熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>七年級數(shù)學(xué)教案>初一數(shù)學(xué)二元一次方程組教案

初一數(shù)學(xué)二元一次方程組教案

時間:2024-04-14 21:20:24 金磊 七年級數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

初一數(shù)學(xué)二元一次方程組教案(精選10篇)

  作為一名默默奉獻(xiàn)的教育工作者,很有必要精心設(shè)計一份教案,編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。優(yōu)秀的教案都具備一些什么特點呢?下面是小編收集整理的初一數(shù)學(xué)二元一次方程組教案,歡迎大家借鑒與參考,希望對大家有所幫助。

初一數(shù)學(xué)二元一次方程組教案(精選10篇)

  初一數(shù)學(xué)二元一次方程組教案 2

  教學(xué)目標(biāo):

  1、認(rèn)識二元一次方程和二元一次方程組。

  2、了解二元一次方程和二元一次方程組的解,會求二元一次方程的正整數(shù)解。

  教學(xué)重點:

  理解二元一次方程組的解的意義。

  教學(xué)難點:

  求二元一次方程的正整數(shù)解。

  教學(xué)過程:

  籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊勝一場得2分。負(fù)一場得1分,某隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負(fù)場數(shù)分別是多少?

  思考:

  這個問題中包含了哪些必須同時滿足的條件?設(shè)勝的場數(shù)是x,負(fù)的場數(shù)是y,你能用方程把這些條件表示出來嗎?

  由問題知道,題中包含兩個必須同時滿足的條件:

  勝的場數(shù)+負(fù)的場數(shù)=總場數(shù),勝場積分+負(fù)場積分=總積分。

  這兩個條件可以用方程

  x+y=22

  2x+y=40

  表示。

  上面兩個方程中,每個方程都含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程。

  把兩個方程合在一起,寫成

  x+y=22

  2x+y=40

  像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

  探究:

  滿足方程①,且符合問題的實際意義的`x、y的值有哪些?把它們填入表中。

  x

  y

  上表中哪對x、y的值還滿足方程②

  一般地,使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。

  二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。

  例1(1)方程(a+2)x +(b—1)y = 3是二元一次方程,試求a、b的取值范圍。

  (2)方程x∣a∣ – 1+(a—2)y = 2是二元一次方程,試求a的值。

  例2若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程。求m、n的值

  例3已知下列三對值:

  x=—6 x=10 x=10

  y=—9 y=—6 y=—1

 。1)哪幾對數(shù)值使方程x—y=6的左、右兩邊的值相等?

 。2)哪幾對數(shù)值是方程組的解?

  例4求二元一次方程3x+2y=19的正整數(shù)解。

  課堂練習(xí):

  教科書第102頁練習(xí)

  習(xí)題8、1 1、2題

  作業(yè):

  教科書第102頁3、4、5題

  初一數(shù)學(xué)二元一次方程組教案 3

  教學(xué)目標(biāo)

  知識與技能目標(biāo)

  1、構(gòu)建本章的部分知識框圖。

  2、復(fù)習(xí)一元二次方程的概念、解法。

  過程與方法

  1、通過對本章方程解法的復(fù)習(xí),進(jìn)一步提高學(xué)生的運算能力。

  2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。

  情感、態(tài)度與價值觀

  通過師生共同的活動,使學(xué)生在交流和反思的過程中建立本章的知識體系,從而體驗學(xué)習(xí)數(shù)學(xué)的成就感、

  教學(xué)重點

  1、一元二次方程的概念

  2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;

  教學(xué)難點

  解法的靈活選擇;例4和例5的.解法。

  教學(xué)過程

  一、創(chuàng)設(shè)情境

  導(dǎo)入新課

  問題:本章中,我們有哪些收獲?(教師點撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)

  二、師生互動

  共同探究

  1、復(fù)習(xí)概念

  例1

  例2

  2、四種解法

 。1)

  解法及其關(guān)系

  (2)

  根的形式

  x1=3

  x2=4

  (3)熟悉解法

  例3用四種解法分別解此方程

 。4)方法優(yōu)選

  3、方法補(bǔ)充

  例4

  4、解法糾錯

  例5

  解關(guān)于x的方程

  錯誤解法

  正確解法

  三、小結(jié)反思

  提煉思想

  我們有哪些收獲?解方程的思想方法是什么?

