熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>七年級數(shù)學教案>七年級數(shù)學教案

七年級數(shù)學教案

時間:2024-03-12 13:37:21 王娟 七年級數(shù)學教案 我要投稿

北師大版七年級數(shù)學教案(通用14篇)

  作為一名教師,總歸要編寫教案,教案有助于順利而有效地開展教學活動。寫教案需要注意哪些格式呢?以下是小編整理的北師大版七年級數(shù)學教案,希望對大家有所幫助。

北師大版七年級數(shù)學教案(通用14篇)

  七年級數(shù)學教案 1

  教學目標

  1.使學生理解的意義;

  2.使學生掌握求一個已知數(shù)的;

  3.培養(yǎng)學生的觀察、歸納與概括的能力.

  教學重點和難點

  重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.

  難點:多重符號的化簡.

  課堂教學過程設計

  一、從學生原有的認知結構提出問題

  二、師生共同研究的定義特點

  引導學生回答:符號不同,一正一負;數(shù)字相同.

  像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與應點有什么特點?

  引導學生回答:分別在原點的兩側;到原點的距離相等.

  這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.

  3.0的是0.

  這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).

  三、運用舉例 變式練習

  例1、(1)分別寫出9與-7的;

  例1由學生完成.

  在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?

  引導學生觀察例1,自己得出結論:

  數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的

  1.當a=7時,-a=-7,7的是-7;

  2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.

  3.當a=0時,-a=-0,0的是0,因此,-0=0.

  么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的;

  例2、簡化-(+3),-(-4),+(-6),+(+5)的符號.

  能自己總結出簡化符號的規(guī)律嗎?

  括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).

  課堂練習

  1.填空:

  (1)+1.3的`是______; (2)-3的是______;

  (5)-(+4)是______的; (6)-(-7)是______的

  2.簡化下列各數(shù)的符號:

  -(+8),+(-9),-(-6),-(+7),+(+5).

  3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?

  -(-8)與+(-8);-(+8)與+(-8).

  四、小結

  指導學生閱讀教材,并總結本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.

  五、作業(yè)

  1.分別寫出下列各數(shù)的:

  2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的

  3.填空:

  -1.6是______的,______的是-0.2.

  4.化簡下列各數(shù):

  5.填空:

  (1)如果a=-13,那么-a=______;

  (2)如果a=-5.4,那么-a=______;

  (3)如果-x=-6,那么x=______;

  (4)如果-x=9,那么x=______.

  七年級數(shù)學教案 2

  教學目標:

  1.理解和掌握多項式除以單項式的運算法則。

  2.運用多項式除以單項式的法則,熟練、準確地進行計算.

  3.通過總結法則,培養(yǎng)學生的抽象概括能力.訓練學生的綜合解題能力和計算能力.

  4.培養(yǎng)學生耐心細致、嚴謹?shù)臄?shù)學思維品質(zhì).

  重點、難點:

  (1)多項式除以單項式的法則及其應用.

  (2)理解法則導出的根據(jù)。

  課時安排:

  一課時.

  教具學具:多

  媒體課件.

  教學過程:

  1.復習導入

  (1)單項式除以單項式法則是什么?

  (2)計算:

  1)–12a5b3c÷(–4a2b)=

  2)(–5a2b)2÷5a3b2 =

  3)4(a+b)7 ÷ (a+b)3 =

  4)(–3ab2c)3÷(–3ab2c)2 =

  找規(guī)律:怎樣尋找多項式除以單項式的法則?

  嘗試練習引入分析

  多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的`商相加.

  2.例題解析

  例3計算:見課本P49

  (1)嘗試練習

  (2)提問:哪個等號是用到了法則?

  (3)在計算多項式除以單項式時,要注意什么?

  注意:(1)先定商的符號;

  (2)注意把除式(?后的式子)添括號;

  要求學生說出式子每步變形的依據(jù).

  (3)讓學生養(yǎng)成檢驗的習慣,利用乘除逆運算,檢驗除的對不對.

  練習設計:

  (1)隨堂練習P50

  (2)聯(lián)系拓廣P51

  3.小結

  你在本節(jié)課學到了什么?

  (1)單項式除以單項式的法則

  (2)多項式除以單項式的法則

  正確地把多項式除以單項式問題轉化為單項式除以單項式問題。計算不可丟項,分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項;“消掉”對加減法而言,減項。

  4.作業(yè)

  P50知識技能

  七年級數(shù)學教案 3

  教學目標:

  1、知道有理數(shù)加法的意義和法則

  2、會用有理數(shù)加法法則正確地進行有理數(shù)的加法運算

  3、經(jīng)歷有理數(shù)加法法則的探究過程,體會分類和歸納的數(shù)學思想方法

  教學重點:

  有理數(shù)加法則的探索及運用

  教學難點:

  異號兩數(shù)相加的法則的理解及運用

  教學過程:

  一、創(chuàng)設情境

  展示足球賽圖片,你知道足球賽中“凈勝球”是怎么回事嗎?

  (學生口答,教師介紹凈勝球的算法:只要把各場比賽的結果相加就可以得到,由此揭示課題。)

  二、探求新知

  1、甲、乙兩隊進行足球比賽,(1)、如果上半場贏了3球,下半場又贏了2球,那么全場累計凈勝幾球?

  (2)、如果上半場贏了3球,下半場輸了2球,那么全場累計凈勝幾球?

  足球比賽中贏球個數(shù)與輸球個數(shù)是一對相反意義的量.若規(guī)定贏球為正,輸球為負,例如贏3球記為“+3”,輸2球記為“-2”,你能把上述結果用加法算式表示出來嗎?

  (學生根據(jù)生活經(jīng)驗得到兩種情況下的凈勝球數(shù),從而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教師板書。)

  (3)、除了上面所說的“贏了再贏”,“先贏后輸”,你還能說出其它可能的幾種情況并用加算式表示嗎?

  (引導學生聯(lián)系生活實際思考輸贏球其它可能的情況,盡可能完整地說出所有的可能,由此感受兩個有理數(shù)相加的各種情況,讓學生自由發(fā)言,相互補充,教師板書算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教師還可根據(jù)學生回答情況補充:上半場贏了3球,下半場輸了3球;上半場打平,下半場也打平,最后的凈勝球情況,由學生說出結果并列出算式:(+3)+(-3)= 0,0+0=0 )

  2、你能舉出一些運用有理數(shù)加法的實際例子嗎?

  (學生列舉實例并根據(jù)具體意義寫出算式)

  3、學生活動:

  (1)、把筆尖放在數(shù)軸原點處,先向正方向移動3個單位長度,再向正方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結果嗎?

  (2)、把筆尖放在數(shù)軸原點個單位長度,再向負方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結果嗎?

  (3)、你還能再做一些類似的活動,并寫出相應的算式嗎?

  (教師示范活動(1)的操作過程,學生列出算式并完成(2)(3),得到一組算式,教師板書。這一活動目的是讓學生從“形”的角度,直觀感受有理數(shù)的加法法則。)

  4、歸納法則:

  觀察上述算式,和小學學過的加法運算有什么區(qū)別?你能歸納出有理數(shù)的加法法則嗎?

  (由前面所學的內(nèi)容學生已經(jīng)知道:有理數(shù)由符號和絕對值兩部分組成,所以兩個有理數(shù)的相加時,確定和時也需要分別確定和的符號和絕對值,教師可引導學生對照情境中輸贏球的情況分別探索和的符號和絕對值如何確定,學生相互交流,自由發(fā)言,不斷完善。通過探索有理數(shù)加法法則的'過程,學生體會分類和歸納的數(shù)學思想方法。)

  5、例題精講:

  例1 、計算

  (1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)

  (4)、 5+(-5); (5)、 0+(-2); (學生口答計算結果,并對照法則說說是如何確定和的符號和絕對值的,教師板書解題過程,讓學生體會“運算有據(jù)”。)

  解:(1)、(-5)+(-3)

  = -(5+3) (同號兩數(shù)相加,取相同的符號,并把絕對值相減)

  = -8

  (2)、(-8)+(+2)

  = -(8-2) (異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。)

  = -6

  (4)、5+(-5);

  =0 (互為相反的兩數(shù)之和為0)

  6、訓練鞏固:

  p33練一練2

  (學生利用撲克完成本題,通過游戲進一步鞏固有理數(shù)加法法則,體現(xiàn)“做中學”的新課程理念。)

  7、延伸拓展:

  (1)、一個數(shù)是2的相反數(shù),另一個數(shù)的絕對值是5,求這兩個數(shù)的和

  (2)、在小學里,計算兩個數(shù)相加時,它們的和總是小于任何一個加數(shù),學了有理數(shù)的加法法則后,你認為這個結論還成立嗎?請你舉例說明

  (這兩題都具有一定的挑戰(zhàn)性,第(1)題可讓學生進一步體會分類的數(shù)學思想方法。第(2)題具有開放性,可讓學生在探索的過程中進一步理解法則。)

  三、課堂小結:

  學生回顧本節(jié)課所學內(nèi)容,談談自己對有理數(shù)加法法則的理解及如何進行有理數(shù)加法運算。

  四、布置作業(yè):

  1、課本p41第1題

  2、列舉一些生活中運用有理數(shù)加法的實際例子,并相互交流。

  七年級數(shù)學教案 4

  教材分析:

  本節(jié)課是新教材幾何教學的第一節(jié)課,通過學生身邊的現(xiàn)實生活中的實物,讓學生感覺圖形世界豐富多彩。經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程.激發(fā)學生學習幾何的熱情.。無需對具體定義的深刻理解,只要學生能用自己的語言描述它們的某些特征。

  教學目標:

  知識目標:

  在具體情境中認識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進一步認識點、線、面、體,初步感受點、線、面、體之間的關系。

  能力目標:

  讓學生經(jīng)歷“幾何模形---圖形---文字”這個抽象過程,培養(yǎng)學生抽象、辨別能力。

  情感目標:

  感受圖形世界的豐富多彩,激發(fā)學習幾何的熱情。

  教學重點:

  經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關系。

  教學難點:

  抽象能力的培養(yǎng),學習熱情的激發(fā)。

  教學方法:

  引導發(fā)現(xiàn)、師生互動。

  教學準備:

  多媒體課件、學生身邊的實物等。

  教學過程:

  合作學習

  問題1:

  我們已學過的或認得的存有哪些幾何體?

 。▽W生討論、交流)

  問題2:

  你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?

 。▽W生討論、舉例)

  課本中P162中的合作學習

 。ń處熆啥嗯e一些平面與曲面的`實例讓學生感受、辨別)

  特別指出:

  數(shù)學中的平面是可以無限伸展的

  議一論

  P163課內(nèi)練習1

  P163課內(nèi)練習2

  師生討論指出:

  線與線相交成點,面與面相交成線。

  想一想:

  觀察下圖,你發(fā)現(xiàn)什么?

  師生討論

  議一議:

  日常生活中的哪些事物給人以點、線的形象。

  指出:

  日常生活中點與面只是相對的一個感念。如:

  在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。

  活動探究:

  P164課內(nèi)練習3

  七年級數(shù)學教案 5

  教學目標

  知識與能力

  從簡單的轉盤游戲開始,使學生在生活經(jīng)驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

  教學思考

  能用實驗對數(shù)學猜想做出檢驗,從而增加猜想的可信度。 解決問題

  在轉盤游戲過程中,經(jīng)歷猜測結果,實驗驗證,分析試驗結果等數(shù)學活動,增加數(shù)學活動經(jīng)驗。

  情感態(tài)度與價值觀

  在合作與交流過程中,體驗小組合作更有利于探究數(shù)學知識,敢于發(fā)表自己觀點,提高個人認識。

  教學重點難點:

  在實驗中,體會不確定事件的特點及事件發(fā)生可能性大。皇姑總學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。

  教學過程

  創(chuàng)設情境,切入標題

  同學們,商場經(jīng)常利用轉盤游戲進行抽獎,你認為顧客們的中獎可能性有多大呢?這節(jié)課我們就來探究一下有關轉盤游戲的`問題。 新課探究

  請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?

  請各小組分別派一名代表,看哪組能轉出紅色。

  結果,8小組有6組轉出了紅色。

  為什么會出現(xiàn)這樣的結果呢?

  因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。

  大家同意這種看法嗎?下面我們親自動手感受一下。

  學生按照題目要求進行實驗。

  請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

  請同學們對我們的實驗結果進行分析交流,談談你在試驗中有哪些心得。

  根據(jù)觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們?nèi)嗟膶嶒灲Y果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。

  在小組內(nèi)實驗結果不明顯,實驗次數(shù)越多越能說明問題。

  通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。

  游戲與交流

  下面我們利用轉盤做一下數(shù)學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。

  每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

  請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。

  如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

  同學們說出很多種方法,不一一列舉。

  “平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

  如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

  同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。

  以下過程同教學設計,略去。

  隨堂練習

  指導學生完成教材第206頁習題。

  課時小結

  學生可從各個方面加以小結。 布置作業(yè)

  仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。

  七年級數(shù)學教案 6

  教學目標:

  1、在解決問題的過程中,探索分數(shù)除以整數(shù)的計算方法,并能正確的進行計算。

  2、在探索分數(shù)除以整數(shù)計算方法的過程中,體驗算法的多樣性,養(yǎng)成獨立思考的習慣,促進個性化學習。

  3、在解決現(xiàn)實問題的過程中,感受數(shù)學與生活的密切聯(lián)系,體驗學數(shù)學,用數(shù)學的樂趣。

  教學過程:

  一、創(chuàng)設情境,提出問題。

  師:同學們,我們學校設立了許多課外興趣小組,同學們在課余時間可以根據(jù)自己的興趣愛好參加小組的活動。今天我們一起走進布藝興趣小組,看看那里的同學給我們提出了哪些數(shù)學問題。

  師:看大屏幕,從情境圖中你找到了哪些數(shù)學信息?

