熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

初一數(shù)學教案

時間:2022-11-19 08:37:56 七年級數(shù)學教案 我要投稿
  • 相關(guān)推薦

初一數(shù)學教案(匯編15篇)

  作為一位杰出的教職工,可能需要進行教案編寫工作,借助教案可以提高教學質(zhì)量,收到預期的教學效果。寫教案需要注意哪些格式呢?下面是小編精心整理的初一數(shù)學教案,僅供參考,希望能夠幫助到大家。

初一數(shù)學教案(匯編15篇)

初一數(shù)學教案1

  一、學習與導學目標:

  知識與技能:借助數(shù)軸理解相反數(shù)的意義,懂得數(shù)軸上表示相反數(shù)的兩個點關(guān)于原點對稱,會求有理數(shù)的相反數(shù);

  過程與方法:經(jīng)歷概念的生成、應用,體會相反數(shù)的意義,簡化數(shù)的符號,學習觀察、歸納、概括的策略與方法;

  情感態(tài)度:通過師生、生生合作學習,促進交流,激發(fā)興趣。

  二、學程與導程活動:

  A、準備活動:

  1、師生游戲“唱反調(diào)”:我們知道在小學學過的0以外的數(shù)前面加上負號“-”的數(shù)就是負數(shù),F(xiàn)在我說一個正數(shù),你們給它添上“-”號說出來,我如果說一個負數(shù),你們反過來說出對應的正數(shù)。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。

  2、上述“唱反調(diào)”的兩個數(shù)3與-3,1與-1,-1/2與1/2……,在數(shù)軸上對應的點的位置如何?可建議生擇兩組在數(shù)軸上表示以后作答(在原點兩側(cè)到原點的距離相等,真可謂從原點背道而馳“唱反調(diào)”)。

  提問:數(shù)軸上與原點距離是4的點有幾個?這些點表示的數(shù)是多少?

  歸納:設a是一個正數(shù),數(shù)軸上與原點距離是a的'點有兩個,分別在原點左右表示-a和a,我們說這兩點關(guān)于原點對稱。

  B、學習概念:

  1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數(shù)給它一個什么樣的關(guān)系名稱合適呢?生:互為相反數(shù),師:很好,我們把上述只有負號不同的兩個數(shù)叫做互為相反數(shù)(oppositenumber)。也就是說3的相反數(shù)是-3,-3的相反數(shù)是3。可見:相反數(shù)是成對出現(xiàn)的,不能單獨存在。

  一般地,a和-a互為相反數(shù)!-a”可讀成“a的相反數(shù)”。

  2、在數(shù)軸上看,表示相反數(shù)的兩個點和原點有什么關(guān)系?(關(guān)于原點對稱)

  3、從上述意義上看,你看如何規(guī)定0的相反數(shù)更為合理?

  商討得:0的相反數(shù)仍是0,即0的相反數(shù)等于它本身。

  C、應用舉例:

  1、兩人一組,一人任說一個有理數(shù),請同伴說出它的相反數(shù)。

  2、如果a=-a,那么表示數(shù)a的點在數(shù)軸上的什么位置?a=?(a=0)。

  3、在正數(shù)前面添上“-”號,就得到這個數(shù)的相反數(shù),同樣地,在任意一個數(shù)前面添上“-”號,新的數(shù)就表示原數(shù)的相反數(shù),如:-(+5)=-5,-(-5)=5,-0=0。

  結(jié)合前面相反數(shù)意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?

  4、化簡下列各數(shù)P124練習,你愿意繼續(xù)嘗試化簡下列各式嗎?

  +(-2/3),-(-2/3),-(+2/3),+(+2/3)

  你能試著總結(jié)規(guī)律嗎?(括號內(nèi)外同號結(jié)果為正,括號內(nèi)外異號結(jié)果為負)。

  5、若a=-5,則-a=;若-x=7,則x=。

  三、筆記與板書提綱:

  課題應用舉例中的2

  活動引例應用舉例中的4(學生練習),5

  概念

  四、練習與拓展選題:

  1、教科書P18/3;

  2、如圖是正方形紙盒的側(cè)面展示圖,請你在正方形內(nèi)分別填上6個不同的數(shù),使折成正方體后相對的面上的兩個數(shù)互為相反數(shù)(寫出滿足條件的一種情形即可)。

初一數(shù)學教案2

  教學目標

  (一)教學知識點

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

  2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

  3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標.

  (二)能力訓練要求

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.

  2.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想.

  3.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識.

  (三)情感與價值觀要求

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性.

  2.具有初步的創(chuàng)新精神和實踐能力.

  教學重點

  1.體會方程與函數(shù)之間的聯(lián)系.

  2.理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根.

  3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標.

  教學難點

  1.探索方程與函數(shù)之間的聯(lián)系的過程.

  2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系.

  教學方法

  討論探索法.

  教具準備

  投影片二張

  第一張:(記作§2.8.1A)

  第二張:(記作§2.8.1B)

  教學過程

 、.創(chuàng)設問題情境,引入新課

  [師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的`關(guān)系.當一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解.

  現(xiàn)在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題。

  通過學生的討論,使學生更清楚以下事實:

  (1)分解因式與整式的乘法是一種互逆關(guān)系;

  (2)分解因式的結(jié)果要以積的形式表示;

  (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);

  (4)必須分解到每個多項式不能再分解為止。

  活動5:應用新知

  例題學習:

  P166例1、例2(略)

  在教師的引導下,學生應用提公因式法共同完成例題。

  讓學生進一步理解提公因式法進行因式分解。

  活動6:課堂練習

  1.P167練習;

  2.看誰連得準

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些變形是因式分解,為什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  學生自主完成練習。

  通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

  活動7:課堂小結(jié)

  從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?

