熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>高一數(shù)學教案>高一數(shù)學對數(shù)函數(shù)教案

高一數(shù)學對數(shù)函數(shù)教案

時間:2022-12-21 15:28:47 高一數(shù)學教案 我要投稿

高一數(shù)學對數(shù)函數(shù)教案7篇

  在教學工作者開展教學活動前,可能需要進行教案編寫工作,教案是教學活動的總的組織綱領和行動方案。教案應該怎么寫才好呢?以下是小編整理的高一數(shù)學對數(shù)函數(shù)教案,歡迎大家借鑒與參考,希望對大家有所幫助。

高一數(shù)學對數(shù)函數(shù)教案7篇

高一數(shù)學對數(shù)函數(shù)教案1

  教學目標:

  1.進一步理解對數(shù)函數(shù)的性質(zhì),能運用對數(shù)函數(shù)的相關性質(zhì)解決對數(shù)型函數(shù)的常見問題.

  2.培養(yǎng)學生數(shù)形結(jié)合的思想,以及分析推理的能力.

  教學重點:

  對數(shù)函數(shù)性質(zhì)的應用.

  教學難點:

  對數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.

  教學過程:

  一、問題情境

  1.復習對數(shù)函數(shù)的性質(zhì).

  2.回答下列問題.

  (1)函數(shù)y=log2x的值域是 ;

  (2)函數(shù)y=log2x(x≥1)的值域是 ;

  (3)函數(shù)y=log2x(0

  3.情境問題.

  函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?

  二、學生活動

  探究完成情境問題.

  三、數(shù)學運用

  例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.

  練習:

  (1)已知函數(shù)y=log2x的值域是[-2,3],則x的.范圍是________________.

  (2)函數(shù) ,x(0,8]的值域是 .

  (3)函數(shù)y=log (x2-6x+17)的值域 .

  (4)函數(shù) 的值域是_______________.

  例2 判斷下列函數(shù)的奇偶性:

  (1)f (x)=lg (2)f (x)=ln( -x)

  例3 已知loga 0.75>1,試求實數(shù)a 取值范圍.

  例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).

  (1)求函數(shù)的定義域與值域;

  (2)求函數(shù)的單調(diào)區(qū)間.

  練習:

  1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結(jié)論的序號).

  2.函數(shù)y=lg( -1)的圖象關于 對稱.

  3.已知函數(shù) (a>0,a≠1)的圖象關于原點對稱,那么實數(shù)m= .

  4.求函數(shù) ,其中x [ ,9]的值域.

  四、要點歸納與方法小結(jié)

  (1)借助于對數(shù)函數(shù)的性質(zhì)研究對數(shù)型函數(shù)的定義域與值域;

  (2)換元法;

  (3)能畫出較復雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).

  五、作業(yè)

  課本P70~71-4,5,10,11.

高一數(shù)學對數(shù)函數(shù)教案2

  教學目標

  1.使學生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.

  2.通過函數(shù)單調(diào)性概念的教學,培養(yǎng)學生分析問題、認識問題的能力.通過例題培養(yǎng)學生利用定義進行推理的邏輯思維能力.

  3.通過本節(jié)課的教學,滲透數(shù)形結(jié)合的數(shù)學思想,對學生進行辯證唯物主義的教育.

  教學重點與難點

  教學重點:函數(shù)單調(diào)性的概念.

  教學難點:函數(shù)單調(diào)性的判定.

  教學過程設計

  一、引入新課

  師:請同學們觀察下面兩組在相應區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?

 。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)

  第一組:

  第二組:

  生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。

  師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變小.雖然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學習一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.

  (點明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認識的,又是新的知識,引起學生的注意.)

  二、對概念的分析

 。ò鍟n題:)

  師:請同學們打開課本第51頁,請××同學把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.

 。▽W生朗讀.)

  師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?

  生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.

  師:說得非常正確.定義中用了兩個簡單的不等關系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學的魅力!

