高一下冊(cè)數(shù)學(xué)教案(5篇)
作為一名老師,編寫教案是必不可少的,借助教案可以有效提升自己的教學(xué)能力。那要怎么寫好教案呢?下面是小編幫大家整理的高一下冊(cè)數(shù)學(xué)教案,僅供參考,大家一起來(lái)看看吧。
高一下冊(cè)數(shù)學(xué)教案1
一、教學(xué)目標(biāo)
1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):畫出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭開課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對(duì)著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。
長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長(zhǎng)方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的.正投影圖,它們都是平面圖形。
長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)
課本P15練習(xí)1、2;P20習(xí)題1.2[A組]2。
(四)歸納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本P20習(xí)題1.2[A組]1。
高一下冊(cè)數(shù)學(xué)教案2
教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時(shí)間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;
(3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題.
3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);
4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
(二)研探新知
1、函數(shù)的有關(guān)概念
(1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
、佟皔=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
、诤瘮(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
(2)構(gòu)成函數(shù)的三要素是什么?
定義域、對(duì)應(yīng)關(guān)系和值域
(3)區(qū)間的概念
、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
、跓o(wú)窮區(qū)間;
、蹍^(qū)間的數(shù)軸表示.
(4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?
通過三個(gè)已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語(yǔ)言刻畫的定義,談?wù)勼w會(huì).
師:歸納總結(jié)
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
(1)求函數(shù)的定義域;
(2)求f(-3),f()的值;
(3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的'集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長(zhǎng)為x,且邊長(zhǎng)x為正數(shù),所以0 所以s==(40-x)x(0 引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域: (1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R. 2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合. (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合. (4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集) 一、教學(xué)目標(biāo): 掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。 二、教學(xué)重點(diǎn): 向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。 三、教學(xué)過程: (一)主要知識(shí): 1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。 (二)例題分析:略 四、小結(jié): 1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的`知識(shí)解決有關(guān)應(yīng)用問題, 2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。 一、指導(dǎo)思想: (1)隨著素質(zhì)教育的深入展開,《課程方案》提出了教育要面向世界,面向未來(lái),面向現(xiàn)代化和教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。 (2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。 (3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。 (4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。 (5)學(xué)會(huì)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問題的思維方法和操作方法。 (6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。 二、學(xué)生狀況分析 本學(xué)期擔(dān)任高一(1)班和(5)班的數(shù)學(xué)教學(xué)工作,學(xué)生共有111人,其中(1)班學(xué)生是名校直通班,學(xué)生思維活躍,(5)班是火箭班,學(xué)生基本素質(zhì)不錯(cuò),一些基本知識(shí)掌握不是很好,學(xué)習(xí)積極性需要教師提高,成績(jī)以中等為主,中上不多。兩個(gè)班中,從軍訓(xùn)一周來(lái)看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。 教材簡(jiǎn)析 使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(A版)》,教材在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。 必修1,主要涉及兩章內(nèi)容: 第一章 集合 通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡(jiǎn)潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語(yǔ)言表示數(shù)學(xué)對(duì)象,為以后的學(xué)習(xí)奠定基礎(chǔ)。 1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;新-課-標(biāo)-第-一-網(wǎng) 2.理解集合間的包含與相等關(guān)系,能識(shí)別給定集合的子集,了解全集與空集的含義; 3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集; 4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集和交集; 5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法; 6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識(shí)的過程中,培養(yǎng)學(xué)生的思維能力。 第二章 函數(shù)的概念與基本初等函數(shù)Ⅰ 教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問題入手,以問題為背景,按照問題情境數(shù)學(xué)活動(dòng)意義建構(gòu)數(shù)學(xué)理論數(shù)學(xué)應(yīng)用回顧反思的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語(yǔ)言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。 1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識(shí)表述、刻畫事物的變化規(guī)律;X|k |b| 1 . c|o |m 2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的'概念、圖象和性質(zhì);理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型; 3.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡(jiǎn)單方程的近似解;了解函數(shù)模型及其意義; 4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識(shí)與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。 必修4,主要涉及三章內(nèi)容: 第一章 三角函數(shù) 通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識(shí)三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識(shí)。 1.了解任意角的概念和弧度制; 2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式; 3.了解三角函數(shù)的周期性; 4.掌握三角函數(shù)的圖像與性質(zhì)。 第二章 平面向量 在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語(yǔ)言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力。 1.理解平面向量的概念及其表示; 2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算; 3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算; 4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。 第三章 三角恒等變換 通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動(dòng)的基礎(chǔ)上,體會(huì)向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。 1.掌握兩角和與差的余弦、正弦、正切公式; 2.掌握二倍角的正弦、余弦、正切公式 ; 3.能正確運(yùn)用三角公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明。 三、教學(xué)任務(wù) 本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。 四、教學(xué)質(zhì)量目標(biāo)新 課 標(biāo) 1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。 2.提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。 3.提高學(xué)生提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。 4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。 5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。 五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施 重點(diǎn)工作: 認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以雙基教學(xué)為主要內(nèi)容,堅(jiān)持抓兩頭、帶中間、整體推進(jìn),使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。 分層推進(jìn)措施 1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。 2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。 3、培養(yǎng)能力是數(shù)學(xué)教學(xué)的落腳點(diǎn)。能力是在獲得和運(yùn)用知識(shí)的過程中逐步培養(yǎng)起來(lái)的。在銜接教學(xué)中,首先要加強(qiáng)基本概念和基本規(guī)律的教學(xué)。 加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。 4、講清講透數(shù)學(xué)概念和規(guī)律,使學(xué)生掌握完整的基礎(chǔ)知識(shí),培養(yǎng)學(xué)生數(shù)學(xué)思維能力 ,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。 5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)接受知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。 6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。 7、加強(qiáng)學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng) 六、教學(xué)時(shí)間大致安排 集合與函數(shù)概念 13 課時(shí) 基本初等函數(shù) 15 課時(shí) 函數(shù)的應(yīng)用 8 課時(shí) 三角函數(shù) 24 課時(shí) 平面向量 14 課時(shí) 三角恒等變換 9 課時(shí) 教學(xué)目標(biāo): 1、結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性; 2、學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本; 3、并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。 教學(xué)重點(diǎn): 通過實(shí)例理解分層抽樣的方法。 教學(xué)難點(diǎn): 分層抽樣的步驟。 教學(xué)過程: 一、問題情境 1、復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。 2、實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理? 二、學(xué)生活動(dòng) 能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么? 指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性。 由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25, 所以在各年級(jí)抽取的'個(gè)體數(shù)依次是。即40,32,28。 三、建構(gòu)數(shù)學(xué) 1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。 說(shuō)明: 、俜謱映闃訒r(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的; 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。 【高一下冊(cè)數(shù)學(xué)教案】相關(guān)文章: 高一下冊(cè)數(shù)學(xué)教案通用5篇05-18 高一數(shù)學(xué)教案11-05 人教版高一數(shù)學(xué)教案06-10 高一數(shù)學(xué)教案【精】11-29高一下冊(cè)數(shù)學(xué)教案3
高一下冊(cè)數(shù)學(xué)教案4
高一下冊(cè)數(shù)學(xué)教案5