  生:布藝興趣小組的同學要用9/10米的布給小猴做衣服。如果做背心,可以做3件;如果做褲子,可以做2條。

  師:根據(jù)這些信息,你能提出什么數(shù)學問題?

  生1:做一件背心需要花布多少米?

  生2:做一條褲子需要花布多少米?

  (教師根據(jù)學生的提問,有選擇的進行板書)

  二、自主探索,獲取新知

  1、獨立思考、自主探究。

  師:我們先看第一個問題 “做一件背心需要花布多少米?”怎樣列算式?

  生1:9/10÷3=

  師:為什么用除法?

  生1:把9/10平均分成3份,求1份是多少,所以用除法。

  師:誰還能再說一遍?

  生重復。

  師:9/10÷3結果是多少呢?請在自己的練習本寫一寫、畫一畫,算一算。

  生自主操作,師適時巡視指導,找出兩位同學上臺板演。

  2、合作交流,解決問題。

  師:將你的想法和同桌交流一下。

  生交流。

  師:我們來看幾位同學的方法。

  (投影展示,畫線段圖的方法)

  師:我們先看第一位同學的方法,這是哪位同學的,你能來介紹一下嗎?

  生:(畫線段圖的方法)把9/10米平均分成3份,每份是3/10米。

  師:我們再來看一位同學的,他用的是長方形布條,這是哪位同學的,介紹一下?

  生:把9/10米平均分成3份,每份是3/10米。

  師:不管是畫線段圖還是用長方形來表示,我們都可以得到每份是3/10米。

  板書方法:畫線段圖。

  師:我們再來看黑板上這兩位同學的(學生板演),請這位同學來介紹一下你的做法。

  生:9/10÷3=9÷3/10=3/10(米)

  把9/10米平均分成3段,就是把9個1/10米平均分成3份,每份是(9÷3)個1/10米,即3/10米

  師:誰能再重復一遍?生重復。

  師:我們可以用平均分的思想直接進行計算。(板書:平均分的方法)

  師:看這種方法9/10÷3=9/10×1/3=3/10(米),(學生板演內(nèi)容)誰來介紹一下?

  生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計算,每段是9/10×1/3=3/10(米)。

  生似懂非懂。

  師:你們能明白嗎?我們結合這條形圖來看一下,(出示課件)。

  師:把條形圖平均分成3份,一份占多少?

  生:1/3。

  師:也就是求什么/

  生:也就是求9/10米的1/3。

  師:我們可以怎樣計算?

  生:9/10×1/3

  師:看一下算式?有什么變化?

  生1:前面是除法,后面是乘法。

  生2:3和1/3互為倒數(shù)

  師:也就是除法轉化成了乘法。(板書:轉化)

  師:誰能再說一說這種方法?

  師:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計算,每段是9/10×1/3=3/10(米)。

  師:這就是第三種方法,利用乘法的.意義進行計算。(板書:乘法的意義)

  師:除了這幾種方法,你還有哪些辦法?

  生:轉化成小數(shù)來計算。

  師:說一下

  生:9/10米化成小數(shù)0.9米,平均分成3份,每份就是0.9÷3=0.3(米)。

  師板書:9/10÷3=0.9÷3=0.3(米)

  師:同學們想出了這么多方法解決問題,它們的結果相同,說明大家的思路是正確的,哪種方法更好一些呢?

  生1:我認為第三種方法比較好,因為算起來比較簡便。

  生2:我認為第三種方法比較好,因為第二種方法只適用于能出開的情況。

  師:說得非常好,到底他說的對不對,等會我們來驗證一下。

  3、選擇算法,解決問題。

  師:同學們,看來大家都已經(jīng)有自己喜歡的方法了,我們來看第二個問題“做一條褲子需要花布多少米?”用你喜歡的方法獨立完成。

  (讓學生獨立列式,教師巡回指導,了解學生情況,找一位同學進行板演)

  9/10÷2=9/10×1/2=9/20(米)

  師:我們來看這位同學的,你們都和這位同學一樣嗎?誰來說說這種方法?

