- 相關推薦
高一數學必修三教案
在教學工作者開展教學活動前,時常需要編寫教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。那要怎么寫好教案呢?以下是小編為大家整理的高一數學必修三教案,歡迎閱讀,希望大家能夠喜歡。
高一數學必修三教案1
教材:邏輯聯(lián)結詞(1)
目的:要求學生了解復合命題的意義,并能指出一個復合命題是有哪些簡單命題與邏輯聯(lián)結詞,并能由簡單命題構成含有邏輯聯(lián)結詞的復合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯(lián)結詞
二、命題的概念:例:125 ① 3是12的約數 ② 0.5是整數 ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的`叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數嗎? x5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復合命題:
1.定義:由簡單命題再加上一些邏輯聯(lián)結詞構成的命題叫復合命題。
2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對角線互相 菱形的對角線互相垂直且菱形的
垂直且平分⑤ 對角線互相平分
(3)0.5非整數⑥ 非0.5是整數
觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結詞成復合命題。
3.其實,有些概念前面已遇到過
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復合命題的構成形式
如果用 p, q, r, s表示命題,則復合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結:1.命題 2.復合命題 3.復合命題的構成形式
高一數學必修三教案2
1、點的位置表示:
。1)先取一個點O作為基準點,稱為原點。取定這個基準點之后,任何一個點P的位置就由O到P的向量唯一表示。稱為點P的位置向量,它表示的是點P相對于點O的位置。
(2)在平面上取定兩個相互垂直的單位向量e1,e2作為基,則可唯一地分解為=xe1+ye2的形式,其中x,y是一對實數。(x,y)就是向量的坐標,坐標唯一地表示了向量,從而也唯一地表示了點P。
2、向量的坐標:
向量的坐標等于它的終點坐標減去起點坐標。
3、基本公式:
(1)前提條件:A(x1,y1),B(x2,y2)為平面直角坐標系中的兩點,M(x,y)為線段AB的中點。
。2)公式:
、賰牲c之間的距離公式|AB|=(x2—x1)2+(y2—y1)2。
②中點坐標公式
4、定比分點坐標
設A,B是兩個不同的點,如果點P在直線AB上且=λ,則稱λ為點P分有向線段所成的比。
注意:當P在線段AB之間時,,方向相同,比值λ>0。我們也允許點P在線段AB之外,此時,方向相反,比值λ<0且λ≠—1。當點P與點A重合時λ=0。而點P與點B重合時不可能寫成=0的實數倍。
定比分點坐標公式:已知兩點A(x1,y1),B(x2,y2),點P(x,y)分所成的比為λ。則x=x1+λx21+λ,y=y1+λy21+λ。
重心的坐標:三角形重心的坐標等于三個頂點相應坐標的算術平均值,即x1+x2+x33,y1+y2+y33。
一、中點坐標公式的運用
【例1】已知ABCD的兩個頂點坐標分別為A(4,2),B(5,7),對角線的交點為E(—3,4),求另外兩個頂點C,D的坐標。
平行四邊形的對角線互相平分,交點為兩個相對頂點的中點,利用中點公式求。
解:設C(x1,y1),D(x2,y2)。
∵E為AC的中點,
∴—3=x1+42,4=y1+22。
解得x1=—10,y1=6。
又∵E為BD的中點,
∴—3=5+x22,4=7+y22。
解得x2=—11,y2=1。
∴C的坐標為(—10,6),D點的坐標為(—11,1)。
若M(x,y)是A(a,b)與B(c,d)的中點,則x=a+c2,y=b+d2。也可理解為A關于M的對稱點為B,若求B,則可用變形公式c=2x—a,d=2y—b。
1—1已知矩形ABCD的`兩個頂點坐標是A(—1,3),B(—2,4),若它的對角線交點M在x軸上,求另外兩個頂點C,D的坐標。
解:如圖,設點M,C,D的坐標分別為(x0,0),(x1,y1),(x2,y2),依題意得
0=y1+32 y1=—3;
0=y2+42 y2=—4;
x0=x1—12 x1=2x0+1;
x0=x2—22 x2=2x0+2。
又∵|AB|2+|BC|2=|AC|2,
∴(—1+2)2+(3—4)2+(—2—2x0—1)2+(4+3)2=(—1—2x0—1)2+(3+3)2。
整理得x0=—5,∴x1=—9,x2=—8
∴點C,D的坐標分別為(—9,—3),(—8,—4)。
二、距離公式的運用
【例2】已知△ABC三個頂點的坐標分別為A(4,1),B(—3,2),C(0,5),則△ABC的周長為()。
A、42 B、82 C、122 D、162
利用兩點間的距離公式直接求解,然后求和。
解析:∵ A(4,1),B(—3,2),C(0,5),
∴|AB|=(—3—4)2+(2—1)2=50=52,
|BC|=[0—(—3)]2+(5—2)2=18=32,
| AC|=(0—4)2+(5—1)2=32=42。
∴△ABC的周長為|AB|+|BC|+|AC|
=52+32+42
=122。
答案:C
。1)熟練掌握兩點間的距離公式,并能靈活運用。