 。ㄍㄟ^教師的情緒感染學生,激發(fā)學生學習數(shù)學的興趣.)

  師:現(xiàn)在請同學們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.

 。ㄖ笀D說明.)

  師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.

  (教師指圖說明分析定義,使學生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學思想方法.)

  師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應區(qū)間上較大的自變量對應……

  (不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.)

  生:較大的函數(shù)值的函數(shù).

  師:那么減函數(shù)呢?

  生:減函數(shù)就其本質(zhì)而言是在相應區(qū)間上較大的自變量對應較小的函數(shù)值的函數(shù).

 。▽W生可能回答得不完整,教師應指導他說完整.)

  師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應該抓住哪些關鍵詞語,才能更透徹地認識定義?

  (學生思索.)

  學生在高中階段以至在以后的學習中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數(shù)學及其他各學科的重要一環(huán).因此教師應該教會學生如何深入理解一個概念,以培養(yǎng)學生分析問題,認識問題的能力.

 。ń處熢趯W生思索過程中,再一次有感情地朗讀定義,并注意在關鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當?shù)奶崾荆?/p>

  生:我認為在定義中,有一個詞“給定區(qū)間”是定義中的關鍵詞語.

  師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關鍵詞語,在學習幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應的區(qū)間而言的,離開了相應的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?

  生:不能.因為此時函數(shù)值是一個數(shù).

  師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談論某一個函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學過的例子?

  生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).

 。ㄔ趯W生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)

  師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談論函數(shù)的增減性時必須指明相應的區(qū)間.

  師:還有沒有其他的關鍵詞語?

  生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關鍵詞語.

  師:你答的很對.能解釋一下為什么嗎?

  (學生不一定能答全,教師應給予必要的提示.)

  師:“屬于”是什么意思?

  生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。

  師:如果是閉區(qū)間的話,能否取自區(qū)間端點?

  生:可以.

  師:那么“任意”和“都有”又如何理解?

  生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).

  師:能不能構(gòu)造一個反例來說明“任意”呢?

 。ㄗ寣W生思考片刻.)

  生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.

  師:那么如何來說明“都有”呢?

  生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).

  師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.

  (教師通過一系列的設問,使學生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發(fā)散思維能力.)

  師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關系.

 。ㄓ棉q證法的原理來解釋數(shù)學知識,同時用數(shù)學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學生學習的能力.)

  三、概念的應用

  例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?

 。ㄓ猛队盎脽艚o出圖象.)

  生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.

  生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?

  師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.

  例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).

  師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數(shù)不易畫出圖象,因此必須學會根據(jù)解析式和定義從數(shù)量上分析辨認,這才是我們研究函數(shù)單調(diào)性的基本途徑.

 。ㄖ赋鲇枚x證明的必要性.)

  師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.

 。ń處熝惨,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的大小關系感到無從入手,教師應給以啟發(fā).)

  師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關系.

  生:(板演)設x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,

  f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

  所以f(x)是增函數(shù).

  師:他的證明思路是清楚的.一開始設x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設x1<x2(邊說邊用彩色粉筆在相應的語句下劃線,并標注“①→設”),然后看f(x1)-f(x2),這一步是證明的關鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應位置標注“④→下結(jié)論”).

  這就是我們用定義證明函數(shù)增減性的四個步驟,請同學們記。枰赋龅氖堑诙剑绻瘮(shù)y=f(x)在給定區(qū)間上恒大于零,也可以小.

  (對學生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養(yǎng)成一定的思維習慣,形成一定的解題思路也是有幫助的.)

  調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.

  師:你的結(jié)論是什么呢?

  上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).

  生乙:我有不同的意見,我認為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).

  生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).

  域內(nèi)的`增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.

  上是減函數(shù).

 。ń處熝惨暎畬W生證明中出現(xiàn)的問題給予點拔.可依據(jù)學生的問題,給出下面的提示:

 。1)分式問題化簡方法一般是通分.