  生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法來計算。

  師:誰能再說一遍

  生重復。

  師:看算式,我們把除法轉化成了乘法來計算?磥泶蠹叶加X得這種方法比較簡單。

  4、歸納概括,推廣應用。

  (1)師:仔細觀察、分析剛才所解決的兩個問題,想一想:我們怎樣計算分數(shù)除以整數(shù)?看這兩個算式,前面是除法,后面是?

  生:乘法

  師:看圈起來的兩個數(shù)字,有什么關系?

  生1:倒數(shù)

  生2:互為倒數(shù)

  師:一定要說完整,F(xiàn)在誰能用一句話來總結一下怎樣計算分數(shù)除以整數(shù)的計算方法?

  生:分數(shù)除以整數(shù)等于分數(shù)乘這個整數(shù)的倒數(shù)。(師板書)

  師:誰能再說一遍?

  生重復,全班同學一塊交流。

  三、鞏固練習,加深理解

  1、自主練習1

  先讓學生獨立填寫,然后組織交流。

  交流時讓學生說說自己的算法,體會到此題分數(shù)的分子都能被除數(shù)整除,所以采用分子除以除數(shù)的方法相對簡捷。

  2、自主練習2

  讓學生運用分數(shù)除以整數(shù)的計算方法連一連。獨立完成,組織交流。

  首先讓學生觀察第一行算式與第二行算式的特點以及之間的關系,從而悟出此題的意圖,學生就可以順利地利用分數(shù)除以整數(shù)的計算方法得出應該連的相應算式。

  3、自主練習5

  獨立完成,投影展示交流。(兩種方法,直接去除或者轉化成乘法計算)

  此題把解決問題和計算知識的練習融為一體,實現(xiàn)解決問題能力的培養(yǎng)與基礎知識和基本技能的學習同步發(fā)展的教學目標。

  4、自主練習4

  獨立完成,板演交流

  此題把解決問題和計算知識的練習融為一體,實現(xiàn)解決問題能力的培養(yǎng)與基礎知識和基本技能的學習同步發(fā)展的教學目標。

  四、課堂小結

  師:這節(jié)課我們主要學習了什么知識?

  生:分數(shù)除以整數(shù)(板書)

  師:通過這節(jié)課的學習,你有什么收獲?

  生匯報。

  七年級數(shù)學教案 7

  一、教學目標

  【知識與技能】

  了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。

  【過程與方法】

  通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應關系,體會數(shù)形結合的思想。

  【情感、態(tài)度與價值觀】

  在數(shù)與形結合的過程中,體會數(shù)學學習的樂趣。

  二、教學重難點

  【教學重點】

  數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。

  【教學難點】

  數(shù)形結合的思想方法。

  三、教學過程

  (一)引入新課

  提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學習的數(shù)軸。

  (二)探索新知

  學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:

  提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

  學生活動:畫圖表示后提問。

  提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

  教師給出定義:在數(shù)學中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

  提問3:你是如何理解數(shù)軸三要素的?

  師生共同總結:“原點”是數(shù)軸的'“基準”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

  (三)課堂練習

  寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

  (四)小結作業(yè)

  提問:今天有什么收獲?

  引導學生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

  課后作業(yè):

  課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?

  七年級數(shù)學教案 8

  教學目標:

  1、了解平移的概念,會進行點的平移,理解平移的性質(zhì),能解決簡單的平移問題

  2、培養(yǎng)學生的空間觀念,學會用運動的觀點分析問題。

  重點:

  平移的概念和作圖方法。

  難點:

  平移的作圖。

  教學過程

  一、觀察圖形形成印象

  生活中有許多美麗的`圖案,他們都有著共同的特點,請同學們欣賞下面圖案。

  觀察上面圖形,我們發(fā)現(xiàn)他們都有一個局部和其他部分重復,如果給你一個局部,你能復制他們嗎?學生思考討論,借助舉例說明。

  二、提出新知實踐探索

  平移:

 。1)把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。

 。2)新圖形中的每一點,都是由原圖形中的某一個點移動后得到的,這兩個點是對應點。

 。3)連接各組對應的線段平行且相等。圖形的這種變換,叫做平移變換,簡稱平移

  探究:設計一個簡單的圖案,利用一張半透明的紙附在上面,繪制一排形狀,大小完全一樣的圖案

  引導學生找規(guī)律,發(fā)現(xiàn)平移特征

  三、典例剖析深化鞏固

  略

  四、鞏固練習

  課本33頁:1,2,4,5,6,7

  五、小結:

  在平移過程中,對應點所連的線段也可能在一條直線上,當圖形平移的方向是沿著一邊所在直線的方向時,那么此邊上的對應點必在這條直線上。2利用平移的特征,作平行線,構造等量關系是接7題常用的方法。

  六、作業(yè)

  課本P30頁習題5。4第3題

  七年級數(shù)學教案 9

  教學目標

  1、通過對數(shù)“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念;

  2、利用正負數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)

  3、進一步體驗正負數(shù)在生產(chǎn)生活實際中的廣泛應用,提高解決實際問題的能力,激發(fā)學習數(shù)學的興趣。

  教學難點

  深化對正負數(shù)概念的理解

  知識重點

  正確理解和表示向指定方向變化的量

  教學過程(師生活動)

  設計理念

  知識回顧與深化

  回顧:上一節(jié)課我們知道了在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負數(shù)來表示。這就是說:數(shù)的范圍擴大了(數(shù)有正數(shù)和負數(shù)之分)。那么,有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?

  問題1:有沒有一種既不是正數(shù)又不是負數(shù)的數(shù)呢?學生思考并討論。(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準。這個道理學生并不容易理解,可視學生的討論情況作些啟發(fā)和引導,下面的例子供參考)

  例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來表示,零下溫度用負數(shù)來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負數(shù)。那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數(shù)還是負數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負數(shù)?

  問題2:引入負數(shù)后,數(shù)按照“兩種相反意義的量”來分,可以分成幾類?“數(shù)0耽不是正數(shù),也不是負數(shù)”也應看作是負數(shù)定義的一部分。在引入負數(shù)后,0除了表示一個也沒有以外,還是正數(shù)和負數(shù)的分界。了解。的這一層意義,也有助于對正負數(shù)的理解;且對數(shù)的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性!皵(shù)0既不是正數(shù),也不是負數(shù)”應從相反意義的1這個角度來說明。這個問題只要初步認識即可,不必深究。

  問題3:教科書第6頁例題

  說明:這是一個用正負數(shù)描述向指定方向變化情況的例子,通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負數(shù)表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數(shù)來表示增長的量。

  歸納:在同一個問題中,分別用正數(shù)和負數(shù)表示的.量具有相反的意義(教科書第6頁)。

  類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等?梢暯虒W中的實際情況進行補充。

  這種用正負數(shù)描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數(shù)表示是解題的關健。這種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現(xiàn)在不必向?qū)W生提出。

  鞏固練習教科書第6頁練習

  閱讀思考

  教科書第8頁閱讀與思考是正負數(shù)應用的很好例子,要花時間讓學生討論交流

  七年級數(shù)學教案 10

  【教學目標】

  引導學生通過常規(guī)分析,得出解題思路,經(jīng)歷提出問題,自探問題,應用知識的過程,自主總結出解題辦法;

  【教學難點】

  找出題目中的可有可無的已知條件,說一說為什么可以這樣認為

  【教學過程】

  問:以前學過的有關路程,時間,和速度之間的關系是怎么樣的?你能寫出它們之間的關系嗎?

  出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍,F(xiàn)在汽車從甲地到乙地需要多少小時?

  分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時,可以求出汽車原來的速度。

  學生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)

  現(xiàn)在的時間:352÷80=4.4(小時)

  問:用比例的思路該怎么樣理解這道題目呢?

  分析:甲、乙兩地的公路長度一定,汽車的'速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的2.5倍,所以原來的時間是現(xiàn)在的2.5倍。即:11÷2.5=4.4(小時)。

  這樣解答使得甲乙兩地公路全長352千米成了多余條件,但是又不影響解答問題。

  【我們來探索】

  一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?

  【總結】

  在解答應用題時要善于應用不同的思路和技巧,巧解問題

  【作業(yè)】

  丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?

  丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?

  七年級數(shù)學教案 11

  教學目標:

  1、知識與技能

  (1)通過實例,感受引入負數(shù)的必要性和合理性,能應用正負數(shù)表示生活中具有相反意義的量。

  (2)理解有理數(shù)的意義,體會有理數(shù)應用的廣泛性。

  2、過程與方法

  通過實例的引入,認識到負數(shù)的產(chǎn)生是來源于生產(chǎn)和生活,會用正、負數(shù)表示具有相反意義的量,能按要求對有理數(shù)進行分類。

  重點、難點:

  1、重點:正數(shù)、負數(shù)有意義,有理數(shù)的意義,能正確對有理數(shù)進行分類。

  2、難點:對負數(shù)的理解以及正確地對有理數(shù)進行分類。

  教學過程:

  一、創(chuàng)設情景,導入新課

  大家知道,數(shù)學與數(shù)是分不開的,現(xiàn)在我們一起來回憶一下,小學里已經(jīng)學過哪些類型的數(shù)?

  學生答后,教師指出:小學里學過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分數(shù)和零(小數(shù)包括在分數(shù)之中),它們都是由于實際需要而產(chǎn)生的

  為了表示一個人、兩只手、……,我們用到整數(shù)1,2,……

  為了表示“沒有人”、“沒有羊”、……,我們要用到0。

  但在實際生活中,還有許多量不能用上述所說的自然數(shù)、零或分數(shù)、小數(shù)表示。

  二、合作交流,解讀探究

  1、某市某一天的溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的數(shù),都記作5℃,就不能把它們區(qū)別清楚。它們是具有相反意義的兩個量。

  現(xiàn)實生活中,像這樣的相反意義的量還有很多……例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155米,“高于”和“低于”其意義是相反的.!斑\進”和“運出”,其意義是相反的。

  同學們能舉例子嗎?

  學生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?

  待學生思考后,請學生回答、評議、補充。

  教師小結:同學們成了發(fā)明家。甲同學說,用不同顏色來區(qū)分,比如,紅色5℃表示零下5℃,黑色5℃表示零上5℃;乙同學說,在數(shù)字前面加不同符號來區(qū)分,比如,△5℃表示零上5℃,×5℃表示零下5℃……。其實,中國古代數(shù)學家就曾經(jīng)采用不同的顏色來區(qū)分,古時叫做“正算黑,負算赤”。如今這種方法在記賬的時候還使用。所謂“赤字”,就是這樣來的。

  現(xiàn)在,數(shù)學中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數(shù)前面加上“+”或“—”號,就把兩個相反意義的量簡明地表示出來了。

  讓學生用同樣的方法表示出前面例子中具有相反意義的量:

  高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

  教師講解:什么叫做正數(shù)?什么叫做負數(shù)?強調(diào),數(shù)0既不是正數(shù),也不是負數(shù),它是正、負數(shù)的界限,表示“基準”的數(shù),零不是表示“沒有”,它表示一個實際存在的數(shù)量。并指出,正數(shù),負數(shù)的“+”“—”的符號是表示性質(zhì)相反的量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號。

  2、給出新的整數(shù)、分數(shù)概念

  引進負數(shù)后,數(shù)的范圍擴大了。過去我們說整數(shù)只包括自然數(shù)和零,引進負數(shù)后,我們把自然數(shù)叫做正整數(shù),自然數(shù)前加上負號的數(shù)叫做負整數(shù),因而整數(shù)包括正整數(shù)(自然數(shù))、負整數(shù)和零,同樣分數(shù)包括正分數(shù)、負分數(shù)。

  3、給出有理數(shù)概念

  整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。

  4、有理數(shù)的分類

  為了便于研究某些問題,常常需要將有理數(shù)進行分類,需要不同,分類的方法也常常不同根據(jù)有理數(shù)的定義可將有理數(shù)分成兩類:整數(shù)和分數(shù)。有理數(shù)還有沒有其他的分類方法?

  待學生思考后,請學生回答、評議、補充。

  教師小結:按有理數(shù)的符號分為三類:正有理數(shù)、負有理數(shù)和零。在有理數(shù)范圍內(nèi),正數(shù)和零統(tǒng)稱為非負數(shù)。向?qū)W生強調(diào):分類可以根據(jù)不同需要,用不同的分類標準,但必須對討論對象不重不漏地分類。

  三、總結反思

  引導學生回答如下問題:本節(jié)課學習了哪些基本內(nèi)容?學習了什么數(shù)學思想方法?應注意什么問題?

  由于實際生活中存在著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負數(shù)。正數(shù)是大于0的數(shù),負數(shù)就是在正數(shù)前面加上“—”號的數(shù),負數(shù)小于0。0既不是正數(shù),也不是負數(shù),0可以表示沒有,也可以表示一個實際存在的數(shù)量,如0℃。

  四、課后作業(yè):課本P5習題1。1A第1、2、4題。

  七年級數(shù)學教案 12

  學習目標

  1. 理解有序數(shù)對的應用意義,了解平面上確定點的常用方法

  2. 培養(yǎng)用數(shù)學的意識,激發(fā)學習興趣.

  學習重點:

  理解有序數(shù)對的意義和作用

  學習難點:

  用有序數(shù)對表示點的位置

  學習過程

  一.問題導入

  1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.

  2.地質(zhì)部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。

  3.某人買了一張8排6號的.電影票,很快找到了自己的座位。

  分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。

  你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?

