熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網>教案大全>數(shù)學教案>高二數(shù)學教案>高二數(shù)學優(yōu)秀教案

高二數(shù)學優(yōu)秀教案

時間:2022-11-19 15:08:46 高二數(shù)學教案 我要投稿
  • 相關推薦

高二數(shù)學優(yōu)秀教案13篇

  作為一名為他人授業(yè)解惑的教育工作者,通常需要用到教案來輔助教學,借助教案可以有效提升自己的教學能力。教案應該怎么寫才好呢?下面是小編精心整理的高二數(shù)學優(yōu)秀教案,希望能夠幫助到大家。

高二數(shù)學優(yōu)秀教案13篇

高二數(shù)學優(yōu)秀教案1

  1.預習教材,問題導入

  根據(jù)以下提綱,預習教材P54~P57,回答下列問題。

  (1)在教材P55的“探究”中,怎樣獲得樣本?

  提示:將這批小包裝餅干放入一個不透明的袋子中,攪拌均勻,然后不放回地摸取。

  (2)最常用的簡單隨機抽樣方法有哪些?

  提示:抽簽法和隨機數(shù)法。

  (3)你認為抽簽法有什么優(yōu)點和缺點?

  提示:抽簽法的優(yōu)點是簡單易行,當總體中個體數(shù)不多時較為方便,缺點是當總體中個體數(shù)較多時不宜采用。

  (4)用隨機數(shù)法讀數(shù)時可沿哪個方向讀取?

  提示:可以沿向左、向右、向上、向下等方向讀數(shù)。

  2.歸納總結,核心必記

  (1)簡單隨機抽樣:一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

  (2)最常用的簡單隨機抽樣方法有兩種——抽簽法和隨機數(shù)法。

  (3)一般地,抽簽法就是把總體中的N個個體分段,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。

  (4)隨機數(shù)法就是利用隨機數(shù)表、隨機數(shù)骰子或計算機產生的隨機數(shù)進行抽樣。

  (5)簡單隨機抽樣有操作簡便易行的優(yōu)點,在總體個數(shù)不多的情況下是行之有效的。

  [問題思考]

  (1)在簡單隨機抽樣中,某一個個體被抽到的可能性與第幾次被抽到有關嗎?

  提示:在簡單隨機抽樣中,總體中的每個個體在每次抽取時被抽到的'可能性相同,與第幾次被抽到無關。

  (2)抽簽法與隨機數(shù)法有什么異同點?

  提示:

  相同點

  ①都屬于簡單隨機抽樣,并且要求被抽取樣本的總體的個體數(shù)有限;

 、诙际菑目傮w中逐個不放回地進行抽取

  不同點

  ①抽簽法比隨機數(shù)法操作簡單;

 、陔S機數(shù)法更適用于總體中個體數(shù)較多的時候,而抽簽法適用于總體中個體數(shù)較少的情況,所以當總體中的個體數(shù)較多時,應當選用隨機數(shù)法,可以節(jié)約大量的人力和制作號簽的成本

高二數(shù)學優(yōu)秀教案2

  一、學情分析

  本節(jié)課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發(fā)展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節(jié)課的鞏固性復習。而本節(jié)課學生會遇到的困難有:數(shù)軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。

  二、考綱要求

  1.會用坐標表示平面向量的加法、減法與數(shù)乘運算.

  2.理解用坐標表示的平面向量共線的條件.

  3.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.

  4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.

  三、教學過程

  (一)知識梳理:

  1.向量坐標的求法

  (1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.

  (2)設A(x1,y1),B(x2,y2),則

  =xxxxxxxxxxxxxxxx_

  ||=xxxxxxxxxxxxxx_

  (二)平面向量坐標運算

  1.向量加法、減法、數(shù)乘向量

  設=(x1,y1),=(x2,y2),則

  +=-=λ=.

  2.向量平行的坐標表示

  設=(x1,y1),=(x2,y2),則∥?xxxxxxxxxxxxxxxx.

  (三)核心考點·習題演練

  考點1.平面向量的坐標運算

  例1.已知A(-2,4),B(3,-1),C(-3,-4).設(1)求3+-3;

  (2)求滿足=m+n的實數(shù)m,n;

  練:(20xx江蘇,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

  (m,n∈R),則m-n的值為

  考點2平面向量共線的坐標表示

  例2:平面內給定三個向量=(3,2),=(-1,2),=(4,1)

  若(+k)∥(2-),求實數(shù)k的值;

  練:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ為實數(shù),(+λ)∥,則λ=(  )

  思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

  方法總結:

  1.向量共線的兩種表示形式

  設a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應視題目的具體條件而定,一般情況涉及坐標的應用②.

  2.兩向量共線的充要條件的作用

  判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.

  考點3平面向量數(shù)量積的坐標運算

  例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,

  則的值為;的值為.

  【提示】解決涉及幾何圖形的`向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.

  練:(20xx,安徽,13)設=(1,2),=(1,1),=+k.若⊥,則實數(shù)k的值等于(  )

  【思考】兩非零向量⊥的充要條件:·=0?     .

  解題心得:

  (1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.

  (2)解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.

  (3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.

  考點4:平面向量模的坐標表示

  例4:(20xx湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則的值為(  )

  A.6B.7C.8D.9

  練:(20xx,上海,12)

  在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則的取值范圍是?

  解題心得:

  求向量的模的方法:

  (1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉化為數(shù)量積運算;

  (2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..

  五、課后作業(yè)(課后習題1、2題)

高二數(shù)學優(yōu)秀教案3

  教學目的:

  1.掌握常用基本不等式,并能用之證明不等式和求最值;

  2.掌握含絕對值的不等式的性質;

  3.會解簡單的高次不等式、分式不等式、含絕對值的不等式、簡單的無理不等式、指數(shù)不等式和對數(shù)不等式.學會運用數(shù)形結合、分類討論、等價轉換的思想方法分析和解決有關

  教學過程:

  一、復習引入:本章知識點

  二、講解范例:幾類常見的問題

  (一) 含參數(shù)的不等式的解法

  例1解關于x的不等式 .

  例2解關于x的不等式 .

  例3解關于x的不等式 .

  例4解關于x的不等式

  例5 滿足 的x的集合為A;滿足 的x

  的集合為B 1 若AB 求a的取值范圍 2 若AB 求a的取值范圍 3 若AB為僅含一個元素的集合,求a的值.

  (二)函數(shù)的最值與值域

  例6 求函數(shù) 的最大值,下列解法是否正確?為什么?

  解一: ,

  解二: 當 即 時,

  例7 若 ,求 的最值。

  例8 已知x , y為正實數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.

  例9 設 且 ,求 的最大值

  例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。

  三、作業(yè):

  1.

  2. , 若 ,求a的取值范圍

  3.

  4.

  5.當a在什么范圍內方程: 有兩個不同的負根

  6.若方程 的兩根都對于2,求實數(shù)m的范圍

  7.求下列函數(shù)的'最值:

  1

  2

  8.1 時求 的最小值, 的最小值

  2設 ,求 的最大值

  3若 , 求 的最大值

  4若 且 ,求 的最小值

  9.若 ,求證: 的最小值為3

  10.制作一個容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和

  高各取多少時,用料最省?(不計加工時的損耗及接縫用料)

高二數(shù)學優(yōu)秀教案4

  1、向量的數(shù)乘運算

  (1)定義:規(guī)定實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作:λa,它的長度和方向規(guī)定如下:

 、質λa|=|λ||a|;

 、诋敠>0時,λa的方向與a的方向相同;

  當λ<0時,λa的方向與a的方向相反。

  (2)運算律:設λ,μ為任意實數(shù),則有:

 、佴耍é蘟)=(λμ)a;

 、冢é+μ)a=λa+μa;

  ③λ(a+b)=λa+λb;

  特別地,有(—λ)a=—(λa)=λ(—a);

  λ(a—b)=λa—λb。

  [點睛](1)實數(shù)與向量可以進行數(shù)乘運算,但不能進行加減運算,如λ+a,λ—a均無法運算。

 。2)λa的結果為向量,所以當λ=0時,得到的結果為0而不是0。

  2、向量共線的條件

  向量a(a≠0)與b共線,當且僅當有一個實數(shù)λ,使b=λa。

  [點睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時,雖有a與b共線,但不存在實數(shù)λ使b=λa成立;若a=b=0,a與b顯然共線,但實數(shù)λ不,任一實數(shù)λ都能使b=λa成立。