  (2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.

  要注意在不等式兩邊同乘以一個負數(shù)的時候,不等號方向要改變.

  對學生的解答進行簡單的分析小結(jié),點出學生在證明過程中所出現(xiàn)的問題,引起全體學生的重視.)

  四、課堂小結(jié)

  師:請同學小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應該特別注意的?

  (請一個思路清晰,善于表達的學生口述,教師可從中給予提示.)

  生:這節(jié)課我們學習了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應該注意證明的四個步驟.

  五、作業(yè)

  1.課本P53練習第1,2,3,4題.

  數(shù).

  =a(x1-x2)(x1+x2)+b(x1-x2)

  =(x1-x2)[a(x1+x2)+b].(*)

  +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

  課堂教學設計說明

  是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應用上都有廣泛的應用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經(jīng)學過的知識,感覺乏味.因此,在設計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.

  另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.

  還有,使用函數(shù)單調(diào)性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學作一定的鋪墊.

高一數(shù)學對數(shù)函數(shù)教案3

  本文題目:高一數(shù)學教案:對數(shù)函數(shù)及其性質(zhì)

  2.2.2 對數(shù)函數(shù)及其性質(zhì)(二)

  內(nèi)容與解析

  (一) 內(nèi)容:對數(shù)函數(shù)及其性質(zhì)(二)。

  (二) 解析:從近幾年高考試題看,主要考查對數(shù)函數(shù)的性質(zhì),一般綜合在對數(shù)函數(shù)中考查.題型主要是選擇題和填空題,命題靈活.學習本部分時,要重點掌握對數(shù)的運算性質(zhì)和技巧,并熟練應用.

  一、 目標及其解析:

  (一) 教學目標

  (1) 了解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應用.進一步理解對數(shù)函數(shù)的圖象和性質(zhì);

  (2) 學習反函數(shù)的概念,理解對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標上看出互為反函數(shù)的兩個函數(shù)的圖象性質(zhì)..

  (二) 解析

  (1)在對數(shù)函數(shù) 中,底數(shù) 且 ,自變量 ,函數(shù)值 .作為對數(shù)函數(shù)的三個要點,要做到道理明白、記憶牢固、運用準確.

  (2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域.②把原函數(shù)y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數(shù)的定義域.

  二、 問題診斷分析

  在本節(jié)課的教學中,學生可能遇到的問題是不易理解反函數(shù),熟練掌握其轉(zhuǎn)化關系是學好對數(shù)函數(shù)與反函數(shù)的基礎。

  三、 教學支持條件分析

  在本節(jié)課一次遞推的教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節(jié)省老師板書時間,讓學生盡快地進入對問題的分析當中。

  四、 教學過程

  問題一. 對數(shù)函數(shù)模型思想及應用:

 、 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.

  (Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關系?

  (Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.

 、谟懻摚撼橄蟪龅暮瘮(shù)模型? 如何應用函數(shù)模型解決問題? 強調(diào)數(shù)學應用思想

  問題二.反函數(shù):

 、 引言:當一個函數(shù)是一一映射時, 可以把這個函數(shù)的因變量作為一個新函數(shù)的自變量, 而把這個函數(shù)的自變量新的函數(shù)的因變量. 我們稱這兩個函數(shù)為反函數(shù)(inverse function)

 、 探究:如何由 求出x?

 、 分析:函數(shù) 由 解出,是把指數(shù)函數(shù) 中的自變量與因變量對調(diào)位置而得出的. 習慣上我們通常用x表示自變量,y表示函數(shù),即寫為 .

  那么我們就說指數(shù)函數(shù) 與對數(shù)函數(shù) 互為反函數(shù)

 、 在同一平面直角坐標系中,畫出指數(shù)函數(shù) 及其反函數(shù) 圖象,發(fā)現(xiàn)什么性質(zhì)?

  ⑤ 分析:取 圖象上的幾個點,說出它們關于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?

  ⑥ 探究:如果 在函數(shù) 的.圖象上,那么P0關于直線 的對稱點在函數(shù) 的圖象上嗎,為什么?

  由上述過程可以得到什么結(jié)論?(互為反函數(shù)的兩個函數(shù)的圖象關于直線 對稱)

 、呔毩暎呵笙铝泻瘮(shù)的反函數(shù): ;

  (師生共練 小結(jié)步驟:解x ;習慣表示;定義域)

  (二)小結(jié):函數(shù)模型應用思想;反函數(shù)概念;閱讀P84材料

  五、 目標檢測

  1.(20xx全國卷Ⅱ文)函數(shù)y= (x 0)的反函數(shù)是

  A. (x 0) B. (x 0) C. (x 0) D. (x 0)

  1.B 解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯,原函數(shù)y 0可知D錯,選B.

  2. (20xx廣東卷理)若函數(shù) 是函數(shù) 的反函數(shù),其圖像經(jīng)過點 ,則 ( )

  A. B. C. D.

  2. B 解析: ,代入 ,解得 ,所以 ,選B.

  3. 求函數(shù) 的反函數(shù)

  3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數(shù)的反函數(shù)為 .

  【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學教案:對數(shù)函數(shù)及其性質(zhì)能給您帶來幫助!

高一數(shù)學對數(shù)函數(shù)教案4

  案例背景:

  對數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的.故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎.

  案例敘述:

  (一).創(chuàng)設情境

  (師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

  反函數(shù)的實質(zhì)是研究兩個函數(shù)的關系,所以自然我們應從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).

  (提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

  (學生): 是指數(shù)函數(shù),它是存在反函數(shù)的.

  (師):求反函數(shù)的步驟

  (由一個學生口答求反函數(shù)的過程):

  由 得 .又 的值域為 ,

  所求反函數(shù)為 .

  (師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).

  (二)新課

  1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對數(shù)函數(shù).

  (師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認識是什么?

  (教師提示學生從反函數(shù)的三定與三反去認識,學生自主探究,合作交流)

  (學生)對數(shù)函數(shù)的定義域為 ,對數(shù)函數(shù)的值域為 ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

  (在此基礎上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).)

  2.研究對數(shù)函數(shù)的圖像與性質(zhì)

  (提問)用什么方法來畫函數(shù)圖像?

  (學生1)利用互為反函數(shù)的兩個函數(shù)圖像之間的關系,利用圖像變換法畫圖.

  (學生2)用列表描點法也是可以的。

  請學生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

  (師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

  具體操作時,要求學生做到:

  (1) 指數(shù)函數(shù) 和 的圖像要盡量準確(關鍵點的位置,圖像的變化趨勢等).

  (2) 畫出直線 .

  (3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

  學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出

  和 的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內(nèi))如圖:

  教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標系內(nèi),如圖:

  然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)

  3. 性質(zhì)

  (1) 定義域:

  (2) 值域:

  由以上兩條可說明圖像位于 軸的右側(cè).

  (3)圖像恒過(1,0)

  (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于 軸對稱.

  (5) 單調(diào)性:與 有關.當 時,在 上是增函數(shù).即圖像是上升的

  當 時,在 上是減函數(shù),即圖像是下降的.

  之后可以追問學生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:

  當 時,有 ;當 時,有 .

  學生回答后教師可指導學生巧記這個結(jié)論的方法:當?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負,并把它當作第(6)條性質(zhì)板書記下來.

  最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關鍵在于要腦中有圖.且應將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)

  對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應用.

  (三).簡單應用

  1. 研究相關函數(shù)的性質(zhì)

  例1. 求下列函數(shù)的定義域:

  (1) (2) (3)

  先由學生依次列出相應的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的`條件限制.