。2)注意公式的結構特征。若y2=y1,|AB|=(x2—x1)2=|x2—x1|就是數軸上的兩點間距離公式。
高一數學必修三教案3
教學目標:
1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數學思想,培養(yǎng)學生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
教學重點、難點:
1、重點:指數函數的'圖像和性質
2、難點:底數a的變化對函數性質的影響,突破難點的關鍵是利用多媒體動感顯示,通過顏色的區(qū)別,加深其感性認識。
教學方法:
引導——發(fā)現(xiàn)教學法、比較法、討論法
教學過程:
一、事例引入
T:上節(jié)課我們學習了指數的運算性質,今天我們來學習與指數有關的函數。什么是函數?
S:————————
T:主要是體現(xiàn)兩個變量的關系。我們來考慮一個與醫(yī)學有關的例子:大家對“非典”應該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機體內不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:
C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,——————。一個這樣的球菌分裂x次后,得到的球菌的個數y與x的函數關系式是:y =2 x)
S,T:(討論)這是球菌個數y關于分裂次數x的函數,該函數是什么樣的形式(指數形式),
從函數特征分析:底數2是一個不等于1的正數,是常量,而指數x卻是變量,我們稱這種函數為指數函數——點題。
二、指數函數的定義
C:定義:函數y = a x(a>0且a≠1)叫做指數函數,x∈R
問題1:為何要規(guī)定a>0且a ≠1?
S:(討論)
C:(1)當a<0時,a x有時會沒有意義,如a=﹣3時,當x=
就沒有意義;
。2)當a=0時,a x有時會沒有意義,如x= — 2時,
。3)當a = 1時,函數值y恒等于1,沒有研究的必要。
鞏固練習1:
下列函數哪一項是指數函數()
A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= —2 x
高一數學必修三教案4
教學目標
1、了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法。
。1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念。
。2)能從數和形兩個角度熟悉單調性和奇偶性。
(3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2、通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想。
3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度。
教學建議
一、知識結構
。1)函數單調性的概念。包括增函數。減函數的定義,單調區(qū)間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
。2)函數奇偶性的概念。包括奇函數。偶函數的定義,函數奇偶性的判定方法,奇函數。偶函數的圖像。
二、重點難點分析
。1)本節(jié)教學的重點是函數的單調性,奇偶性概念的形成與熟悉。教學的難點是領悟函數單調性,奇偶性的本質,把握單調性的證實。
。2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證實是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點。
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,二次函數。反比例函數圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的`關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數值的的變化規(guī)律,再把這種規(guī)律用數學語言表示出來。在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來。
。2)函數單調性證實的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規(guī)律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
高一數學必修三教案5
教學目標
1、使學生了解奇偶性的概念,回會利用定義判定簡單函數的奇偶性。
2、在奇偶性概念形成過程中,培養(yǎng)學生的觀察,歸納能力,同時滲透數形結合和非凡到一般的思想方法。
3、在學生感受數學美的同時,激發(fā)學習的愛好,培養(yǎng)學生樂于求索的精神。
教學重點,難點
重點是奇偶性概念的形成與函數奇偶性的判定
難點是對概念的熟悉
教學用具
投影儀,計算機
教學方法
引導發(fā)現(xiàn)法
教學過程
一、引入新課
前面我們已經研究了函數的單調性,它是反映函數在某一個區(qū)間上函數值隨自變量變化而變化的性質,今天我們繼續(xù)研究函數的另一個性質。從什么角度呢?將從對稱的角度來研究函數的性質。對稱我們大家都很熟悉,在生活中有很多對稱,在數學中也能發(fā)現(xiàn)很多對稱的問題,大家回憶一下在我們所學的內容中,非凡是函數中有沒有對稱問題呢?