  四、布置作業(yè)

  鞏固提高

  初一數(shù)學(xué)二元一次方程組教案 4

  知識目標(biāo)

  了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。

  能力目標(biāo)

  通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。

  情感目標(biāo)

  通過對實際問題的分析,使學(xué)生進(jìn)一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。

  教學(xué)重點

  二元一次方程組的含義

  教學(xué)難點

  判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。

  教學(xué)過程

  一、引入、實物投影

  1、師:在一望無際呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:累死我了,小馬說:你還累,這么大的個,才比我多馱2個老牛氣不過地說:哼,我從你背上拿來一個,我的包裹就是你的'2倍!,小馬天真而不信地說:真的?!同學(xué)們,你們能否用數(shù)學(xué)知識幫助小馬解決問題呢?

  2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)

  這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程x-y=2,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍,得方程:x+1=2(y-1)

  師:同學(xué)們能用方程的方法來發(fā)現(xiàn)、解決問題這很好,上面所列方程有幾個未知數(shù)?含未知數(shù)的。項的.次數(shù)是多少?(含有兩個未知數(shù),并且所含未知數(shù)項的次數(shù)是1)

  師:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)都是1的方程叫做二元一次方程

  注意:這個定義有兩個地方要注意

 、、含有兩個未知數(shù),②、含的次數(shù)是一次

  練習(xí)

  下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x

  xy=12x(y+1)=c2x-y=1x+y=0

  二、議一議、

  師:上面的方程中x-y=2的x含義相同嗎?

  初一數(shù)學(xué)二元一次方程組教案 5

  一、素質(zhì)教育目標(biāo)

  (一)知識教學(xué)點:

  1、使學(xué)生了解一元二次方程及整式方程的意義;

  2、掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項、

  (二)能力訓(xùn)練點:

  1、通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;

  2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性、

 。ㄈ┑掠凉B透點:由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的`意識、

  二、教學(xué)重點、難點

  1、教學(xué)重點:一元二次方程的意義及一般形式、

  2、教學(xué)難點:正確識別一般式中的“項”及“系數(shù)”、

  三、教學(xué)步驟

  (一)明確目標(biāo)

  1、用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的'小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實際操作一下剛才演示的過程、學(xué)生的實際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力、

  2、現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?

  教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題、

  板書:“第十二章一元二次方程”、教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣。

 。ǘ┱w感知

  通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識到知識來源于實際,并且又為實際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中、同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位、

  (三)重點、難點的學(xué)習(xí)及目標(biāo)完成過程

  復(fù)習(xí)提問

 。1)什么叫做方程?曾學(xué)過哪些方程?

 。2)什么叫做一元一次方程?

  初一數(shù)學(xué)二元一次方程組教案 6

  一、教學(xué)目標(biāo)

  1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。

  2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗,鍛煉抽象思維能力。

  3、情感態(tài)度與價值觀:學(xué)生在獨立思考的過程中,能將生活中的經(jīng)驗與所學(xué)的知識結(jié)合起來,形成實事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨立思考的.習(xí)慣。

  二、教學(xué)重難點

  重點:理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。

  難點:找對題目中的數(shù)量關(guān)系從而列出一元二次方程。

  三、教學(xué)過程

  (一)導(dǎo)入新課

  師:同學(xué)們我們就要開始學(xué)習(xí)一元二次方程了,在開始講新課之前,我們首先來看一看第二十二章的這張圖片,圖片上有一個銅雕塑,有哪位同學(xué)能告訴我這是誰嗎?

