距離 的最小值為1.
(1)請確定M點(diǎn)的坐標(biāo)
(2)試問是否存在經(jīng)過M點(diǎn)的直線 ,使 與橢圓C的兩個(gè)交點(diǎn)A、B滿足條件 (O為原點(diǎn)),若存在,求出 的方程,若不存在請說是理由。
30.已知橢圓 ,直線 與橢圓相交于 兩點(diǎn).
(Ⅰ)若線段 中點(diǎn)的橫坐標(biāo)是 ,求直線 的方程;
(Ⅱ)在 軸上是否存在點(diǎn) ,使 的值與 無關(guān)?若存在,求出 的值;若不存在,請說明理由.
31.直線AB過拋物線 的焦點(diǎn)F,并與其相交于A、B兩點(diǎn)。Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn).O是坐標(biāo)原點(diǎn).
(I)求 的取值范圍;
(Ⅱ)過 A、B兩點(diǎn)分剮作此撒物線的切線,兩切線相交于N點(diǎn).求證: ∥ ;
(Ⅲ) 若P是不為1的正整數(shù),當(dāng) ,△ABN的面積的取值范圍為 時(shí),求該拋物線的方程.
32.如圖,設(shè)拋物線 ( )的準(zhǔn)線與 軸交于 ,焦點(diǎn)為 ;以 、 為焦點(diǎn),離心率 的橢圓 與拋物線 在 軸上方的一個(gè)交點(diǎn)為 .
(Ⅰ)當(dāng) 時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過橢圓 的右焦點(diǎn) ,與拋物線 交于 、 ,如果以線段 為直徑作圓,試判斷點(diǎn) 與圓的位置關(guān)系,并說明理由;
(Ⅲ)是否存在實(shí)數(shù) ,使得 的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù) ;若不存在,請說明理由.
33.已知點(diǎn) 和動點(diǎn) 滿足: ,且存在正常數(shù) ,使得 。
(1)求動點(diǎn)P的軌跡C的'方程。
(2)設(shè)直線 與曲線C相交于兩點(diǎn)E,F(xiàn),且與y軸的交點(diǎn)為D。若 求 的值。
34.已知橢圓 的右準(zhǔn)線 與 軸相交于點(diǎn) ,右焦點(diǎn) 到上頂點(diǎn)的距離為 ,點(diǎn) 是線段 上的一個(gè)動點(diǎn).
(I)求橢圓的方程;
(Ⅱ)是否存在過點(diǎn) 且與 軸不垂直的直線 與橢圓交于 、 兩點(diǎn),使得 ,并說明理由.
35.已知橢圓C: ( .
(1)若橢圓的長軸長為4,離心率為 ,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn) 的直線 與橢圓C交于不同的兩點(diǎn) ,且 為銳角(其中 為坐標(biāo)原點(diǎn)),求直線 的斜率k的取值范圍;
(3)如圖,過原點(diǎn) 任意作兩條互相垂直的直線與橢圓 ( )相交于 四點(diǎn),設(shè)原點(diǎn) 到四邊形 一邊的距離為 ,試求 時(shí) 滿足的條件.
36.已知 若過定點(diǎn) 、以 ( )為法向量的直線 與過點(diǎn) 以 為法向量的直線 相交于動點(diǎn) .
(1)求直線 和 的方程;
(2)求直線 和 的斜率之積 的值,并證明必存在兩個(gè)定點(diǎn) 使得 恒為定值;
(3)在(2)的條件下,若 是 上的兩個(gè)動點(diǎn),且 ,試問當(dāng) 取最小值時(shí),向量 與 是否平行,并說明理由。
37.已知點(diǎn) ,點(diǎn) (其中 ),直線 、 都是圓 的切線.
(Ⅰ)若 面積等于6,求過點(diǎn) 的拋物線 的方程;
(Ⅱ)若點(diǎn) 在 軸右邊,求 面積的最小值.
38.我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請同學(xué)們進(jìn)行研究并完成下面問題。
(1)設(shè)F1、F2是橢圓 的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線 的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關(guān)系。
(2)設(shè)F1、F2是橢圓 的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線
(m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。
(3)試寫出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。
(4)將(3)中得出的結(jié)論類比到其它曲線,請同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。
39.已知點(diǎn) 為拋物線 的焦點(diǎn),點(diǎn) 是準(zhǔn)線 上的動點(diǎn),直線 交拋物線 于 兩點(diǎn),若點(diǎn) 的縱坐標(biāo)為 ,點(diǎn) 為準(zhǔn)線 與 軸的交點(diǎn).
(Ⅰ)求直線 的方程;(Ⅱ)求 的面積 范圍;
(Ⅲ)設(shè) , ,求證 為定值.
40.已知橢圓 的離心率為 ,直線 : 與以原點(diǎn)為圓心、以橢圓 的短半軸長為半徑的圓相切.
(I)求橢圓 的方程;
(II)設(shè)橢圓 的左焦點(diǎn)為 ,右焦點(diǎn) ,直線 過點(diǎn) 且垂直于橢圓的長軸,動直線 垂直 于點(diǎn) ,線段 垂直平分線交 于點(diǎn) ,求點(diǎn) 的軌跡 的方程;
(III)設(shè) 與 軸交于點(diǎn) ,不同的兩點(diǎn) 在 上,且滿足 求 的取值范圍.
41.已知以向量 為方向向量的直線 過點(diǎn) ,拋物線 : 的頂點(diǎn)關(guān)于直線 的對稱點(diǎn)在該拋物線的準(zhǔn)線上.
(1)求拋物線 的方程;
(2)設(shè) 、 是拋物線 上的兩個(gè)動點(diǎn),過 作平行于 軸的直線 ,直線 與直線 交于點(diǎn) ,若 ( 為坐標(biāo)原點(diǎn), 、 異于點(diǎn) ),試求點(diǎn) 的軌跡方程。
42.如圖,設(shè)拋物線 ( )的準(zhǔn)線與 軸交于 ,焦點(diǎn)為 ;以 、 為焦點(diǎn),離心率 的橢圓 與拋物線 在 軸上方的一個(gè)交點(diǎn)為 .
(Ⅰ)當(dāng) 時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過橢圓 的右焦點(diǎn) ,
與拋物線 交于 、 ,如果以線段 為直徑作圓,
試判斷點(diǎn) 與圓的位置關(guān)系,并說明理由;
(Ⅲ)是否存在實(shí)數(shù) ,使得 的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù) ;若不存在,請說明理由.
43.設(shè)橢圓 的一個(gè)頂點(diǎn)與拋物線 的焦點(diǎn)重合, 分別是橢圓的左、右焦點(diǎn),且離心率 且過橢圓右焦點(diǎn) 的直線 與橢圓C交于 兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線 ,使得 .若存在,求出直線 的方程;若不存在,說明理由.
(Ⅲ)若AB是橢圓C經(jīng)過原點(diǎn)O的弦, MN AB,求證: 為定值.
44.設(shè) 是拋物線 的焦點(diǎn),過點(diǎn)M(-1,0)且以 為方向向量的直線順次交拋物線于 兩點(diǎn)。
(Ⅰ)當(dāng) 時(shí),若 與 的夾角為 ,求拋物線的方程;
(Ⅱ)若點(diǎn) 滿足 ,證明 為定值,并求此時(shí)△ 的面積
45.已知點(diǎn) ,點(diǎn) 在 軸上,點(diǎn) 在 軸的正半軸上,點(diǎn) 在直線 上,且滿足 .
(Ⅰ)當(dāng)點(diǎn) 在 軸上移動時(shí),求點(diǎn) 的軌跡 的方程;
(Ⅱ)設(shè) 、 為軌跡 上兩點(diǎn),且 0, ,求實(shí)數(shù) ,
使 ,且 .
46.已知橢圓 的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C 上任一點(diǎn),MN是圓 的一條直徑,若與AF平行且在y軸上的截距為 的直線 恰好與圓 相切。
(1)已知橢圓 的離心率;
(2)若 的最大值為49,求橢圓C 的方程.
高三數(shù)學(xué)教案15
【教學(xué)目標(biāo)】:
。1)知識目標(biāo):
通過實(shí)例,了解簡單的邏輯聯(lián)結(jié)詞“且”、“或”的含義;
(2)過程與方法目標(biāo):
了解含有邏輯聯(lián)結(jié)詞“且”、“或”復(fù)合命題的構(gòu)成形式,以及會對新命題作出真假的判斷;
(3)情感與能力目標(biāo):
在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能。
【教學(xué)重點(diǎn)】:
通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。
【教學(xué)難點(diǎn)】:
簡潔、準(zhǔn)確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。
【教學(xué)過程設(shè)計(jì)】:
教學(xué)環(huán)節(jié)教學(xué)活動設(shè)計(jì)意圖
情境引入問題:
下列三個(gè)命題間有什么關(guān)系?
。1)12能被3整除;
(2)12能被4整除;
。3)12能被3整除且能被4整除;通過數(shù)學(xué)實(shí)例,認(rèn)識用用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個(gè)命題可以得到一個(gè)新命題;
知識建構(gòu)歸納總結(jié):
一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個(gè)新命題,
記作,讀作“p且q”。
引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析,概括出一般特征。
1、引導(dǎo)學(xué)生閱讀教科書上的例1中每組命題p,q,讓學(xué)生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯(cuò)誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個(gè)命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。
2、引導(dǎo)學(xué)生閱讀教科書上的`例2中每個(gè)命題,讓學(xué)生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯(cuò)誤。
歸納總結(jié):
當(dāng)p,q都是真命題時(shí),是真命題,當(dāng)p,q兩個(gè)命題中有一個(gè)是假命題時(shí),是假命題,
學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。
引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實(shí)例分析命題p和命題q以及命題的真假性,概括出這三個(gè)命題的真假性之間的一般規(guī)律。
【高三數(shù)學(xué)教案】相關(guān)文章:
人教版高三數(shù)學(xué)教案11-02
高三數(shù)學(xué)教案15篇11-08