  二.概念確定

  有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)

  利用有序數(shù)對,可以很準確地表示出一個位置。

  1.在教室里,根據(jù)座位圖,確定數(shù)學課代表的位置

  2.教材40頁練習

  三.方法歸類

  略

  [鞏固練習]

  略

  [小結]

  1.為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?

  2.幾種常用的表示點位置的方法.

  [作業(yè)]

  必做題:教科書44頁:1題

  七年級數(shù)學教案 13

  教學目標

  1.使學生理解的意義;

  2.使學生掌握求一個已知數(shù)的;

  3.培養(yǎng)學生的觀察、歸納與概括的能力.

  教學重點和難點

  重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.

  難點:多重符號的化簡.

  課堂教學過程 設計

  一、從學生原有的認知結構提出問題

  二、師生共同研究的定義

  特點?

  引導學生回答:符號不同,一正一負;數(shù)字相同.

  像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與

  應點有什么特點?

  引導學生回答:分別在原點的兩側;到原點的距離相等.

  這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.

  3.0的是0.

  這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).

  三、運用舉例 變式練習

  例1 (1)分別寫出9與-7的;

  例1由學生完成.

  在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?

  引導學生觀察例1,自己得出結論:

  數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的

  1.當a=7時,-a=-7,7的是-7;

  2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.

  3.當a=0時,-a=-0,0的是0,因此,-0=0.

  么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的;

  例2 簡化-(+3),-(-4),+(-6),+(+5)的符號.

  能自己總結出簡化符號的.規(guī)律嗎?

  括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).

  課堂練習

  1.填空:

  (1)+1.3的是______; (2)-3的是______;

  (5)-(+4)是______的; (6)-(-7)是______的

  2.簡化下列各數(shù)的符號:

  -(+8),+(-9),-(-6),-(+7),+(+5).

  3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?

  -(-8)與+(-8);-(+8)與+(-8).

  四、小結

  指導學生閱讀教材,并總結本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.

  五、作業(yè)

  1.分別寫出下列各數(shù)的:

  2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的

  3.填空:

  (1)-1.6是______的,______的是-0.2.

  4.化簡下列各數(shù):

  5.填空:

  (1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;

  (3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

  七年級數(shù)學教案 14

  教學目標

  1.能夠在實際情境中,抽象概括出所要研究的數(shù)學問題,增強學生的數(shù)感符號感。

  2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經(jīng)歷探索同底數(shù)冪乘法運算性質(zhì)過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。

  3.了解同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,增強學生的數(shù)學應用意識,訓練他們養(yǎng)成學會分析問題、解決問題的良好習慣。

  教學重點

  同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題。

  教學過程

  一、復習回顧

  活動內(nèi)容:復習七年級上冊數(shù)學課本中介紹的有關乘方運算知識:

  二、情境引入

  活動內(nèi)容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數(shù)學模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學生進行獨立思考,也可采用小組合作交流的形式,結合學生現(xiàn)有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結論。

  三、講授新課

  1.利用乘方的意義,提問學生,引出法則:計算103×102.

  解:103×102=(10×10×10)×(10×10)(冪的.意義)

  =10×10×10×10×10(乘法的結合律)=105.

  2.引導學生建立冪的運算法則:

  將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整數(shù),則有即am·an=am+n.

  3.引導學生剖析法則

  (1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關系?

  (3)等號兩邊的指數(shù)有什么關系?(4)公式中的底數(shù)a可以表示什么

  (5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?

  要求學生敘述這個法則,并強調(diào)冪的底數(shù)必須相同,相乘時指數(shù)才能相加.

  四、應用提高

  活動內(nèi)容:

  1.完成課本“想一想”:a?a?a等于什么?

  2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。

  3.獨立處理例2,從實際情境中學會處理問題的方法。

  4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp

  五、拓展延伸

  略

  六、課堂小結

  活動內(nèi)容:師生互相交流總結本節(jié)課上應該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調(diào)與補充,學生也可談一談個人的學習感受。

  七、布置作業(yè)

  1.請你根據(jù)本節(jié)課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。

  2.完成課本習題1.4中所有習題。

【七年級數(shù)學教案】相關文章:

七年級數(shù)學教案08-23

七年級數(shù)學教案11-09

七年級下數(shù)學教案10-18

七年級上數(shù)學教案02-07

七年級數(shù)學教案08-19

七年級人教版數(shù)學教案11-03

七年級下冊數(shù)學教案01-24

七年級上冊數(shù)學教案01-19

(經(jīng)典)七年級下冊數(shù)學教案11-07

人教版七年級上數(shù)學教案11-08