  生:老師,這是雷鋒叔叔。

  師:對,這是遼寧省撫順市雷鋒紀(jì)念館前的雷鋒雕像,雷鋒叔叔一生樂于助人,奉獻(xiàn)了自己方便了他人,所以即使他去世了,也活在人們心中,所以人們才給他做一個雕塑紀(jì)念他,同學(xué)們是不是也要向雷鋒叔叔學(xué)習(xí)啊?

  生:是的老師。

  師:可是原來紀(jì)念館的工作人員在建造這座雕像的`時候曾經(jīng)遇到了一個問題,也就是圖片下面的這個問題,同學(xué)們想不想為他們解決這個問題呢?

  生:想。

  師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。

  (二)新課教學(xué)

  師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用AC來表示上部,BC來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。

  (下去巡視)

  (三)小結(jié)作業(yè)

  師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。

  四、板書設(shè)計

  五、教學(xué)反思

  初一數(shù)學(xué)二元一次方程組教案 7

  一、復(fù)習(xí)目標(biāo):

  1、能說出一元二次方程及其相關(guān)概念,;

  2、能熟練應(yīng)用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。

  3、能靈活應(yīng)用一元二次方程的知識解決相關(guān)問題,能根據(jù)具體問題的實際意義檢驗結(jié)果的合理性,進(jìn)一步培養(yǎng)學(xué)生分析問題、解決問題的意識和能力。

  二、復(fù)習(xí)重難點:

  重點:一元二次方程的`解法和應(yīng)用

  難點:應(yīng)用一元二次方程解決實際問題的方法

  三、知識回顧:

  1、一元二次方程的定義:

  2、一元二次方程的`常用解法有:配方法的一般過程是怎樣的?

  3、一元二次方程在生活中有哪些應(yīng)用?請舉例說明。

  4、利用方程解決實際問題的關(guān)鍵是。

  在解決實際問題的過程中,怎樣判斷求得的結(jié)果是否合理?請舉例說明。

  四、例題解析:

  例1、填空

  1、當(dāng)m時,關(guān)于x的方程(m-1)+5+mx=0是一元二次方程.

  2、方程(m2-1)x2+(m-1)x+1=0,當(dāng)m時,是一元二次方程;當(dāng)m時,是一元一次方程.

  3、將一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.

  4、用配方法解方程x2+8x+9=0時,應(yīng)將方程變形為()

  A.(x+4)2=7B.(x+4)2=-9

  C.(x+4)2=25D.(x+4)2=-7

  學(xué)習(xí)內(nèi)容學(xué)習(xí)隨記

  例2、解下列一元二次方程

  (1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)

  (3)(x+1)(2-x)=1(選擇適當(dāng)?shù)姆椒ń?

  例3、1、新竹文具店以16元/支的價格購進(jìn)一批鋼筆,根據(jù)市場調(diào)查,如果以20元/支的價格銷售,每月可以售出200支;而這種鋼筆的售價每上漲1元就少賣10支.現(xiàn)在商店店主希望銷售該種鋼筆月利潤為1350元,則該種鋼筆該如何漲價?此時店主該進(jìn)貨多少?

  2、如圖,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,點P、Q同時由A、B兩點出發(fā)分別沿AC,BC方向向點C勻速運動,它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半?

  初一數(shù)學(xué)二元一次方程組教案 8

  學(xué)習(xí)目標(biāo)

  1、一元二次方程的求根公式的推導(dǎo)

  2、會用求根公式解一元二次方程.

  3、通過運用公式法解一元二次方程的訓(xùn)練,提高學(xué)生的運算能力,養(yǎng)成良好的運算習(xí)慣

  學(xué)習(xí)重、難點

  重點:一元二次方程的求根公式.