  學生發(fā)言。

  通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學思想的理解。

  活動8:課后作業(yè)

  課本P170習題的第1、4大題。

  學生自主完成

  通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。

  板書設計(需要一直留在黑板上主板書)

  15.4.1提公因式法例題

  1.因式分解的定義

  2.提公因式法

初一數(shù)學教案3

  一、 學情分析:

  在此之前,本班學生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學生能在教師指導下探索問題。由于學生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。

  二、 課前準備

  把學生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學習、組間競爭學習,形成良好的學習氣氛。

  三、 教學目標

  1、 知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  四、 教學重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  五、 教學過程

  1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?

  學生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

  a. 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  2 ×3=

  b. -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  -2 ×3=

  c. 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

 。-2) ×(-3)=

  e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。

 。2)學生歸納法則

  a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

 。+)×(+)= 同號得

 。-)×(+)= 異號得

 。+)×(-)= 異號得

  (-)×(-)= 同號得

  b.積的'絕對值等于 。

  c.任何數(shù)與零相乘,積仍為 。

  (3)師生共同用文字敘述有理數(shù)乘法法則。

  3、 運用法則計算,鞏固法則。

 。1)教師按課本P75 例1板書,要求學生述說每一步理由。

 。2)引導學生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

 。3)學生做 P76 練習1(1)(3),教師評析。

 。4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當負因數(shù)個數(shù)有 ,積為 ; 當負因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。

  4、 討論對比,使學生知識系統(tǒng)化。


有理數(shù)乘法有理數(shù)加法
同號得正取相同的符號
把絕對值相乘
(-2)×(-3)=6
把絕對值相加
(-2)+(-3)=-5
異號得負取絕對值大的加數(shù)的符號
把絕對值相乘
(-2)×3= -6
(-2)+3=1
用較大的絕對值減小的絕對值
任何數(shù)與零得零得任何數(shù)

  5、 分層作業(yè),鞏固提高。

初一數(shù)學教案4

  教學目標 知識與技能

  從實際生活中感受有序數(shù)對的意義,并會確定平面內(nèi)物體的位置

  過程與方法 通過有序數(shù)對確定位置,讓學生感受二維空間觀,發(fā)展符號感及抽象思維能力,讓學生體會 具體-抽象-具體的數(shù)學學習過程。

  情感態(tài)度

  與價值觀 培養(yǎng)學生的合作交流意識和探索精神,創(chuàng)造性思維意識。體驗數(shù)學來源于生活及應用于生活的意識,更好的激發(fā)學習興趣

  重點 有序數(shù)對的概念及平面內(nèi)確定點的方法

  難點 對有序數(shù)對中的有序的理解,利用有序數(shù)對表示平面內(nèi)的點

  教學方法 以通俗、活潑的素材引入本節(jié)課內(nèi)容;本節(jié)采用情景建構(gòu)教學法

  一 教學流程

  (一)創(chuàng)設情境、導入新課

  [引例1]小明買了一張8排6號的電影票,怎樣才能既快又準地找到座位呢?

  [引例2]規(guī)定豎為列,橫為排,如果我的朋友在第3列,你能知道他(她)是誰嗎?

  如果說我的朋友在第3列,第2排,那么你知道他(她)是誰嗎?

  歸納8排6座、第3列,第2排共同點:用兩個數(shù)表示位置。

  約定:影院座位,排數(shù)在前,座數(shù)在后;教室座位列數(shù)在前,排數(shù)在后。則上述位置可簡記為(8,6),(3,2)。

  介紹:像(8,6)、(3,2)這種用括號括起來的一對數(shù)我們把它叫做數(shù)對。

  追問:12排10座怎么表示?教室中(6,3)表示什么?(3,6)呢?它們意義相同嗎?

  可以發(fā)現(xiàn),有順序的兩個數(shù)a與b組成的數(shù)對,如果約定了前面的數(shù)表示列數(shù),后面的數(shù)表示排數(shù),那么a與b組成的數(shù)對就表示一個確定的位置。

  引入課題有序數(shù)對

  (二)合作交流、探究學習

  由上述問題直接引出概念

  有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記作(a,b)。

  請思考:我們?yōu)槭裁匆獙W習有序數(shù)對,有序數(shù)對都有哪些用途?

  [探究1]請學生結(jié)合實際的教室座位 若位置記法為(列數(shù),排數(shù))

  (1)請問(5,4)和(4,5)表示的是哪個同學的座位?

  (2)游戲:教師說出一組數(shù)對相應的學生立即站起來。

  (3)思考:(3,4)和(4,3)指的是不是同一位置?

  [討論]利用有序數(shù)對,能夠準確地表示一個位置,生活中利用有序數(shù)對表示位置的情況很常見,如人們常用經(jīng)緯度來表示地球上的地點等。(展示課件)

  (三)應用遷移、鞏固提高

  小明是朝陽實驗學校剛?cè)雽W的.初一新生,他為了盡快熟悉學校,請高年級同學為他畫了學校的平面示意圖。如果用(2,4)表示圖上校門的位置,那么花壇圖書館、體育館、教學樓的位置分別可以表示成什么?(課件展示地圖)

  解:花壇(4,6),圖書館(5,0),體育館(9,6),教學樓(10,3)

  (四)回顧反思、拓展升華

  知識點:有序數(shù)對

  有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記作(a,b)。

  注意點:(a,b)與(b,a)表示的是兩個不同的位置。

  主要方法:利用有序數(shù)對可以確定平面內(nèi)點的位置,如根據(jù)數(shù)對畫圖形。反之,也可點的位置轉(zhuǎn)化為有序數(shù)對,如經(jīng)緯網(wǎng)的使用。有序數(shù)對與點的位置實現(xiàn)了簡單的數(shù)形結(jié)合。

  (五)[拓展應用]

  小王初到某個公司,你有什么辦法讓他比較容易地找到圖上的幾處場所。

  (六)布置作業(yè)

  自由設計 二選一

  1、 在方格紙上設計一個用有序數(shù)對描述的圖形。

  2、設計一個游戲,如解密游戲、迷宮游戲等。

  教學反思

  七年級學生的好奇心較重,學習主動性不夠,主要是靠自己的興趣而學習。因此,我從學生的特點出發(fā),明確了以學生為中心,利用適合學生年齡特點的方式來引導教學的各個環(huán)節(jié);本節(jié)課采用多媒體輔助教學,一方面能生動清楚的反映圖形,增加課堂的容量,同時有利于突出重點, 增強教學條理性,形象性,更好的提高課堂效率.

初一數(shù)學教案5

  多邊形及其內(nèi)角和

  知識點一:多邊形的概念

 、哦噙呅味x:在平面內(nèi),由一些線段首位順次相接組成的圖形叫做________.

  如果一個多邊形由n條線段組成,那么這個多邊形叫做____________.(一個多邊形由幾條線段組成,就叫做幾邊形.)

  多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序.如五邊形ABCDE.

  ⑵多邊形的邊、頂點、內(nèi)角和外角.

  多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________.

 、嵌噙呅蔚膶蔷

  連接多邊形的不相鄰的兩個頂點的線段,叫做___________________.畫一個五邊形ABCDE,并畫出所有的對角線.知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形.

  知識點二:正多邊形

  各個角都相等,各條邊都相等的多邊形叫做_____________.

  探究多邊形的對角線條數(shù)

  知識點三:多邊形的內(nèi)角和公式推導

  1、我們知道三角形的內(nèi)角和為__________.

  2、我們還知道,正方形的四個角都等于____°,那么它的內(nèi)角和為_____°,同樣長方形的內(nèi)角和也是______°.

  3、正方形和長方形都是特殊的四邊形,其內(nèi)角和為360度,那么一般的四邊形的內(nèi)角和為多少呢?

  4、畫一個任意的四邊形,用量角器量出它的四個內(nèi)角,計算它們的和,與同伴交流你的結(jié)果.從中你得到什么結(jié)論?

  探究1:任意畫一個四邊形,量出它的4個內(nèi)角,計算它們的和.再畫幾個四邊形,?量一量、算一算.你能得出什么結(jié)論?能否利用三角形內(nèi)角和等于180?°得出這個結(jié)論?結(jié)論:。

  探究2:從上面的問題,你能想出五邊形和六邊形的內(nèi)角和各是多少嗎?觀察圖3,?請?zhí)羁眨?/p>

 。1)從五邊形的一個頂點出發(fā),可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內(nèi)角和等于180°×______.

  (2)從六邊形的一個頂點出發(fā),可以引_____條對角線,

  它們將六邊形分為_____個三角形,六邊形的內(nèi)角和等于180°×______.探究3:一般地,怎樣求n邊形的內(nèi)角和呢?請?zhí)羁眨?/p>

  從n邊形的一個頂點出發(fā),可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內(nèi)角和等于180°×______.

  綜上所述,你能得到多邊形內(nèi)角和公式嗎?設多邊形的邊數(shù)為n,則

  n邊形的內(nèi)角和等于______________.

  想一想:要得到多邊形的內(nèi)角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形.除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內(nèi)角和公式嗎?

  知識點四:多邊形的外角和

  探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少?

  問題:如果將六邊形換為n邊形(n是大于等于3的整數(shù)),結(jié)果還相同嗎?多邊形的外角和定理:.理解與運用

  例1如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系?已知:四邊形ABCD的∠A+∠C=180°.求:∠B與∠D的關(guān)系.

  自我檢測:

  (一)、判斷題.

  1.當多邊形邊數(shù)增加時,它的內(nèi)角和也隨著增加.()

  2.當多邊形邊數(shù)增加時.它的外角和也隨著增加.()

  3.三角形的外角和與一多邊形的外角和相等.()

  4.從n邊形一個頂點出發(fā),可以引出(n一2)條對角線,得到(n一2)個三角形.()

  5.四邊形的`四個內(nèi)角至少有一個角不小于直角.()

 。ǘ⑻羁疹}.

  1.一個多邊形的每一個外角都等于30°,則這個多邊形為

  2.一個多邊形的每個內(nèi)角都等于135°,則這個多邊形為

  3.內(nèi)角和等于外角和的多邊形是邊形.

  4.內(nèi)角和為1440°的多邊形是

  5.若多邊形內(nèi)角和等于外角和的3倍,則這個多邊形是邊形.

  6.五邊形的對角線有

  7.一個多邊形的內(nèi)角和為4320°,則它的邊數(shù)為

  8.多邊形每個內(nèi)角都相等,內(nèi)角和為720°,則它的每一個外角為

  9.四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠.

  10.四邊形的四個內(nèi)角中,直角最多有個,鈍角最多有銳角最

 。ㄈ┙獯痤}

  1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?

  2、在每個內(nèi)角都相等的多邊形中,若一個外角是它相鄰內(nèi)角的則這個多邊形是幾邊形?

  3、若一個多邊形的內(nèi)角和與外角和的比為7:2,求這個多邊形的邊數(shù)。

  4、一個多邊形的每一個內(nèi)角都等于其相等外角的

  5.一個多邊形少一個內(nèi)角的度數(shù)和為2300°.

 。1)求它的邊數(shù);(2)求少的那個內(nèi)角的度數(shù).

初一數(shù)學教案6

  教學目標

  1,整理前兩個學段學過的整數(shù)、分數(shù)(包括小數(shù))的知識,掌握正數(shù)和負數(shù)的概念;

  2,能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);

  3,體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。

  教學難點:正確區(qū)分兩種不同意義的量。

  知識重點:兩種相反意義的量

  教學過程:(師生活動)設計理念

  設置情境

  引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經(jīng)學過的數(shù),并由此請學生思考:生

  活中僅有這些“以前學過的數(shù)”夠用了嗎?下面的例子僅供參考.

  師:今天我們已經(jīng)是七年級的學生了,我是你們的數(shù)學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總?cè)藬?shù)的37%…

  問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學過的數(shù)的分類方法進行分類嗎?

  學生活動:思考,交流

  師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).

  問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?

  請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。

 。ㄒ部梢猿鍪練庀箢A報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

  學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。先回顧小學里學過的數(shù)的類型,歸納出我們已經(jīng)學了整數(shù)和分數(shù),然后,舉一些實際生活有相反意義的量,說明為了表示相反意義的量,我們需要引入負數(shù),這樣做強調(diào)了數(shù)學的嚴密性,但對于學生來說,更多

  地感到了數(shù)學的枯燥乏味為了既復習小學里學過的數(shù),又能激發(fā)學生的學習興

  趣,所以創(chuàng)設如下的問題情境,以盡量貼近學生的實際.

  這個問題能激發(fā)學生探究的欲望,學生自己看書學習是培養(yǎng)學生自主學習的.重要途徑,都應予以重視。

  以上的情境和實例使學生體會生活中處處有數(shù)學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。

  分析問題

  探究新知問題3:前面帶有“一”號的新數(shù)我們應怎樣命名它呢?為什么要引人負數(shù)呢?通常在日常生活中我們用正數(shù)和負數(shù)分別表示怎樣的量呢?

  這些問題都必須要求學生理解.

  教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.

  這階段主要是讓學生學會正數(shù)和負數(shù)的表示.

  強調(diào):用正,負數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量.這些問題是這節(jié)課的主要知識,教師要清楚地向?qū)W生說明,并且要注意語言的準確與規(guī)范,要舍得花時間讓學充分發(fā)表想法。

  舉一反三思維拓展經(jīng)過上面的討論交流,學生對為什么要引人負數(shù),對怎樣用正數(shù)和負數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數(shù)和負數(shù)概念的理解,并開拓思維.

  問題4:請同學們舉出用正數(shù)和負數(shù)表示的例子.

  問題5:你是怎樣理解“正整數(shù)”“負整數(shù),,’’正分數(shù)”和“負分數(shù)”的呢?請舉例說明.

  能否舉出例子是學生對知識掌握程度的體現(xiàn),也能進一步幫助學生理解引負數(shù)的必要性

  課堂練習教科書第5頁練習

  小結(jié)與作業(yè)

  課堂小結(jié)圍繞下面兩點,以師生共同交流的方式進行:

  1, 0由于實際問題中存在著相反意義的量,所以要引人負數(shù),這樣數(shù)的范圍就擴大了;

  2,正數(shù)就是以前學過的0以外的數(shù)(或在其前面加“+”),負數(shù)就是在以前學過的0以外的數(shù)前面加“-”。

  本課作業(yè)教科書第7頁習題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。

  作業(yè)可設必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學生的需要

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  密切聯(lián)系生活實際,創(chuàng)設學習情境.本課是有理數(shù)的第一節(jié)課時.引人負數(shù)是數(shù)的范圍的一次重要擴充,學生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實是一次知識的順應過程),而負數(shù)相對于以前的數(shù),對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數(shù),就必須對原有的數(shù)的結(jié)構(gòu)進行整理,引人幣的舉例就是這個目的.

  負數(shù)的產(chǎn)生主要是因為原有的數(shù)不夠用了(不能正確簡潔地表示數(shù)量),書本的例子或圖片中出現(xiàn)的負數(shù)就是讓學生去感受和體驗這一點.使學生接受生活生產(chǎn)實際中確實存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.

  這個教學設計突出了數(shù)學與實際生活的緊密聯(lián)系,使學生體會到數(shù)學的應用價值,

  體現(xiàn)了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產(chǎn)中常見的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。

初一數(shù)學教案7

  7.3.1多邊形

  [教學目標]

  1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念.

  2.區(qū)別凸多邊形與凹多邊形.

  [教學重點、難點]

  1.重點:

 。1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.

 。2)區(qū)別凸多邊形和凹多邊形.

  2.難點:

  多邊形定義的準確理解.

  [教學過程]

  一、新課講授

  投影:圖形見課本P84圖7.3一l.

  你能從投影里找出幾個由一些線段圍成的圖形嗎?

  上面三圖中讓同學邊看、邊議.

  在同學議論的基礎上,老師給以總結(jié),這些線段圍成的圖形有何特性?

  (1)它們在同一平面內(nèi).

 。2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.

  這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?

  提問:三角形的定義.

  你能仿照三角形的定義給多邊形定義嗎?

  1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形.

  如果一個多邊形由n條線段組成,那么這個多邊形叫做n邊形.(一個多邊形由幾條線段組成,就叫做幾邊形.)

  2.多邊形的邊、頂點、內(nèi)角和外角.

  多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,多邊形的邊與它的鄰邊的延長線組成的角叫做多邊形的外角.

  3.多邊形的.對角線

  連接多邊形的不相鄰的兩個頂點的線段,叫做多邊形的對角線.

  讓學生畫出五邊形的所有對角線.

  4.凸多邊形與凹多邊形

  看投影:圖形見課本P85.7.3—6.

  在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫BD所在直線,整個多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是凸多邊形.

  5.正多邊形

  由正方形的特征出發(fā),得出正多邊形的概念.

  各個角都相等,各條邊都相等的多邊形叫做正多邊形.

  二、課堂練習

  課本P86練習1.2.

  三、課堂小結(jié)

  引導學生總結(jié)本節(jié)課的相關(guān)概念.

  四、課后作業(yè)

  課本P90第1題.

  備用題:

  一、判斷題.

  1.由四條線段首尾順次相接組成的圖形叫四邊形.()

  2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()

  3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個圖形都在這直線的同一側(cè),叫做四邊形.()

  4.在同一平面內(nèi),四條線段首尾順次連接組成的圖形叫四邊形.()

  二、填空題.

  1.連接多邊形的線段,叫做多邊形的對角線.

  2.多邊形的任何整個多邊形都在這條直線的,這樣的多邊形叫凸多邊形.

  3.各個角,各條邊的多邊形,叫正多邊形.

  三、解答題.

  1.畫出圖(1)中的六邊形ABCDEF的所有對角線.

  2.如圖(2),O為四邊形ABCD內(nèi)一點,連接OA、OB、OC、OD可以得幾個三角形?它與邊數(shù)有何關(guān)系?

  3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個三角形?它與邊數(shù)有何關(guān)系?

  4.如圖(4),過A作六邊形ABCDEF的對角線,可以得到幾個三角形?它與邊數(shù)有何關(guān)系?

初一數(shù)學教案8

  教學目標1,整理前兩個學段學過的整數(shù)、分數(shù)(包括小數(shù))的知識,掌握正數(shù)和負數(shù)的概念;

  2,能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);

  3,體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。

  教學難點正確區(qū)分兩種不同意義的量。

  知識重點兩種相反意義的量

  教學過程(師生活動)設計理念

  設置情境

  引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經(jīng)學過的數(shù),并由此請學生思考:生

  活中僅有這些“以前學過的數(shù)”夠用了嗎?下面的例子

  僅供參考。

  師:今天我們已經(jīng)是七年級的學生了,我是你們的數(shù)學老師。下面我先向你們做一下自我介紹,我的名字是——,身高1。73米,體重58。5千克,今年40歲。我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總?cè)藬?shù)的37%…

  問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學過的數(shù)的分類方法進行分類嗎?

  學生活動:思考,交流

  師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù))。

  問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?

  請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。

 。ㄒ部梢猿鍪練庀箢A報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

  學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“—”的新數(shù)。先回顧小學里學過的數(shù)的類型,歸納出我們已經(jīng)學了整數(shù)和分數(shù),然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數(shù),這樣做強調(diào)了數(shù)學的嚴

  密性,但對于學生來說,更多

  地感到了數(shù)學的枯燥乏味為了既復習小學里學過的數(shù),又能激發(fā)學生的學習興

  趣,所以創(chuàng)設如下的問題情境,以盡量貼近學生的實際。

  這個問題能激發(fā)學生探究的欲望,學生自己看書學習是培養(yǎng)學生自主學習的重要途徑,都應予以重視。

  以上的情境和實例使學生體會生活中處處有數(shù)學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。

  分析問題

  探究新知問題3:前面帶有“一”號的新數(shù)我們應怎樣命名它呢?為什么要引人負數(shù)呢?通常在日常生活中我們用正數(shù)和負數(shù)分別表示怎樣的量呢?

  這些問題都必須要求學生理解。

  教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流。

  這階段主要是讓學生學會正數(shù)和負數(shù)的表示。

  強調(diào):用正,負數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量。這些問題是這節(jié)課的主要知識,教師要清楚地向?qū)W生說明,并且要注意語言的準確與規(guī)范,要舍得花時間讓學充分發(fā)表想法。

  舉一反三思維拓展經(jīng)過上面的討論交流,學生對為什么要引人負數(shù),對怎樣用正數(shù)和負數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數(shù)和負數(shù)概念的理解,并開拓思維。

  問題4:請同學們舉出用正數(shù)和負數(shù)表示的例子。

  問題5:你是怎樣理解“正整數(shù)”“負整數(shù),,’’正分數(shù)”和“負分數(shù)”的呢?請舉例說明。

  能否舉出例子是學生對知識掌握程度的體現(xiàn),也能進一步幫助學生理解引負數(shù)的必要性

  課堂練習教科書第5頁練習

  小結(jié)與作業(yè)

  課堂小結(jié)圍繞下面兩點,以師生共同交流的方式進行:

  1,0由于實際問題中存在著相反意義的量,所以要引人負數(shù),這樣數(shù)的范圍就擴大了;

  2,正數(shù)就是以前學過的0以外的數(shù)(或在其前面加“+”),負數(shù)就是在以前學過的0以外的數(shù)前面加“—”。

  本課作業(yè)教科書第7頁習題1。1第1,2,4,5(第3題作為下節(jié)課的思考題。

  作業(yè)可設必做題和選做題,體現(xiàn)要求的層次性,以滿足不同學生的需要

  本課教育評注(課堂設計理念,實際教學效果及改進設想)

  密切聯(lián)系生活實際,創(chuàng)設學習情境。本課是有理數(shù)的第一節(jié)課時。引人負數(shù)是數(shù)的范圍的.一次重要擴充,學生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實是一次知識的順應過程),而負數(shù)相對于以前的數(shù),對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的為了接受這個新的數(shù),就必須對原有的數(shù)的結(jié)構(gòu)進行整理,引人幣的舉例就是這個目的

  負數(shù)的產(chǎn)生主要是因為原有的數(shù)不夠用了(不能正確簡潔地表示數(shù)量),書本的例子

  或圖片中出現(xiàn)的負數(shù)就是讓學生去感受和體驗這一點。使學生接受生活生產(chǎn)實際中確實

  存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例

  子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了。

  這個教學設計突出了數(shù)學與實際生活的緊密聯(lián)系,使學生體會到數(shù)學的應用價值,

  體現(xiàn)了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產(chǎn)中常見

  的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。

初一數(shù)學教案9

  一、教學目標

 。ㄒ唬┲R教學點

  1.了解;方程算術(shù)解法與代數(shù)解法的區(qū)別。

  2.掌握:代數(shù)解法解簡易方程。

 。ǘ┠芰τ柧汓c

  1.通過代數(shù)解法解簡易方程的學習使學生認識問題頭腦不僵化,培養(yǎng)其創(chuàng)造性思維的能力。

  2.通過代數(shù)法解簡易方程進一步培養(yǎng)學生運算能力和邏輯思維能力。

 。ㄈ┑掠凉B透點

  1.培養(yǎng)學生實事求是的科學態(tài)度,用發(fā)展的眼光看問題的辯證唯物主義思想。

  2.滲透化“未知”為“已知”的化歸思想。

 。ㄋ模┟烙凉B透點

  通過用新的方法解簡易方程,使學生初步領略數(shù)學中的方法美。

  二、學法引導

  1.教學方法:引導發(fā)現(xiàn)法。注意教學中民主意識和學生的主體作用的體現(xiàn)。

  2.學生學法:識記→練習反饋

  三、重點、難點、疑點及解決辦法

  1.重點:代數(shù)解法解簡易方程。

  2.難點:解方程時準確把握兩邊都加上(或減去)、乘以(或除以)同一適當?shù)腵數(shù)。

  3.疑點:代數(shù)解法解簡易方程的依據(jù)。

  四、課時安排

  1課時

  五、教具學具準備

  投影儀或電腦、自制膠片。

  六、師生互動活動設計

  教師創(chuàng)設情境,學生解決問題。教師介紹新的方法,學生反復練習。

  七、教學步驟

 。ㄒ唬﹦(chuàng)設情境,復習導入

  (出示投影1)

  引例:班上有37名同學,分成人數(shù)相等的兩隊進行拔河比賽,恰好余3人當裁判員,每個隊有多少人?

  師:該問題如何解決呢?請同學們考慮好后寫在練習本上.

  學生活動:解答問題,一個學生板演.

  師生共同訂正,對照板演學生的做法,師問:有無不同解法?

  學生活動:回答問題,一個學生板演,其他學生比較兩種解法.

  問;這兩種解法有什么不同呢?

  學生活動:積極思索,回答問題.(一是列算式的解法,二是列方程的解法).

  師:很好.為了敘述問題方便,我們分別把這兩種解法叫做算術(shù)解法和代數(shù)解法.小學學過的應用題可用算術(shù)方法也可用代數(shù)方法解.有時算術(shù)方法簡便,有時代數(shù)方法簡便,但是隨著學習的逐步展開,遇到的問題越來越復雜,使用代數(shù)解法的優(yōu)越性將會體現(xiàn)的越來越充分,因此,在初中代數(shù)課上,將把方程的知識作為一個重要的內(nèi)容來學習.當然,在開始學習方程時,還是要從簡單的方程入手,即簡易方程.引出課題.

  [板書]1.5簡易方程

 。ǘ┨剿餍轮,講授新課

  師:談到方程,同學們并不陌生,你能說明什么叫方程嗎?

  學生活動:踴躍舉手,回答問題。

  [板書] 含有未知數(shù)的等式叫方程

  接問:你還知道關(guān)于方程的其他概念嗎?

  學生活動:積極思考并回答。

  [板書] 方程的解;解方程

  追問:能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說明.學生活動:互相討論后回答.(使方程左右兩邊相等的未知數(shù)的值叫做方程的解;求方程的解的過程叫解方程,

  師:好!這是小學學的解方程的方法。在初中代數(shù)課上,我們要從另一角度來解,還以上邊這個方程為例。

  [板書]

  學生活動:相互討論達成共識(合理。因把x=5 代入方程3x+9=24 ,左邊=右邊,所以x=5是方程的解)

  【教法說明】先復習小學有關(guān)方程的幾個概念和解法,再提代數(shù)解法,形成對比,使學生認識到同一問題可從不同角度去考慮,即培養(yǎng)了發(fā)散思維。正是因為認識問題的不同側(cè)面,導致學生感到疑惑,這時讓學生自己去檢驗新方法的合理性,不但可消除疑慮,而且還有助于發(fā)展學生的創(chuàng)造能力。

  師:以前的方法只能解很簡單的方程,而后者則可以解較復雜的方程,因此更為重要。為了更好的理解和熟悉這種解法,我們共同做例1。

  (三)嘗試反饋,鞏固練習

  例1 解方程(x/2)-5=11

  問:你認為第一步方程兩邊應加上(或減去)什么數(shù)最合適?為什么?

  學生活動:思考并回答.(師板書)

  問:你認為第二步方程兩邊應乘以(或除以)什么數(shù)最合適?為什么?

  學生活動:思考并回答(師板書)

  解:方程兩邊都加上5,得

  (x/2)-5+5=11+5

  x/2=16

  (x/2)*2=16*2

  x=32

  問:這個結(jié)果正確嗎?請同學們自己檢驗.

  學生活動:練習本上檢驗并回答問題.(正確)

  師:這種新方法解方程時,第一步目的是什么?第二步目的是什么?從而確定出該加上(或減去)怎樣的數(shù),該乘以(或除以)怎樣的數(shù)更合適.

  學生活動:回答這兩個問題.

初一數(shù)學教案10

  教學目標

  1.使學生正確理解數(shù)軸的意義,掌握數(shù)軸的三要素;

  2.使學生學會由數(shù)軸上的已知點說出它所表示的數(shù),能將有理數(shù)用數(shù)軸上的點表示出來;

  3.使學生初步理解數(shù)形結(jié)合的思想方法.

  教學重點和難點

  重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù).

  難點:正確理解有理數(shù)與數(shù)軸上點的對應關(guān)系.

  課堂教學過程設計

  一、從學生原有認知結(jié)構(gòu)提出問題

  1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?

  2.用“射線”能不能表示有理數(shù)?為什么?

  3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?

  待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內(nèi)容——數(shù)軸.

  二、講授新課

  讓學生觀察掛圖——放大的'溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

  與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):

  1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

  2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

  3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

  提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  在此基礎上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸.

  進而提問學生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可.

  三、運用舉例變式練習

  例1畫一個數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點:

  例2指出數(shù)軸上A,B,C,D,E各點分別表示什么數(shù).

  課堂練習

  示出來.

  2.說出下面數(shù)軸上A,B,C,D,O,M各點表示什么數(shù)?

  最后引導學生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.

  四、小結(jié)

  指導學生閱讀教材后指出:數(shù)軸是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.

  本節(jié)課要求同學們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究.

  五、作業(yè)

  1.在下面數(shù)軸上:

  (1)分別指出表示-2,3,-4,0,1各數(shù)的點.

  (2)A,H,D,E,O各點分別表示什么數(shù)?

  2.在下面數(shù)軸上,A,B,C,D各點分別表示什么數(shù)?

  3.下列各小題先分別畫出數(shù)軸,然后在數(shù)軸上畫出表示大括號內(nèi)的一組數(shù)的點:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一數(shù)學教案11

  初一上冊數(shù)學教案,歡迎各位老師和學生參考!

  學習目標:1、理解有理數(shù)的絕對值和相反數(shù)的意義。

  2、會求已知數(shù)的相反數(shù)和絕對值。

  3、會用絕對值比較兩個負數(shù)的大小。

  4、經(jīng)歷將實際問題數(shù)學化的過程,感受數(shù)學與生活的聯(lián)系。

  學習重點:1.會用絕對值比較兩個負數(shù)的大小。

  2.會求已知數(shù)的相反數(shù)和絕對值。

  學習難點:理解有理數(shù)的絕對值和相反數(shù)的意義。

  學習過程:

  一、創(chuàng)設情境

  根據(jù)絕對值與相反數(shù)的意義填空:

  1、

  2、

  -5的'相反數(shù)是______,-10.5的相反數(shù)是______, 的相反數(shù)是______;

  3、|0|=______,0的相反數(shù)是______。

  二、探索感悟

  1、議一議

  (1)任意說出一個數(shù),說出它的絕對值、它的相反數(shù)。

  (2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關(guān)系?

  2、想一想

  (1)2與3哪個大?這兩個數(shù)的絕對值哪個大?

  (2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?

  (3)任意寫出兩個負數(shù),并說出這兩個負數(shù)哪個大?他們的絕對值哪個大?

  (4)兩個有理數(shù)的大小與這兩個數(shù)的絕對值的大小有什么關(guān)系?

  三.例題精講

  例1. 求下列各數(shù)的絕對值:

  +9,-16,-0.2,0.

  求一個數(shù)的絕對值,首先要分清這個數(shù)是正數(shù)、負數(shù)還是0,然后才能正確地寫出它的絕對值。

  議一議:(1)兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?

  (2)數(shù)軸上的點的大小是如何排列的?

  例2比較-10.12與-5.2的大小。

  例3.求6、-6、14 、-14 的絕對值。

  小節(jié)與思考:

  這節(jié)課你有何收獲?

  四.練習

  1. 填空:

  ⑴ 的符號是 ,絕對值是 ;

  ⑵10.5的符號是 ,絕對值是

 、欠柺+號,絕對值是 的數(shù)是

 、确柺-號,絕對值是9的數(shù)是 ;

 、煞柺-號,絕對值是0.37的數(shù)是 .

  2. 正式足球比賽時所用足球的質(zhì)量有嚴格的規(guī)定,下表是6個足球的質(zhì)量檢測結(jié)果(用正數(shù)記超過規(guī)定質(zhì)量的克數(shù),用負數(shù)記不足規(guī)定質(zhì)量的克數(shù)).

  請指出哪個足球質(zhì)量最好,為什么?

  第1個第2個第3個第4個第5個第6個

  -25-10+20+30+15-40

  3.比較下面有理數(shù)的大小

  (1)-0.7與-1.7 (2) (3) (4)-5與0

  五、布置作業(yè):

  P25 習題2.3 5

  家庭作業(yè):《評價手冊》 《補充習題》

  六、學后記/教后記

  這篇初一上冊數(shù)學教案就為大家分享到這里了。希望對大家有所幫助!

初一數(shù)學教案12

  一、教學目標

  1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關(guān)內(nèi)容的認識,積累數(shù)學活動經(jīng)驗。

  2.能用適當?shù)膱D形和語言表示自己的思考結(jié)果。

  二、教學重點和難點

  本堂內(nèi)容的重點是七巧板的制作和拼擺,難點是拼圖所要表現(xiàn)的幾何圖形,對已學過的平行,垂直及角等有關(guān)內(nèi)容的有機聯(lián)系和語言表達。

  三、教學手段

  引導活動討論

  引導:意在教師講解七巧板的歷史,七巧板制作的方法。

  活動:人人參與制作七巧板,拼擺七巧板的圖案。

  討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。

  四、教學方法

  啟發(fā)式教學

  五、教學過程

  1 創(chuàng)設情景,引入新課

  先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。

  2 合作交流,探索新知

  利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。

  (1) 你的拼圖用了什么形狀的.板?你想表現(xiàn)什么?

  (2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關(guān)系表示出來。

  (3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。

  通過學生的展示,教師作適時的評價,樹立榜樣,培養(yǎng)學生之間的競爭意識。

  3 范例教學

  介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發(fā)學生的創(chuàng)造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發(fā)揮學生的創(chuàng)造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。

  4 反饋練習

  由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現(xiàn)的內(nèi)容,與所學的知識的聯(lián)系,呈現(xiàn)平行,垂直及角的有關(guān)知識。

  5 歸納小結(jié)

  通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關(guān)內(nèi)容的認識,積累數(shù)學活動的經(jīng)驗,提高了空間觀念和觀察、分析、概括表達的能力。

  六、練習設計

  利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環(huán)境。

  七、板書設計

  4.7有趣的七巧板

  (一)知識回顧 (三)例題解析 (五)課堂小結(jié)

  (二)觀察發(fā)現(xiàn) (四)課堂練習 練習設計

初一數(shù)學教案13

  學習目標:

  理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。

  學習重點:

  多項式乘法法則及其應用。

  學習難點:

  理解運算法則及其探索過程。

  一、課前訓練:

  (1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

  (3)3a2b2 ab3 = , (4) = ;

  (5)- = ,(6) = 。

  二、探索練習:

  (1)如圖1大長方形,其面積用四個小長方形面積

  表示為: ;

  (2)大長方形的長為 ,寬為 ,要

  計算其面積就是 ,其中包含的

  運算為 。

  由上面的問題可發(fā)現(xiàn):( )( )=

  多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的積 。

  三.運用法則規(guī)范解題。

  四.鞏固練習:

  3.計算:① ,

  4.計算:

  五.提高拓展練習:

  5.若 求m,n的值.

  6.已知 的結(jié)果中不含 項和 項,求m,n的值.

  7.計算(a+b+c)(c+d+e),你有什么發(fā)現(xiàn)?

  六.晚間訓練:

  (7) 2a2(-a)4 + 2a45a2 (8)

  3、(1)觀察:4×6=24

  14×16=224

  24×26=624

  34×36=1224

  你發(fā)現(xiàn)其中的規(guī)律嗎?你能用代數(shù)式表示這一規(guī)律嗎?

  (2)利用(1)中的`規(guī)律計算124×126。

  4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。

  (1)設AP= ,求兩個正方形的面積之和S;

  (2)當AP分別 時,比較S的大小。

初一數(shù)學教案14

  教學目的

  讓學生通過獨立思考,積極探索,從而發(fā)現(xiàn);初步體會數(shù)形結(jié)合思想的作用。

  重點、難點

  1.重點:通過分析圖形問題中的數(shù)量關(guān)系,建立方程解決問題。

  2.難點:找出“等量關(guān)系”列出方程。

  教學過程

  一、復習提問

  1.列一元一次方程解應用題的步驟是什么?

  2.長方形的周長公式、面積公式。

  二、新授

  問題3.用一根長60厘米的鐵絲圍成一個長方形。

  (1)使長方形的寬是長的專,求這個長方形的長和寬。

  (2)使長方形的寬比長少4厘米,求這個長方形的面積。

  (3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?

  不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關(guān)系,再根據(jù)這個等量關(guān)系,確定如何設未知數(shù)。

  (3)當長方形的長為18厘米,寬為12厘米時

  長方形的面積=18×12=216(平方厘米)

  當長方形的長為17厘米,寬為13厘米時

  長方形的面積=221(平方厘米)

  ∴(1)中的長方形面積比(2)中的長方形面積小。

  問:(1)、(2)中的長方形的長、寬是怎樣變化的'?你發(fā)現(xiàn)了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗證。

  實際上,如果兩個正數(shù)的和不變,當這兩個數(shù)相等時,它們的積,通過以后的學習,我們就會知道其中的道理。

  三、鞏固練習

  教科書第14頁練習1、2。

  第l題等量關(guān)系是:圓柱的體積=長方體的體積。

  第2題等量關(guān)系是:玻璃杯中的水的體積十瓶內(nèi)剩下的水的體積=原來整瓶水的體積。

  四、小結(jié)

  運用方程解決問題的關(guān)鍵是抓住等量關(guān)系,有些等量關(guān)系是隱藏的,不明顯,要聯(lián)系實際,積極探索,找出等量關(guān)系。

  五、作業(yè)

  教科書第16頁,習題6.3.1第1、2、3。

初一數(shù)學教案15

  一、教學內(nèi)容:

  人教版教材五年級上冊第五單元多邊形的面積整理與復習

  二、教學目標:

  1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關(guān)平面圖形面積的實際問題。

  2、使學生感受數(shù)學方法和思想的重要性及其應用的'廣泛性。體會數(shù)學的價值,培養(yǎng)對數(shù)學學習的熱愛

  三、教學重、難點

  重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關(guān)平面圖形面積的實際問題。

  難點:引導學生整理多邊形面積的推導過程,掌握轉(zhuǎn)化的數(shù)學思想方法,建構(gòu)知識網(wǎng)絡。

  四、教學準備:多媒體課件,多邊形紙模

  五、教學步驟與過程

  (一)導入復習

  師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)

  師:這節(jié)課我們就來重點整理和復習有關(guān)這些多邊形的面積的知識。

  板書課題:多邊形面積計算復習課

  (二)回顧整理,建構(gòu)網(wǎng)絡

  1.復習平行四邊形、三角形、梯形面積公式的推導過程。

  ⑴請大家回憶一下:平行四邊形、三角形、梯形面積的計算公式是怎樣經(jīng)過平移、旋轉(zhuǎn)等方法轉(zhuǎn)化成我們已經(jīng)學過的圖形,從而推導出它們的面積計算公式的。

 、聘鶕(jù)學生的回答,出示每個公式的推導過程。

  六、課堂練習

  學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關(guān)系嗎?

  七,作業(yè)布置:練習十九

  板書設計

  S=ah÷2

  S=abS=ah

  S=(a+b)h÷2