  2. 利用單調(diào)性比較大小

  例2. 比較下列各組數(shù)的大小

  (1) 與 ; (2) 與 ;

  (3) 與 ; (4) 與 .

  讓學生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對數(shù)函數(shù)利用單調(diào)性來比大小.最后讓學生以其中一組為例寫出詳細的比較過程.

 三.拓展練習

  練習:若 ,求 的取值范圍.

四.小結(jié)及作業(yè)

  案例反思:

  本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關鍵,因而在教學上采取教師逐步引導,學生自主合作的方式,從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

  在教學中一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地以反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

高一數(shù)學對數(shù)函數(shù)教案5

  教學目標:

  (一)教學知識點:

  1.對數(shù)函數(shù)的概念;

  2.對數(shù)函數(shù)的圖象和性質(zhì).

  (二)能力訓練要求:

  1.理解對數(shù)函數(shù)的概念;

  2.掌握對數(shù)函數(shù)的圖象和性質(zhì).

  (三)德育滲透目標:

  1.用聯(lián)系的觀點分析問題;

  2.認識事物之間的互相轉(zhuǎn)化.

  教學重點:

  對數(shù)函數(shù)的圖象和性質(zhì)

  教學難點:

  對數(shù)函數(shù)與指數(shù)函數(shù)的'關系

  教學方法:

  聯(lián)想、類比、發(fā)現(xiàn)、探索

  教學輔助:

  多媒體

  教學過程:

  一、引入對數(shù)函數(shù)的概念

  由學生的預習,可以直接回答“對數(shù)函數(shù)的概念”

  由指數(shù)、對數(shù)的定義及指數(shù)函數(shù)的概念,我們進行類比,可否猜想有:

  問題:

  1.指數(shù)函數(shù)是否存在反函數(shù)?

  2.求指數(shù)函數(shù)的反函數(shù).

  3.結(jié)論

  所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).

  這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).

  二、講授新課

  1.對數(shù)函數(shù)的定義:

  定義域:(0,+∞);值域:(-∞,+∞)

  2.對數(shù)函數(shù)的圖象和性質(zhì):

  因為對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關于直線對稱.

  因此,我們只要畫出和圖象關于直線對稱的曲線,就可以得到的圖象.

  研究指數(shù)函數(shù)時,我們分別研究了底數(shù)和兩種情形.

  那么我們可以畫出與圖象關于直線對稱的`曲線得到的圖象.

  還可以畫出與圖象關于直線對稱的曲線得到的圖象.

  請同學們作出與的草圖,并觀察它們具有一些什么特征?

  對數(shù)函數(shù)的圖象與性質(zhì):

  (1)定義域:

  (2)值域:

  (3)過定點,即當時,

  (4)上的增函數(shù)

  (4)上的減函數(shù)

  3.練習:

  (1)比較下列各組數(shù)中兩個值的大。

  (2)解關于x的不等式:

  思考:(1)比較大。

  (2)解關于x的不等式:

  三、小結(jié)

  這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).并且研究了對數(shù)函數(shù)的圖象和性質(zhì).

  四、課后作業(yè)

  課本P85,習題2.8,1、3

高一數(shù)學對數(shù)函數(shù)教案6

  1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎上能進行初步的應用。

 。1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關系正確描繪對數(shù)函數(shù)的圖象。

 。2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

  2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的.學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力。

  3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性。

  高一數(shù)學對數(shù)函數(shù)教案:教材分析

 。1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎上引入的。故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎。

 。2) 本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關系和反函數(shù)概念的基礎上,故應成為教學的重點。

 。3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節(jié)課的難點。

  高一數(shù)學對數(shù)函數(shù)教案:教法建議

 。1) 對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

 。2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

高一數(shù)學對數(shù)函數(shù)教案7

  學習目標

  1. 通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;

  2. 能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點;

  3. 通過比較、對照的方法,引導學生結(jié)合圖象類比指數(shù)函數(shù),探索研究對數(shù)函數(shù)的性質(zhì),培養(yǎng)數(shù)形結(jié)合的思想方法,學會研究函數(shù)性質(zhì)的方法.

  舊知提示

  復習:若 ,則 ,其中 稱為 ,其范圍為 , 稱為 .

  合作探究(預習教材P70- P72,找出疑惑之處)

  探究1:元旦晚會前,同學們剪彩帶備用,F(xiàn)有一根彩帶,將其對折后,沿折痕剪開,可將所得的兩段放在一起,對折再剪段。設所得的彩帶的根數(shù)為 ,剪的次數(shù)為 ,試用 表示 .

  新知:對數(shù)函數(shù)的概念

  試一試:以下函數(shù)是對數(shù)函數(shù)的是( )

  A. B. C. D. E.

  反思:對數(shù)函數(shù)定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別,如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù);對數(shù)函數(shù)對底數(shù)的限制 ,且 .

  探究2:你能類比前面討論指數(shù)函數(shù)性質(zhì)的思路,提出研究對數(shù)函數(shù)性質(zhì)的內(nèi)容和方法嗎?

  研究方法:畫出函數(shù)圖象,結(jié)合圖象研究函數(shù)性質(zhì).

  研究內(nèi)容:定義域、值域、特殊點、單調(diào)性、最大(小)值、奇偶性.

  作圖:在同一坐標系中畫出下列對數(shù)函數(shù)的圖象.

  新知:對數(shù)函數(shù)的圖象和性質(zhì):

  象

  定義域

  值域

  過定點

  單調(diào)性

  思考:當 時, 時, ; 時, ;

  當 時, 時, ; 時, .

  典型例題

  例1求下列函數(shù)的定義域:(1) ; (2) .

  例2比較大。

  (1) ; (2) ; (3) ;(4) 與 .

  課堂小結(jié)

  1. 對數(shù)函數(shù)的概念、圖象和性質(zhì);

  2. 求定義域;

  3. 利用單調(diào)性比大小.

  知識拓展

  對數(shù)函數(shù)凹凸性:函數(shù) , 是任意兩個正實數(shù).

  當 時, ;當 時, .

  學習評價

  1. 函數(shù) 的定義域為( )

  A. B. C. D.

  2. 函數(shù) 的定義域為( )

  A. B. C. D.

  3. 函數(shù) 的定義域是 .

  4. 比較大。

  (1)log 67 log 7 6 ; (2) ; (3) .

  課后作業(yè)

  1. 不等式的 解集是( ).

  A. B. C. D.

  2. 若 ,則( )

  A. B. C. D.

  3. 當a1時,在同一坐標系中,函數(shù) 與 的圖象是( ).

  4. 已知函數(shù) 的定義域為 ,函數(shù) 的定義域為 ,則有( )

  A. B. C. D.

  5. 函數(shù) 的定義域為 .

  6. 若 且 ,函數(shù) 的圖象恒過定點 ,則 的坐標是 .

  7.已知 ,則 = .

  8. 求下列函數(shù)的定義域:

  2.2.2 對數(shù)函數(shù)及其性質(zhì)(2)

  學習目標

  1. 解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應用;2. 進一步理解對數(shù)函數(shù)的圖象和性質(zhì);

  3. 學習反函數(shù)的概念,理解對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標上看出互為反函數(shù)的兩個函數(shù)的圖象性質(zhì).

  舊知提示

  復習1:對數(shù)函數(shù) 圖象和性質(zhì).

  a1 0

  圖性質(zhì)

  (1)定義域:

  (2)值域:

  (3)過定點:

  (4)單調(diào)性:

  復習2:比較兩個對數(shù)的大。(1) ; (2) .

  復習3:(1) 的定義域為 ;

  (2) 的定義域為 .

  復習4:右圖是函數(shù) , , , 的圖象,則底數(shù)之間的關系為 .

  合作探究 (預習教材P72- P73,找出疑惑之處)

  探究:如何由 求出x?

  新知:反函數(shù)

  試一試:在同一平面直角坐標系中,畫出指數(shù)函數(shù) 及其反函數(shù) 圖象,發(fā)現(xiàn)什么性質(zhì)?

  反思:

  (1)如果 在函數(shù) 的圖象上,那么P0關于直線 的對稱點在函數(shù) 的圖象上嗎?為什么?

  (2)由上述過程可以得到結(jié)論:互為反函數(shù)的兩個函數(shù)的圖象關于 對稱.

  典型例題

  例1求下列函數(shù)的反函數(shù):

  (1) ; (2) .

  提高:①設函數(shù) 過定點 ,則 過定點 .

 、诤瘮(shù) 的反函數(shù)過定點 .

 、奂褐瘮(shù) 的圖象過點(1,3)其反函數(shù)的圖象過點(2,0),則 的`表達式為 .

  小結(jié):求反函數(shù)的步驟(解x 習慣表示定義域)

  例2溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.

  (1)分析溶液酸堿度與溶液中氫離子濃度之間的變化關系?

  (2)純凈水 摩爾/升,計算其酸堿度.

  例3 求下列函數(shù)的值域:(1) ;(2) .

  課堂小結(jié)

  ① 函數(shù)模型應用思想;② 反函數(shù)概念.

  知識拓展

  函數(shù)的概念重在對于某個范圍(定義域)內(nèi)的任意一個自變量x的值,y都有唯一的值和它對應. 對于一個單調(diào)函數(shù),反之對應任意y值,x也都有惟一的值和它對應,從而單調(diào)函數(shù)才具有反函數(shù). 反函數(shù)的定義域是原函數(shù)的值域,反函數(shù)的值域是原函數(shù)的定義域,即互為反函數(shù)的兩個函數(shù),定義域與值域是交叉相等.

  學習評價

  1. 函數(shù) 的反函數(shù)是( ).

  A. B. C. D.

  2. 函數(shù) 的反函數(shù)的單調(diào)性是( ).

  A. 在R上單調(diào)遞增 B. 在R上單調(diào)遞減

  C. 在 上單調(diào)遞增 D. 在 上單調(diào)遞減

  3. 函數(shù) 的反函數(shù)是( ).

  A. B. C. D.

  4. 函數(shù) 的值域為( ).

  A. B. C. D.

  5. 指數(shù)函數(shù) 的反函數(shù)的圖象過點 ,則a的值為 .

  6. 點 在函數(shù) 的反函數(shù)圖象上,則實數(shù)a的值為 .

  課后作業(yè)

  1. 函數(shù) 的反函數(shù)為( )

  A. B. C. D.

  2. 設 , , , ,則 的大小關系是( )

  A. B. C. D.

  3. 的反函數(shù)為 .

  4. 函數(shù) 的值域為 .

  5. 已知函數(shù) 的反函數(shù)圖象經(jīng)過點 ,則 .

  6. 設 ,則滿足 的 值為 .

  7. 求下列函數(shù)的反函數(shù).

  (1) y= ; (2)y= (a1,x (3) .

【高一數(shù)學對數(shù)函數(shù)教案】相關文章:

高一數(shù)學對數(shù)函數(shù)教案08-26

高一數(shù)學對數(shù)函數(shù)教案(7篇)12-22

高一數(shù)學對數(shù)函數(shù)教案(集合7篇)01-08

高一數(shù)學對數(shù)函數(shù)教案(通用7篇)01-09

高一數(shù)學對數(shù)函數(shù)教案匯編7篇01-11

高一數(shù)學對數(shù)函數(shù)教案(集錦7篇)01-10

高一數(shù)學對數(shù)函數(shù)教案集錦7篇12-23

高一數(shù)學對數(shù)函數(shù)教案集合7篇12-24

高一數(shù)學的教案08-26