  難點:求根公式的條件:b2 -4ac≥0

  學(xué)習(xí)過程:

  一、自學(xué)質(zhì)疑:

  1、用配方法解方程:2x2-7x+3=0.

  2、用配方解一元二次方程的步驟是什么?

  3、用配方法解一元二次方程,計算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實數(shù)根呢?

  二、交流展示:

  剛才我們已經(jīng)利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?

  三、互動探究:

  一般地,對于一元二次方程ax2+bx+c=0

  (a≠0),當(dāng)b2-4ac≥0時,它的`根是

  用求根公式解一元二次方程的方法稱為公式法

  由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數(shù)a、b、c確定的.因此,在解一元二次方程時,先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項系數(shù)a、b、c的值代入,就可以求得方程的根.

  注:(1)把方程化為一般形式后,在確定a、b、c時,需注意符號.

  (2)在運用求根公式求解時,應(yīng)先計算b2-4ac的值;當(dāng)b2-4ac≥0時,可以用公式求出兩個不相等的實數(shù)解;當(dāng)b2-4ac<0時,方程沒有實數(shù)解.就不必再代入公式計算了.

  四、精講點撥:

  例1、課本例題

  總結(jié):其一般步驟是:

  (1)把方程化為一般形式,進(jìn)而確定a、b,c的`值.(注意符號)

  (2)求出b2-4ac的值.(先判別方程是否有根)

  (3)在b2-4ac≥0的前提下,把a(bǔ)、b、c的直代入求根公式,求出 的值,最后寫出方程的根.

  例2、解方程:

  (1)2x2-7x+3=0 (2) x2-7x-1=0

  (3) 2x2-9x+8=0 (4) 9x2+6x+1=0

  五、糾正反饋:

  做書上第P90練習(xí)。

  六、遷移應(yīng)用:

  例3、一個直角三角形三邊的長為三個連續(xù)偶數(shù),求這個三角形的三條邊長.

  例4、求方程 的兩根之和以及兩根之積

  拓展應(yīng)用:關(guān)于 的一元二次方程 的一個根是 ,則 ;

  方程的另一根是

  初一數(shù)學(xué)二元一次方程組教案 9

  教學(xué)內(nèi)容

  根據(jù)面積與面積之間的關(guān)系建立一元二次方程的數(shù)學(xué)模型并解決這類問題、

  教學(xué)目標(biāo)

  掌握面積法建立一元二次方程的數(shù)學(xué)模型并運用它解決實際問題、

  利用提問的方法復(fù)習(xí)幾種特殊圖形的面積公式來引入新課,解決新課中的問題、

  重難點關(guān)鍵

  1、重點:根據(jù)面積與面積之間的等量關(guān)系建立一元二元方程的數(shù)學(xué)模型并運用它解決實際問題、

  2、難點與關(guān)鍵:根據(jù)面積與面積之間的等量關(guān)系建立一元二次方程的數(shù)學(xué)模型、

  教學(xué)過程

  一、復(fù)習(xí)引入

  1、直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?

  2、正方形的面積公式是什么呢?長方形的面積公式又是什么?

  3、梯形的面積公式是什么?

  4、菱形的面積公式是什么?

  5、平行四邊形的'面積公式是什么?

  6、圓的面積公式是什么?

  二、探索新知

  現(xiàn)在,我們根據(jù)剛才所復(fù)習(xí)的面積公式來建立一些數(shù)學(xué)模型,解決一些實際問題、

  例1、某林場計劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m、

 。1)渠道的上口寬與渠底寬各是多少?

 。2)如果計劃每天挖土48m3,需要多少天才能把這條渠道挖完?

  分析:因為渠深最小,為了便于計算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模、

  解:(1)設(shè)渠深為xm

  則渠底為(x+0.4)m,上口寬為(x+2)m

  依題意,得: (x+2+x+0.4)x=1.6

  整理,得:5x2+6x-8=0

  解得:x1= =0.8m,x2=-2(舍)

  ∴上口寬為2.8m,渠底為1.2m、

 。2) =25天

  答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道、

  例2、如圖,要設(shè)計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(精確到0.1cm)?

  初一數(shù)學(xué)二元一次方程組教案 10

  一、教學(xué)目標(biāo)

  【知識與技能】

  掌握應(yīng)用因式分解的方法,會正確求一元二次方程的解。

  【過程與方法】

  通過利用因式分解法將一元二次方程轉(zhuǎn)化成兩個一元一次方程的過程,體會“等價轉(zhuǎn)化”“降次”的數(shù)學(xué)思想方法。

  【情感態(tài)度價值觀】

  通過探討一元二次方程的解法,體會“降次”化歸的思想,逐步養(yǎng)成主動探究的精神與積極參與的意識。

  二、教學(xué)重難點

  【教學(xué)重點】

  運用因式分解法求解一元二次方程。

  【教學(xué)難點】

  發(fā)現(xiàn)與理解分解因式的方法。

  三、教學(xué)過程

  (一)導(dǎo)入新課

  復(fù)習(xí)回顧:和學(xué)生一起回憶平方差、完全平方公式,以及因式分解的常用方法。

  (二)探究新知

  問題1:一個數(shù)的平方與這個數(shù)的3倍有可能相等嗎?如果相等,這個數(shù)是幾?你是怎樣求出來的?

  學(xué)生小組討論,探究后,展示三種做法。

  問題:小穎用的什么法?——公式法

  小明的解法對嗎?為什么?——違背了等式的性質(zhì),那就是可能是零。

  小亮的解法對嗎?其依據(jù)是什么——兩個數(shù)相乘,如果積等于零,那么這兩個數(shù)中至少有一個為零。

  問題2:學(xué)生探討哪種方法對,哪種方法錯;錯的原因在哪?你會用哪種方法簡便]

  師引導(dǎo)學(xué)生得出結(jié)論:

  如果a·b=0,那么a=0或b=0

  (如果兩個因式的積為零,則至少有一個因式為零,反之,如果兩個因式有一個等于零,它們的積也就等于零。)

  “或”有下列三層含義

  ①a=0且b≠0②a≠0且b=0③a=0且b=0

  問題3:

  (1)什么樣的`一元二次方程可以用因式分解法來解?

  (2)用因式分解法解一元二次方程,其關(guān)鍵是什么?

  (3)用因式分解法解一元二次方程的理論依據(jù)是什么?

  (4)用因式分解法解一元二方程,必須要先化成一般形式嗎?

  因式分解法:當(dāng)一元二次方程的一邊是0,而另一邊易于分解成兩個一次因式的乘積時,我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱為因式分解法。

  老師提示:

  1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;

  2.關(guān)鍵是熟練掌握因式分解的知識;

  3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零!

  (三)鞏固提高

  用分解因式法解下列方程嗎?

  總結(jié):右化零,左分解,兩因式,各求解。

  (四)小結(jié)作業(yè)

  用因式分解法求解一元二次方程的步驟:

  1.方程化為一般形式;

  2.方程左邊因式分解;

  3.至少一個一次因式等于零得到兩個一元一次方程;

  4.兩個一元一次方程的解就是原方程的解。

【初一數(shù)學(xué)二元一次方程組教案】相關(guān)文章:

數(shù)學(xué)教案-二元一次方程組08-16

二元一次方程組08-16

數(shù)學(xué)教案-用代入法解二元一次方程組08-16

數(shù)學(xué)教案-用加減法解二元一次方程組08-16

二元一次方程組 —— 初中數(shù)學(xué)第一冊教案08-16

二元一次方程組教學(xué)反思03-26

二元一次方程組教學(xué)反思05-15

數(shù)學(xué)教案-由一個二元一次方程和一個二元二次方程組成的方程組08-17

解二元一次方程組教學(xué)反思03-29