 。2)a是非零向量,b可以是0,這時0=λa,所以有λ=0,如果b不是0,那么λ是不為零的`實數(shù)。

  3、向量的線性運算

  向量的加、減、數(shù)乘運算統(tǒng)稱為向量的線性運算。對于任意向量a,b及任意實數(shù)λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。

  [小試身手]

  1、判斷下列命題是否正確。(正確的打“√”,錯誤的打“×”)

 。1)λa的方向與a的方向一致。()

  (2)共線向量定理中,條件a≠0可以去掉。()

 。3)對于任意實數(shù)m和向量a,b,若ma=mb,則a=b。()

  答案:(1)×(2)×(3)×

  2、若|a|=1,|b|=2,且a與b方向相同,則下列關系式正確的是()

  A、b=2aB、b=—2a

  C、a=2bD、a=—2b

  答案:A

  3、在四邊形ABCD中,若=—12,則此四邊形是()

  A、平行四邊形B、菱形

  C、梯形D、矩形

  答案:C

  4、化簡:2(3a+4b)—7a=XXXXXX。

  答案:—a+8b

  向量的線性運算

  [例1]化簡下列各式:

  (1)3(6a+b)—9a+13b;

 。2)12?3a+2b?—a+12b—212a+38b;

 。3)2(5a—4b+c)—3(a—3b+c)—7a。

  [解](1)原式=18a+3b—9a—3b=9a。

 。2)原式=122a+32b—a—34b=a+34b—a—34b=0。

  (3)原式=10a—8b+2c—3a+9b—3c—7a=b—c。

  向量線性運算的方法

  向量的線性運算類似于代數(shù)多項式的運算,共線向量可以合并,即“合并同類項”“提取公因式”,這里的“同類項”“公因式”指的是向量。

高二數(shù)學優(yōu)秀教案5

  教學目標

 。、知識與技能:理解命題的概念和命題的構成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;

 。、過程與方法:多讓學生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;

  3、情感、態(tài)度與價值觀:通過學生的參與,激發(fā)學生學習數(shù)學的興趣。

  教學重點與難點

  重點:命題的概念、命題的構成

  難點:分清命題的條件、結論和判斷命題的真假

  教學過程

  一、復習回顧

  引入:初中已學過命題的知識,請同學們回顧:什么叫做命題?

  二、新課教學

  下列語句的表述形式有什么特點?你能判斷他們的真假嗎?

 。1)若直線a∥b,則直線a與直線b沒有公共點.

 。2)2+4=7.

 。3)垂直于同一條直線的兩個平面平行.

 。4)若x2=1,則x=1.

 。5)兩個全等三角形的面積相等.

 。6)3能被2整除.

  討論、判斷:學生通過討論,總結:所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。

  教師的引導分析:所謂判斷,就是肯定一個事物是什么或不是什么,不能含混不清。

  抽象、歸納:

  1、命題定義:一般地,我們把用語言、符號或式子表達的,可以判斷真假的陳述句叫做命題.

  命題的定義的要點:能判斷真假的陳述句.

  在數(shù)學課中,只研究數(shù)學命題,請學生舉幾個數(shù)學命題的例子.教師再與學生共同從命題的定義,判斷學生所舉例子是否是命題,從“判斷”的角度來加深對命題這一概念的理解.

  例1:判斷下列語句是否為命題?

 。1)空集是任何集合的子集.

 。2)若整數(shù)a是素數(shù),則是a奇數(shù).

 。3)指數(shù)函數(shù)是增函數(shù)嗎?

 。4)若平面上兩條直線不相交,則這兩條直線平行.

  (5)=-2.

 。6)x>15.

  讓學生思考、辨析、討論解決,且通過練習,引導學生總結:判斷一個語句是不是命題,關鍵看兩點:第一是“陳述句”,第二是“可以判斷真假”,這兩個條件缺一不可.疑問句、祈使句、感嘆句均不是命題.

  解略。

  引申:以前,同學們學習了很多定理、推論,這些定理、推論是否是命題?同學們可否舉出一些定理、推論的例子來看看?

  通過對此問的思考,學生將清晰地認識到定理、推論都是命題.

  過渡:同學們都知道,一個定理或推論都是由條件和結論兩部分構成(結合學生所舉定理和推論的例子,讓學生分辨定理和推論條件和結論,明確所有的'定理、推論都是由條件和結論兩部分構成)。緊接著提出問題:命題是否也是由條件和結論兩部分構成呢?

  2、命題的構成――條件和結論

  定義:從構成來看,所有的命題都具由條件和結論兩部分構成.在數(shù)學中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結論.

  例2:指出下列命題中的條件p和結論q,并判斷各命題的真假.

 。ǎ保┤粽麛(shù)a能被2整除,則a是偶數(shù).

 。ǎ玻┤羲倪呅惺橇庑,則它的對角線互相垂直平分.

 。ǎ常┤鬭>0,b>0,則a+b>0.

 。ǎ矗┤鬭>0,b>0,則a+b<0.

 。ǎ担┐怪庇谕粭l直線的兩個平面平行.

  此題中的(1)(2)(3)(4),較容易,估計學生較容易找出命題中的條件p和結論q,并能判斷命題的真假。其中設置命題(3)與(4)的目的在于:通過這兩個例子的比較,學更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結果是對的還是錯的。

  此例中的命題(5),不是“若P,則q”的形式,估計學生會有困難,此時,教師引導學生一起分析:已知的事項為“條件”,由已知推出的事項為“結論”.

  解略。

  過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結論是正確的,而有些命題的結論是錯誤的,那么我們就有了對命題的一種分類:真命題和假命題.

  3、命題的分類

  真命題:如果由命題的條件P通過推理一定可以得出命題的結論q,那么這樣的命題叫做真命題.

  假命題:如果由命題的條件P通過推理不一定可以得出命題的結論q,那么這樣的命題叫做假命題.

  強調:

 。ǎ保┳⒁饷}與假命題的區(qū)別.如:“作直線AB”.這本身不是命題.也更不是假命題.

 。ǎ玻┟}是一個判斷,判斷的結果就有對錯之分.因此就要引入真命題、假命題的的概念,強調真假命題的大前提,首先是命題。

  判斷一個數(shù)學命題的真假方法:

  (1)數(shù)學中判定一個命題是真命題,要經過證明.

  (2)要判斷一個命題是假命題,只需舉一個反例即可.

  例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:

 。1)面積相等的兩個三角形全等。

 。2)負數(shù)的立方是負數(shù)。

 。3)對頂角相等。

  分析:要把一個命題寫成“若P,則q”的形式,關鍵是要分清命題的條件和結論,然后寫成“若條件,則結論”即“若P,則q”的形式.解略。

  三、鞏固練習:

  P4第2,3。

  四、作業(yè):

  P8:習題1.1A組~第1題

  五、教學反思

  師生共同回憶本節(jié)的學習內容.

  1、什么叫命題?真命題?假命題?

  2、命題是由哪兩部分構成的?

  3、怎樣將命題寫成“若P,則q”的形式.

  4、如何判斷真假命題.

高二數(shù)學優(yōu)秀教案6

  一、教學目標

  1、知識與技能

  (1)理解流程圖的順序結構和選擇結構。

 。2)能用文字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖

  2、過程與方法

  學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。

  3情感、態(tài)度與價值觀

  學生通過動手作圖,。用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想程序化思想,在歸納概括中培養(yǎng)學生的邏輯思維能力。

  二、教學重點、難點

  重點:算法的順序結構與選擇結構。

  難點:用含有選擇結構的流程圖表示算法。

  三、學法與教學用具

  學法:學生通過動手作圖,。用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。

  教學用具:尺規(guī)作圖工具,多媒體。

  四、教學思路

 。ㄒ唬栴}引入 揭示課題

  例1 尺規(guī)作圖,確定線段的一個5等分點。

  要求:同桌一人作圖,一人寫算法,并請學生說出答案。

  提問:用文字語言寫出算法有何感受?

  引導學生體驗到:顯得冗長,不方便、不簡潔。

  教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。

  本節(jié)要學習的'是順序結構與選擇結構。

  右圖即是同流程圖表示的算法。

 。ǘ、觀察類比 理解課題

  1、 投影介紹流程圖的符號、名稱及功能說明。

  符號 符號名稱 功能說明終端框 算法開始與結束處理框 算法的各種處理操作判斷框 算法的各種轉移

  輸入輸出框 輸入輸出操作指向線 指向另一操作

  2、講授順序結構及選擇結構的概念及流程圖

  (1)順序結構

  依照步驟依次執(zhí)行的一個算法

  流程圖:

 。2)選擇結構

  對條件進行判斷來決定后面的步驟的結構

  流程圖:

  3、用自然語言表示算法與用流程圖表示算法的比較

 。1)半徑為r的圓的面積公式 當r=10時寫出計算圓的面積的算法,并畫出流程圖。

  解:

  算法(自然語言)

  ①把10賦與r

 、谟霉 求s

 、圯敵鰏

  流程圖

 。2) 已知函數(shù) 對于每輸入一個X值都得到相應的函數(shù)值,寫出算法并畫流程圖。

  算法:(語言表示)

 、 輸入X值

  ②判斷X的范圍,若 ,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2-x求函數(shù)值

 、圯敵鯵的值

  流程圖

  小結:含有數(shù)學中需要分類討論的或與分段函數(shù)有關的問題,均要用到選擇結構。

  學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)

  (三)模仿操作 經歷課題

  1、用流程圖表示確定線段A.B的一個16等分點

  2、分析講解例2;

  分析:

  思考:有多少個選擇結構?相應的流程圖應如何表示?

  流程圖:

 。ㄋ模w納小結 鞏固課題

  1、順序結構和選擇結構的模式是怎樣的?

  2、怎樣用流程圖表示算法。

 。ㄎ澹┚毩昉99 2

 。┳鳂I(yè)P99 1

高二數(shù)學優(yōu)秀教案7

  【教材分析】

  1.知識內容與結構分析

  集合論是現(xiàn)代數(shù)學的一個重要的基礎。在高中數(shù)學中,集合的初步知識與其他內容有著密切的聯(lián)系,是學習、掌握和使用數(shù)學語言的基礎,集合論以及它所反映的數(shù)學思想在越來越廣泛的領域中得到應用。課本從學生熟悉的集合(自然數(shù)集合、有理數(shù)的集合等)出發(fā),結合實例給出了元素、集合的含義,學生通過對具體實例的抽象、概括發(fā)展了邏輯思維能力。

  2.知識學習意義分析

  通過自主探究的學習過程,了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言描述不同的具體問題,感受集合語言的意義和作用。

  3.教學建議與學法指導

  由于本節(jié)新概念、新符號較多,雖然內容較為淺顯,但不應講得過快,應在講解概念的同時,讓學生多閱讀課本,互相交流,在此基礎上理解概念并熟悉新符號的使用。通過問題探究、自主探索、合作交流、自我總結等形式,調動學生的積極性。

  【學情分析】

  在初中,學生學習過一些點的集合或軌跡,如:平面內到一個定點的距離等于定長的點的集合(圓);到一條線段的兩個端點的距離相等的點的集合(線段的垂直平分線)。這對學生學習本節(jié)課的知識有一定的幫助,只不過現(xiàn)在我們要把這個“集合”推廣,它不僅僅是點的集合或圖形的集合,而是“指定的某些對象的全體”。集合語言是現(xiàn)代數(shù)學的基本語言,使用這種語言,不僅有助于簡潔、準確地表達數(shù)學內容,還可以用來刻畫和解決生活中的許多問題。學習集合,可以發(fā)展同學們用數(shù)學語言進行交流的能力。

  【教學目標】

  1.知識與技能

  (1)學生通過自主學習,初步理解集合的概念,理解元素與集合間的關系,了解集合元素的'確定性、互異性,無序性,知道常用數(shù)集及其記法;

  (2)掌握集合的常用表示法——列舉法和描述法。

  2.過程與方法

  通過實例了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉換和抽象概括能力,樹立用集合語言表示數(shù)學內容的意識。

  3.情態(tài)與價值

  在掌握基本概念的基礎上,能夠解決相關問題,獲得數(shù)學學習的成就感,提高學生分析問題和解決問題的能力,培養(yǎng)學生的應用意識。

  【重點難點】

  1.教學重點:集合的基本概念與表示方法。

  2.教學難點:選擇合適的方法正確表示集合。

  【教學思路】

  通過實例以及學生熟悉的數(shù)集,引入集合的概念,進而給出集合的表示方法,學生通過自我體會、自主學習、自我總結達到掌握本節(jié)課內容的目的。教學過程按照“提出問題——學生討論——歸納總結——獲得新知——自我檢測”環(huán)節(jié)安排。

  【教學過程】

  課前準備:

  提前留給學生預習方案:a.預習初中數(shù)學中有關集合的章節(jié);b.預習本節(jié)內容,試著找出與以往的聯(lián)系;c.搜集生活中的集合的使用實例。

  導入新課:同學們,我們今天要學習的是集合的知識,在小學和初中,我們已經接觸過了一些集合,例如,自然數(shù)的集合,有理數(shù)的集合,不等式x-7<3的解得集合,到一個頂點的距離等于定長的點的集合(即圓),等等,F(xiàn)在呢,我要說的是:我們大家通過對初中知識的預習和對本節(jié)課的預習我相信你們能夠很大一部分已經掌握了本節(jié)知識的主要問題,對不對?(同學們會高興地說:對!)

  下面我們分三個小組,做個游戲,好不好?我們互相競賽答題,互相評論優(yōu)點與不足,好不好?(同學們在被調動起情緒的時候應該說:好!)

  教與學的過程:

  預設問題設計意圖師生活動教師活動

  一組二組三組活動同學們,通過看課本2頁的(1)至(8)個例子,同學們有什么啟發(fā)嗎?提出一個模糊一點的問題,留給三組學生更寬的思考空間。啟發(fā)思考,激發(fā)興趣。教師點撥,及時糾正偏差的回答方向。(理想答案:我們學過很多集合的知識了。我們會舉出一些集合的例子。)

  學生三個組分組輪流回答。你能說出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養(yǎng)學生的總結概括能力。引導學生共同得出正確的結論。最后給出準確的定義:我們把研究的對象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡稱集)。學生討論,分組輪流回答。你們能說出元素與集合是什么關系嗎?怎么表示呀?用什么額符號表示?通過學生自己總結,對元素與集合的關系記憶更深刻。教師指導學生得出準確答案。(理想答案:集合是整體,元素是個體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a.如果a是集合A的元素,就說a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說a不屬于集合A,記做A)學生討論,分組輪流回答。

  可以互相挑出對方回答問題的錯誤來比賽。我們描述集合常用哪些方法呢?怎么表示?引導學生認識集合的兩種常見表示方法。教師引導指正。(理想答案:列舉法:把集合的元素一一列舉出來,并用花括號“{}”括起來表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內線寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。同學們上黑板邊回答邊演練。誰能試著說說集合中的元素有什么特點。客卣怪R,讓學生對元素的特征有極愛哦理性的認識,并開發(fā)其探究思維。教師點撥。(理想答案:元素一旦給出是確定的,確定性,沒有相同的,互異性,是沒有順序的,無序性。

  即(1)確定性:對于任意一個元素,要么它屬于某個指定集合,要么它不屬于該集合,二者必居其一。

  (2)互異性:同一個集合中的元素是互不相同的。

  (3)無序性:任意改變集合中元素的排列次序,它們仍然表示同一個集合。)學生探究討論,回答。什么叫兩個集合相等呢?深刻理解集合。教師給出答案。(如果構成兩個集合的元素是一樣的,我們稱這兩個集合是相等的。)學生探討回答。

高二數(shù)學優(yōu)秀教案8

  教學要求:理解曲線交點與方程組的解的關系,掌握直線與曲線位置關系的討論,能熟練地求曲線交點。

  教學重點:熟練地求交點。

  教學過程:

  一、復習準備:

  1.直線A x+B +C =0與直線A x+B +C =0,

  平行的充要條件是 ,相交的充要條件是 ;

  重合的充要條件是 ,垂直的充要條件是 。

  2.知識回顧:充分條件、必要條件、充要條件。

  二、講授新課:

  1.教學例題:

  ①出示例:求直線=x+1截曲線= x 所得線段的中點坐標。

  ②由學生分析求解的思路→學生練→老師評講

 。(lián)立方程組→消用韋達定理求x坐標→用直線方程求坐標)

 、墼嚽蟆喺〗Y思路!冾}:求弦長

  ④出示例:當b為何值時,直線=x+b與曲線x + =4 分別 相交?相切? 相離?

 、莘治觯喝N位置關系與兩曲線的.交點情況有何關系?

  ⑥學生試求→訂正→小結思路。

 、哂懻撈渌夥?

  解二:用圓心到直線的距離求解;

  解三:用數(shù)形結合法進行分析。

 、嘤懻摚簝蓷l曲線F (x,)=0與F (x,)=0相交的充要條件是什么?

  如何判別直線Ax+B+C=0與曲線F(x,)=0的位置關系?

 。 聯(lián)立方程組后,一解時:相切或相交; 二解時:相交; 無解時:相離)

  2.練習:

  求過點(-2,- )且與拋物線= x 相切的直線方程。

  三、鞏固練習:

  1.若兩直線x+=3a,x-=a的交點在圓x + =5上,求a的值。

 。ù鸢福篴=±1)

  2.求直線=2x+3被曲線=x 截得的線段長。

  3.課堂作業(yè):書P72 3、4、10題。

高二數(shù)學優(yōu)秀教案9

  教學目的:掌握圓的標準方程,并能解決與之有關的。問題

  教學重點:圓的標準方程及有關運用

  教學難點:標準方程的靈活運用

  教學過程:

  一、導入新課,探究標準方程

  二、掌握知識,鞏固練習

  練習:⒈說出下列圓的方程

  ⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的'圓心和半徑

 、(x-2)2+(y+3)2=3

  ⑵x2+y2=2

 、莤2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的位置關系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)

  練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

  例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

  四、小結練習P771,2,3,4

  五、作業(yè)P811,2,3,4

高二數(shù)學優(yōu)秀教案10

  [核心必知]

  1.預習教材,問題導入

  根據(jù)以下提綱,預習教材P2~P5,回答下列問題.

  (1)對于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?

  提示:分五步完成:

  第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

  第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

  第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

  第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

  第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

  (2)在數(shù)學中算法通常指什么?

  提示:在數(shù)學中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.

  2.歸納總結,核心必記

  (1)算法的概念

  12世紀的算法指的是用阿拉伯數(shù)字進行算術運算的過程續(xù)表

  數(shù)學中的算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟

  現(xiàn)代算法通常可以編成計算機程序,讓計算機執(zhí)行并解決問題

  (2)設計算法的目的

  計算機解決任何問題都要依賴于算法.只有將解決問題的過程分解為若干個明確的'步驟,即算法,并用計算機能夠接受的“語言”準確地描述出來,計算機才能夠解決問題.

  [問題思考]

  (1)求解某一個問題的算法是否是的?

  提示:不是.

  (2)任何問題都可以設計算法解決嗎?

  提示:不一定.

高二數(shù)學優(yōu)秀教案11

  一、課前預習目標

  理解并掌握雙曲線的幾何性質,并能從雙曲線的標準方程出發(fā),推導出這些性質,并能具體估計雙曲線的形狀特征。

  二、預習內容

  1、雙曲線的幾何性質及初步運用。

  類比橢圓的幾何性質。

  2。雙曲線的漸近線方程的導出和論證。

  觀察以原點為中心,2a、2b長為鄰邊的矩形的兩條對角線,再論證這兩條對角線即為雙曲線的漸近線。

  三、提出疑惑

  同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中

  課內探究

  1、橢圓與雙曲線的幾何性質異同點分析

  2、描述雙曲線的漸進線的作用及特征

  3、描述雙曲線的離心率的作用及特征

  4、例、練習嘗試訓練:

  例1。求雙曲線9y2—16x2=144的實半軸長和虛半軸長、焦點坐標、離心率、漸近線方程。

  解:

  解:

  5、雙曲線的第二定義

  1)。定義(由學生歸納給出)

  2)。說明

 。ㄆ撸┬〗Y(由學生課后完成)

  將雙曲線的.幾何性質按兩種標準方程形式列表小結。

  作業(yè):

  1。已知雙曲線方程如下,求它們的兩個焦點、離心率e和漸近線方程。

  (1)16x2—9y2=144;

 。2)16x2—9y2=—144。

  2。求雙曲線的標準方程:

 。1)實軸的長是10,虛軸長是8,焦點在x軸上;

 。2)焦距是10,虛軸長是8,焦點在y軸上;

  曲線的方程。

  點到兩準線及右焦點的距離。

高二數(shù)學優(yōu)秀教案12

  教學目標

  一、知識與技能

  (1)理解并掌握弧度制的定義;(2)領會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進行角度制與弧度制的換算;(5)角的集合與實數(shù)集之間建立的一一對應關系.(6)使學生通過弧度制的學習,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關系.

  二、過程與方法

  創(chuàng)設情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領會定義的合理性.根據(jù)弧度制的定義推導并運用弧長公式和扇形面積公式.以具體的實例學習角度制與弧度制的互化,能正確使用計算器.

  三、情態(tài)與價值

  通過本節(jié)的學習,使同學們掌握另一種度量角的單位制---弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的.關系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集之間建立了一一對應關系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應;反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應,為下一節(jié)學習三角函數(shù)做好準備

  教學重難點

  重點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用.

  難點:理解弧度制定義,弧度制的運用.

  教學工具

  投影儀等

  教學過程

  一、創(chuàng)設情境,引入新課

  師:有人問:?诘饺齺営卸噙h時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)

  顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.

  在角度的度量里面,也有類似的情況,一個是角度制,我們已經不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.

  二、講解新課

  1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.

  弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.

  2.弧度制的定義

  長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).

  (師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.

  我們知道,角有正負零角之分,它的弧度數(shù)也應該有正負零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個正數(shù),負角的弧度數(shù)是一個負數(shù),零角的弧度數(shù)是0,角的正負主要由角的旋轉方向來決定.

  角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應關系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應;反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應.

  四、課堂小結

  度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學數(shù)學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應的關系。

  五、作業(yè)布置

  作業(yè):習題1.1A組第7,8,9題.

  課后小結

  度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學數(shù)學用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應的關系。

  課后習題

  作業(yè):習題1.1A組第7,8,9題.

  板書

高二數(shù)學優(yōu)秀教案13

  一、教學過程

  1、復習。

  反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關系。

  求出函數(shù)y=x3的反函數(shù)。

  2、新課。

  先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

  教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。

  生2:這是y=x3的反函數(shù)y=的圖象。

  師:對,但是怎么會得到這個圖象,請大家討論。

 。▽W生展開討論,但找不出原因。)

  師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

  (生1將他的制作過程重新重復了一次。)

  生3:問題出在他選擇的次序不對。

  師:哪個次序?

  生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

  師:是這樣嗎?我們請生1再做一次。

 。ㄟ@次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的'圖象。)

  師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

 。▽W生再次陷入思考,一會兒有學生舉手。)

  師:我們請生4來告訴大家。

  生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。

  師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的。關系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關系?

 。ǘ鄶(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)

  師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

  生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。

  師:將橫坐標與縱坐標互換?怎么換?

 。▽W生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

  師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

  (學生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)

  生6:我發(fā)現(xiàn)這兩個圖象應是關于某條直線對稱。

  師:能說說是關于哪條直線對稱嗎?

  生6:我還沒找出來。

 。ń酉聛,教師引導學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

  學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

  生7:y=x3的圖象及其反函數(shù)y=的圖象關于直線y=x對稱。

  師:這個結論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關系嗎?請同學們用其他函數(shù)來試一試。

  (學生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結論:函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。)

  還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

  教師巡視全班時已經發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

  最后教師與學生一起總結:

  點(x,y)與點(y,x)關于直線y=x對稱;

  函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。

  二、反思與點評

  1、在開學初,我就教學幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。

  2、荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

  計算機作為一種現(xiàn)代信息技術工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

  在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

  當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。

  3、在引出兩個函數(shù)圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。