(學生可能會舉出一些數值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數具體化,如和等。)
結合圖象提出這些對稱是我們在初中研究的關于軸對稱和關于原點對稱問題,而我們還曾研究過關于軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函數圖象關于軸對稱的嗎?
學生經過思考,能找出原因,由于函數是映射,一個只能對一個,而不能有兩個不同的,故函數的圖象不可能關于軸對稱。最終提出我們今天將重點研究圖象關于軸對稱和關于原點對稱的問題,從形的特征中找出它們在數值上的規(guī)律。
二、講解新課
2、函數的奇偶性(板書)
教師從剛才的圖象中選出,用計算機打出,指出這是關于軸對稱的圖象,然后問學生初中是怎樣判定圖象關于軸對稱呢?(由學生回答,是利用圖象的翻折后重合來判定)此時教師明確提出研究方向:今天我們將從數值角度研究圖象的這種特征體現(xiàn)在自變量與函數值之間有何規(guī)律?
學生開始可能只會用語言去描述:自變量互為相反數,函數值相等。教師可引導學生先把它們具體化,再用數學符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結論,這樣的是不存在的)
從這個結論中就可以發(fā)現(xiàn)對定義域內任意一個,都有成立。最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整。。
。1)偶函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做偶函數。(板書)
。ńo出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規(guī)律是什么呢?(同時打出或的圖象讓學生觀察研究)
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義。
。2)奇函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做奇函數。(板書)
。ㄓ捎谠诙x形成時已經有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)
例1、判定下列函數的奇偶性(板書)
。1);(2);
(3);;
。5);(6)。
。ㄒ髮W生口答,選出12個題說過程)
解:(1)是奇函數
(2)是偶函數
。3)是偶函數
前三個題做完,教師做一次小結,判定奇偶性,只需驗證與之間的關系,但對你們的回答我不滿足,因為題目要求是判定奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函數的問題呢?
學生經過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數。(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)
從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述。即第(4)題中表面成立的=不能經受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。
教師由此引導學生,通過剛才這個題目,你發(fā)現(xiàn)在判定中需要注重些什么?(若學生發(fā)現(xiàn)不了定義域的特征,教師可再從定義啟發(fā),在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應關于原點對稱,再提出定義域關于原點對稱是函數具有奇偶性的什么條件?
可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結論。
。3)定義域關于原點對稱是函數具有奇偶性的必要但不充分條件。(板書)
由學生小結判定奇偶性的步驟之后,教師再提出新的問題:在剛才的'幾個函數中有是奇函數不是偶函數,有是偶函數不是奇函數,也有既不是奇函數也不是偶函數,那么有沒有這樣的函數,它既是奇函數也是偶函數呢?若有,舉例說明。
經學生思考,可找到函數。然后繼續(xù)提問:是不是具備這樣性質的函數的解析式都只能寫成這樣呢?能證實嗎?
例2、已知函數既是奇函數也是偶函數,求證:。(板書)(試由學生來完成)
證實:既是奇函數也是偶函數,
證后,教師請學生記住結論的同時,追問這樣的函數應有多少個呢?學生開始可能認為只有一個,經教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數的定義域,如,,,,它們顯然是不同的函數,但它們都是既是奇函數也是偶函數。由上可知函數按其是否具有奇偶性可分為四類
(4)函數按其是否具有奇偶性可分為四類:(板書)
例3、判定下列函數的奇偶性(板書)
(1);(2);(3)。
由學生回答,不完整之處教師補充。
解:(1)當時,為奇函數,當時,既不是奇函數也不是偶函數。
。2)當時,既是奇函數也是偶函數,當時,是偶函數。
(3)當時,于是,
當時,,于是=,
綜上是奇函數。
教師小結(1)(2)注重分類討論的使用,(3)是分段函數,當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數整個定義域內性質的刻畫,因此必須均有成立,二者缺一不可。
三、 小結
1、奇偶性的概念
2、判定中注重的問題
四、作業(yè)略
五、板書設計
2、函數的奇偶性例1、例3。
(1)偶函數定義
。2)奇函數定義
。3)定義域關于原點對稱是函數例2。
小結
具備奇偶性的必要條件
。4)函數按奇偶性分類分四類
探究活動
(1)定義域為的任意函數都可以表示成一個奇函數和一個偶函數的和,你能試證實之嗎?
。2)判定函數在上的單調性,并加以證實。
在此基礎上試利用這個函數的單調性解決下面的問題: