七年級數(shù)學(xué)教案14篇
作為一位兢兢業(yè)業(yè)的人民教師,常常需要準(zhǔn)備教案,借助教案可以更好地組織教學(xué)活動。教案要怎么寫呢?下面是小編幫大家整理的七年級數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
七年級數(shù)學(xué)教案 篇1
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習(xí)
1、教科書第3頁練習(xí)1、2。
2、補(bǔ)充練習(xí):檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的`解。
(1)x-3(x+2)=6+x(x=3,x=-4)
。2)2y(y-1)=3(y=-1,y=2)
。3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)。教科書第3頁,習(xí)題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學(xué)目的
通過天平實驗,讓學(xué)生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學(xué)過程
一、引入
上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。
二、新授
讓我們先做個實驗,拿出預(yù)先準(zhǔn)備好的天平和若干砝碼。
測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當(dāng)天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。
如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。
七年級數(shù)學(xué)教案 篇2
教學(xué)目標(biāo)
1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應(yīng)關(guān)系;
2,會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);
3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學(xué)。
教學(xué)難點 數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)
知識重點
教學(xué)過程(師生活動) 設(shè)計理念
設(shè)置情境
引入課題 教師通過實例、課件演示得到溫度計讀數(shù).
問題1:溫度計是我們?nèi)粘I钪杏脕頊y量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
。ǘ嗝襟w出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
。ㄐ〗M討論,交流合作,動手操作) 創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的`學(xué)習(xí)熱情,發(fā)現(xiàn)生活中的數(shù)學(xué)
點表示數(shù)的感性認(rèn)識。
點表示數(shù)的理性認(rèn)識。
合作交流
探究新知 教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
讓學(xué)生在討論的基礎(chǔ)上動手操作,在操作的基礎(chǔ)上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?
從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強(qiáng)調(diào)數(shù)軸三要求。
從游戲中學(xué)數(shù)學(xué) 做游戲:教師準(zhǔn)備一根繩子,請8個同學(xué)走上來,把位置調(diào)整為等距離,規(guī)定第4個同學(xué)為原點,由西向東為正方向,每個同學(xué)都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學(xué)依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應(yīng)的同學(xué)要回答“到”;口令為該同學(xué)的名字時,該同學(xué)要報出他對應(yīng)的“數(shù)字”,如果規(guī)定第3個同學(xué)為原點,游戲還能進(jìn)行嗎? 學(xué)生游戲體驗,對數(shù)軸概念的理解
尋找規(guī)律
歸納結(jié)論 問題3:
1, 你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
2, 如果給你一些數(shù),你能相應(yīng)地在數(shù)軸上找出它們的準(zhǔn)確位置嗎?如果給你數(shù)軸上的點,你能讀出它所表示的數(shù)嗎?
3, 哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4, 每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
。ㄐ〗M討論,交流歸納)
歸納出一般結(jié)論,教科書第12的歸納。 這些問題是本節(jié)課要求學(xué)會的技能,教學(xué)中要以學(xué)生探究學(xué)習(xí)為主來完成,教師可結(jié)合教科書給學(xué)生適當(dāng)指導(dǎo)。
鞏固練習(xí)
教科書第12頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié) 請學(xué)生總結(jié):
1, 數(shù)軸的三個要素;
2, 數(shù)軸的作以及數(shù)與點的轉(zhuǎn)化方法。
本課作業(yè) 1, 必做題:教科書第18頁習(xí)題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1, 數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。
2, 教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。
3, 注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。
七年級數(shù)學(xué)教案 篇3
教學(xué)過程:
知識整理
1、回顧本單元的學(xué)習(xí)內(nèi)容,形成支識網(wǎng)絡(luò)。
2、我們學(xué)習(xí)哪些知識?用合適的方法把知識間聯(lián)系表示出來。匯報同學(xué)互相補(bǔ)充。
復(fù)習(xí)概念
1、什么叫比?比例?比和比例有什么區(qū)別?
2、什么叫解比例?怎樣解比例,根據(jù)什么?
3、什么叫呈正比例的量和正比例關(guān)系?什么叫反比例的關(guān)系?
4、什么叫比例尺?關(guān)系式是什么?
基礎(chǔ)練習(xí)
1、填空
六年級二班少先隊員的人數(shù)是六年級一班的8/9一班與二班人數(shù)比是()。
小圓的半徑是2厘米,大圓的半徑是3厘米。大圓和小圓的周長比是()。
甲乙兩數(shù)的比是5:3。乙數(shù)是60,甲數(shù)是()。
2、解比例
5/x=10/3 40/24=5/x
3 、完成26頁2、3題
綜合練習(xí)
1、 A×1/6=B×1/5 A:B=():()
2、9;3=36:12如果第三項減去12,那么第一項應(yīng)減去多少?
3用5、2、15、6四個數(shù)組成兩個比例():()、():()
實踐與應(yīng)用
1、如果A=C/B那當(dāng)()一定時,()和()成正比例。當(dāng)()一定時,()和()成反比例。
2、一塊直角三角形鋼板用1/200的比例尺畫在紙上,這兩條直角邊的和是5。4它們的比是5:4,這塊鋼板的實際面積是多少?
板書設(shè)計:整理和復(fù)習(xí)
1、比例的'意義
2、比例比例的性質(zhì)
3、解比例
4、正反比例正方比例的意義
5、正反比例的判斷方法
6、比例應(yīng)用題正比例應(yīng)用題
7、反比例應(yīng)用體題
教學(xué)要求:
1、使學(xué)生進(jìn)一步理解比例的意義和基本性質(zhì),能區(qū)分比和比例。
2、使學(xué)生能正確理解正、反比例的意義,能正確進(jìn)行判斷。
3、培養(yǎng)學(xué)生的思維能力。
七年級數(shù)學(xué)教案 篇4
教學(xué)目標(biāo)
1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點和難點
重點:列代數(shù)式.
難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1?用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;( -7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴嬎汴P(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?
二、講授新課
例1 用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?
(本題應(yīng)由學(xué)生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2 用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的 與乙數(shù)的 的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?
(本題應(yīng)由學(xué)生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?
例3 用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n; (2)5m+2?
(這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)?
例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的'和?
分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?
(通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)
例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個; (2)( m)m個?
三、課堂練習(xí)
1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕
四、師生共同小結(jié)
首先,請學(xué)生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握?
五、作業(yè)
1?用代數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2?已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.
當(dāng)圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:
=99a+b(cm)
七年級數(shù)學(xué)教案 篇5
教學(xué)目標(biāo):
1、知道有理數(shù)加法的意義和法則
2、會用有理數(shù)加法法則正確地進(jìn)行有理數(shù)的加法運算
3、經(jīng)歷有理數(shù)加法法則的探究過程,體會分類和歸納的數(shù)學(xué)思想方法
教學(xué)重點:
有理數(shù)加法則的探索及運用
教學(xué)難點:
異號兩數(shù)相加的法則的理解及運用
教學(xué)過程:
一、創(chuàng)設(shè)情境
展示足球賽圖片,你知道足球賽中“凈勝球”是怎么回事嗎?
(學(xué)生口答,教師介紹凈勝球的算法:只要把各場比賽的結(jié)果相加就可以得到,由此揭示課題。)
二、探求新知
1、甲、乙兩隊進(jìn)行足球比賽,
(1)、如果上半場贏了3球,下半場又贏了2球,那么全場累計凈勝幾球?
(2)、如果上半場贏了3球,下半場輸了2球,那么全場累計凈勝幾球?
足球比賽中贏球個數(shù)與輸球個數(shù)是一對相反意義的量.若規(guī)定贏球為正,輸球為負(fù),例如贏3球記為“+3”,輸2球記為“-2”,你能把上述結(jié)果用加法算式表示出來嗎?
(學(xué)生根據(jù)生活經(jīng)驗得到兩種情況下的凈勝球數(shù),從而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教師板書。)
(3)、除了上面所說的“贏了再贏”,“先贏后輸”,你還能說出其它可能的幾種情況并用加算式表示嗎?
(引導(dǎo)學(xué)生聯(lián)系生活實際思考輸贏球其它可能的情況,盡可能完整地說出所有的可能,由此感受兩個有理數(shù)相加的各種情況,讓學(xué)生自由發(fā)言,相互補(bǔ)充,教師板書算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教師還可根據(jù)學(xué)生回答情況補(bǔ)充:上半場贏了3球,下半場輸了3球;上半場打平,下半場也打平,最后的凈勝球情況,由學(xué)生說出結(jié)果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能舉出一些運用有理數(shù)加法的實際例子嗎?
(學(xué)生列舉實例并根據(jù)具體意義寫出算式)
3、學(xué)生活動:
(1)、把筆尖放在數(shù)軸原點處,先向正方向移動3個單位長度,再向正方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結(jié)果嗎?
(2)、把筆尖放在數(shù)軸原點個單位長度,再向負(fù)方向移動2個單位長度,這時筆尖的位置表示什么數(shù)?你能用數(shù)軸和加法算式表示以上過程及結(jié)果嗎?
(3)、你還能再做一些類似的活動,并寫出相應(yīng)的算式嗎?
(教師示范活動(1)的操作過程,學(xué)生列出算式并完成(2)(3),得到一組算式,教師板書。這一活動目的是讓學(xué)生從“形”的角度,直觀感受有理數(shù)的加法法則。)
4、歸納法則:
觀察上述算式,和小學(xué)學(xué)過的加法運算有什么區(qū)別?你能歸納出有理數(shù)的加法法則嗎?
(由前面所學(xué)的內(nèi)容學(xué)生已經(jīng)知道:有理數(shù)由符號和絕對值兩部分組成,所以兩個有理數(shù)的相加時,確定和時也需要分別確定和的符號和絕對值,教師可引導(dǎo)學(xué)生對照情境中輸贏球的情況分別探索和的符號和絕對值如何確定,學(xué)生相互交流,自由發(fā)言,不斷完善。通過探索有理數(shù)加法法則的過程,學(xué)生體會分類和歸納的數(shù)學(xué)思想方法。)
5、例題精講:
例1 、計算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (學(xué)生口答計算結(jié)果,并對照法則說說是如何確定和的符號和絕對值的,教師板書解題過程,讓學(xué)生體會“運算有據(jù)”。)
解:(1)、(-5)+(-3)
= -(5+3) (同號兩數(shù)相加,取相同的符號,并把絕對值相減)
= -8
(2)、(-8)+(+2)
= -(8-2) (異號兩數(shù)相加,取絕對值較大的`加數(shù)的符號,并用較大的絕對值減去較小的絕對值。)
= -6
(4)、5+(-5);
=0 (互為相反的兩數(shù)之和為0)
6、訓(xùn)練鞏固:
1、 p33練一練2
(學(xué)生利用撲克完成本題,通過游戲進(jìn)一步鞏固有理數(shù)加法法則,體現(xiàn)“做中學(xué)”的新課程理念。)
7、延伸拓展:
(1)、一個數(shù)是2的相反數(shù),另一個數(shù)的絕對值是5,求這兩個數(shù)的和
(2)、在小學(xué)里,計算兩個數(shù)相加時,它們的和總是小于任何一個加數(shù),學(xué)了有理數(shù)的加法法則后,你認(rèn)為這個結(jié)論還成立嗎?請你舉例說明
(這兩題都具有一定的挑戰(zhàn)性,第(1)題可讓學(xué)生進(jìn)一步體會分類的數(shù)學(xué)思想方法。第(2)題具有開放性,可讓學(xué)生在探索的過程中進(jìn)一步理解法則。)
三、課堂小結(jié):
學(xué)生回顧本節(jié)課所學(xué)內(nèi)容,談?wù)勛约簩τ欣頂?shù)加法法則的理解及如何進(jìn)行有理數(shù)加法運算。
四、布置作業(yè):
1、課本p41第1題
2、列舉一些生活中運用有理數(shù)加法的實際例子,并相互交流。
七年級數(shù)學(xué)教案 篇6
教學(xué)過程:
一、復(fù)習(xí)
1、一輛汽車行駛的速度不變,行駛的時間和路程。
2、一輛汽車從甲地開往乙地,行駛的時間和速度。
看上面的題,回答下面的問題:
(1)各有哪三種量?
。2)其中哪一種量是固定不變的?
。3)哪兩種量是變化的?這兩種量是按怎樣的規(guī)律變化的?他們成是什么關(guān)系?
3、這節(jié)課,我們就應(yīng)用比例的知識解決一些實際問題。
二、新授
1、教學(xué)例5
。1)出示例5:張大媽家上個月用了8噸水,水費是2。8元。李奶奶家上個月用了10噸水,李奶奶家上個月的水費是多少錢?
。2)學(xué)生讀題后,思考和討論下面的問題:
、賳栴}中有哪兩種量?
、谒鼈兂墒裁幢壤P(guān)系?你是根據(jù)什么判斷的?
③根據(jù)這樣的比例關(guān)系,你能列出等式嗎?
。3)根據(jù)上面三個問題,概括:因為水價一定,所以水費和用水的噸數(shù)成正比例。也就是說,兩家的水費和用水的噸數(shù)的比值是相等的。
。4)根據(jù)正比例的意義列出方程:
解:設(shè)李奶奶家上個月的水費是χ元。
12。8/8=χ/10
8χ= 12。8×10
χ=128÷8
χ= 16答:李奶奶家上個月的水費是16元。
。5)將答案代入到比例式中進(jìn)行檢驗。
2、修改題目:王大爺上個月的水費是19。2元,他們家上個月用多少噸水?(學(xué)生獨立應(yīng)用比例的知識來解答,并交流訂正,使學(xué)生明確例5的條件和問題改變后,題目中水費和用水的噸數(shù)的正比例關(guān)系沒變,只是未知量變了)
3、教學(xué)例6
。1)出示例6:書店運來一批書,如果每包20本,要捆18包。如果每包30本,要捆多少包?
。2)學(xué)生根據(jù)例5的'解題思路,思考:題中已知兩個量?什么是一定的?已知的兩個量成什么關(guān)系?思考后獨立解答。
(3)指名板演,全班評講。
4、做一做:教科書P59“做一做”1、2題,讓學(xué)生先判斷兩個量的關(guān)系,再進(jìn)行解答。
三、鞏固練習(xí)
1、教科書P61練習(xí)九第3、4題。學(xué)生讀題后,先說說題中哪個量是一定的,再獨立進(jìn)行解答。
2、完成練習(xí)九第5、6、7題。
四、總結(jié)
用比例知識解決問題的步驟是什么?
教學(xué)目標(biāo):
1、使學(xué)生掌握用比例知識解答以前學(xué)過的用歸一、歸總方法解答的應(yīng)用題的解題思路,能進(jìn)一步熟練地判斷成正、反比例的量,加深對正、反比例概念的理解,溝通知識間的聯(lián)系。
2、提高學(xué)生對應(yīng)用題數(shù)量關(guān)系的分析能力和對正、反比例的判斷能力。
3、培養(yǎng)學(xué)生良好的解答應(yīng)用題的習(xí)慣。
教學(xué)重點:
用比例知識解答比較容易的歸一、歸總應(yīng)用題。
教學(xué)難點:
正分析題中的比例關(guān)系,列出方程。
七年級數(shù)學(xué)教案 篇7
學(xué)習(xí)目標(biāo):
1.會用正.負(fù)數(shù)表示具有相反意義的量.
2.通過正.負(fù)數(shù)學(xué)習(xí),培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識的意識.
3.通過探究,滲透對立統(tǒng)一的辨證思想
學(xué)習(xí)重點:
用正.負(fù)數(shù)表示具有相反意義的量
學(xué)習(xí)難點:
實際問題中的數(shù)量關(guān)系
教學(xué)方法:
講練相結(jié)合
教學(xué)過程
一.學(xué)前準(zhǔn)備
通過上節(jié)課的.學(xué)習(xí),我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負(fù)數(shù)來分別表示它們.
問題1:“零”為什么即不是正數(shù)也不是負(fù)數(shù)呢?
引導(dǎo)學(xué)生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題
問題2:(教科書第4頁例題)
先引導(dǎo)學(xué)生分析,再讓學(xué)生獨立完成
例(1)一個月內(nèi),小明體重增加2kg,小華體重減少1kg,小強(qiáng)體重?zé)o變化,寫出他們這個月的體重增長值;
(2)20xx年下列國家的商品進(jìn)出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進(jìn)出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長—1kg,小強(qiáng)體重增長0kg.
。2)六個國家20xx年商品進(jìn)出口總額的增長率:
美國—6.4%,德國1.3%,
法國—2.4%,英國—3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習(xí)
從0表示一個也沒有,是正數(shù)和負(fù)數(shù)的分界的角度引導(dǎo)學(xué)生理解.
在學(xué)生的討論中簡單介紹分類的數(shù)學(xué)思想先不要給出有理數(shù)的概念.
在例題中,讓學(xué)生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負(fù)數(shù)表示.
通過問題(2)提醒學(xué)生審題時要注意要求,題中求的是增長率,不是增長值.
四.閱讀思考1頁
。ń炭茣8頁)用正負(fù)數(shù)表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?
2.你知道還有那些事件可以用正負(fù)數(shù)表示允許誤差嗎?請舉例.
五.小結(jié)
1.本節(jié)課你有那些收獲?
2.還有沒解決的問題嗎?
六.應(yīng)用與拓展
1.必做題:
教科書5頁習(xí)題4.5.:6.7.8題
2.選做題
1).甲冷庫的溫度是—12°C,乙冷庫的溫度比甲冷酷低5°C,則乙冷庫的溫度是.
2.)一種零件的內(nèi)徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標(biāo)準(zhǔn)尺寸是9mm,加工要求最大不超過標(biāo)準(zhǔn)尺寸多少?最小不小于標(biāo)準(zhǔn)尺寸多少?
七年級數(shù)學(xué)教案 篇8
教學(xué)設(shè)計思路
“問題是思考的開始”,問題的提出是數(shù)學(xué)教學(xué)中重要的一環(huán),使學(xué)生明確學(xué)習(xí)內(nèi)容的必要性,才有可能調(diào)動學(xué)生解決問題的主動性,促進(jìn)學(xué)生認(rèn)識能力的提高與發(fā)展.而對于生產(chǎn)和生活中的實際問題,學(xué)生看得見,摸得著,有的還親身經(jīng)歷過,所以,當(dāng)教師提出這些問題時,他們一定會躍躍欲試,想學(xué)以致用,這樣能起到充分調(diào)動學(xué)習(xí)積極性的作用.
教學(xué)目標(biāo)
知識與技能:
1.經(jīng)歷同底數(shù)冪的除法運算性質(zhì)的獲得過程,掌握同底數(shù)冪的運算性質(zhì),會用同底數(shù)冪的運算性質(zhì)進(jìn)行有關(guān)計算,提高學(xué)生的運算能力.
2.了解零指數(shù)冪和負(fù)整指數(shù)冪的意義,知道零指數(shù)冪和負(fù)整指數(shù)冪規(guī)定的合理性.
過程與方法:
經(jīng)歷探索同底數(shù)冪的除法的運算性質(zhì)的過程,進(jìn)一步體會冪的意義,發(fā)展推理能力,提高語言表達(dá)能力.
情感態(tài)度價值觀:
感受數(shù)學(xué)公式的簡潔美、和諧美.
重點難點
重點:準(zhǔn)確、熟練地運用法則進(jìn)行計算.
難點:負(fù)指數(shù)冪的條件及法則的正確運用.
教學(xué)過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
前面我們學(xué)習(xí)了同底數(shù)冪的乘法,請同學(xué)們回答如下問題,看哪位同學(xué)回答得快而且準(zhǔn)確.
(1)敘述同底數(shù)冪的乘法性質(zhì).
。2)計算:① ② ③
學(xué)生活動:學(xué)生回答上述問題.
(m,n都是正整數(shù))
教法說明:通過復(fù)習(xí)引起學(xué)生回憶,鞏固同底數(shù)冪的乘法性質(zhì),同時為本節(jié)的`學(xué)習(xí)打下基礎(chǔ).
2.提出問題,引出新知
我國研制的“銀河”巨型計算機(jī)的運算速度是108次/秒,光計算機(jī)(主要由光學(xué)運算器、光學(xué)存儲器和光學(xué)控制器組成)的運算速度是108次/秒.光計算機(jī)的運算速度是“銀河”計算機(jī)運算速度的多少倍?
怎樣計算 呢?
這就是我們這節(jié)課要學(xué)習(xí)的同底數(shù)冪的除法運算.
3.導(dǎo)向深入,得出性質(zhì)
做一做(鼓勵學(xué)生根據(jù)冪的意義和除法意義,獨立得出結(jié)果)
按乘方的意義和除法計算:
(1)
。2)
(3)
。4)
探究:(1)若a≠0,a15÷a5等于什么?
。2)通過上面的計算,對同底數(shù)冪的除法運算,你發(fā)現(xiàn)了什么規(guī)律?
學(xué)生思考,回答
師生共同總結(jié):
教師把結(jié)論寫在黑板上.
請同學(xué)們試著用文字概括這個性質(zhì):
【公式分析與說明】提出問題:在運算過程當(dāng)中,除數(shù)能否為0?
學(xué)生回答:不能.(并說明理由)
由此得出:同底數(shù)冪相除,底數(shù) .教師指出在我們所學(xué)知識范圍內(nèi),公式中的m、n為正整數(shù),且m>n,最后綜合得出:
一般地,這就是說,同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
嘗試證明:
4.揭示規(guī)律
由此我們規(guī)定
規(guī)律一:任何不等于0的數(shù)的0次冪都等于1.
一般我們規(guī)定
規(guī)律二:任何不等于0的數(shù)的-p(p是正整數(shù))次冪等于這個數(shù)的p次冪的倒數(shù).
5.嘗試反饋,理解新知
(補(bǔ)充)例2 自從掃描隧道電子顯微鏡發(fā)明后,便誕生了一門新技術(shù)一納米技術(shù).納米是長度單位,1 nm (納米)等于 0.000 000 001 m .請用科學(xué)記數(shù)法表示 0.000 000 001.
分析:絕對值較小的數(shù)可以用一個有一位整數(shù)的數(shù)與 10 的負(fù)指數(shù)幕的乘積的形式來表示.
學(xué)生活動:學(xué)生在練習(xí)本上完成例l、例2,由2個學(xué)生板演完成之后,由學(xué)生判斷板演是否正確.
教師活動:統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
6.反饋練習(xí),鞏固知識
練習(xí)一
。1)填空:
、 ②
③ ④
。2)計算:
① ②
、 ④
學(xué)生活動:第(l)題由學(xué)生口答;第(2)題在練習(xí)本上完成,然后同桌互閱,教師抽查.
練習(xí)二
下面的計算對不對?如果不對,應(yīng)怎樣改正?
。1) (2)
。3) (4)
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,注意訓(xùn)練學(xué)生的表述能力,以提高興趣.
總結(jié)、擴(kuò)展
我們共同總結(jié)這節(jié)課的學(xué)習(xí)內(nèi)容.
學(xué)生活動:①同底數(shù)冪相除,底數(shù) ,指數(shù) .
、谟蓪W(xué)生談本書內(nèi)容體會.
教法說明:強(qiáng)調(diào)“不變”、“相減”.學(xué)生談體會,不僅是對本節(jié)知識的再現(xiàn),同時也培養(yǎng)了學(xué)生的口頭表達(dá)能力和概括總結(jié)能力.
6.小結(jié)
本節(jié)主要學(xué)習(xí)內(nèi)容:
同底數(shù)冪的除法運算性質(zhì).
零指數(shù)與負(fù)整數(shù)指數(shù)的意義.
用科學(xué)記數(shù)法表示絕對值較小的數(shù)的方法.
冪的運算與指數(shù)運算的關(guān)系: (m,n都是正整數(shù)); (a≠0,m,n都是正整數(shù)),即在底數(shù)相同的條件下:冪相乘→指數(shù)相加,冪相除→指數(shù)相減.
注意的地方:
在同底數(shù)冪的除法性質(zhì)及零指數(shù)冪與負(fù)整數(shù)指數(shù)冪中,千萬不能忽略底數(shù)a≠0的條件.
7.布置作業(yè)
P78 A組3、4 B組2、3
8.板書設(shè)計
8.3同底數(shù)冪的除法
一、同底數(shù)冪的法則
二、例題 練習(xí)
例1 (補(bǔ)充)例2
七年級數(shù)學(xué)教案 篇9
【知識講解】
一、本講主要學(xué)習(xí)內(nèi)容
1、代數(shù)式的意義
2、列代數(shù)式的注意點
3、代數(shù)式值的意義
其中列代數(shù)式是重點,也是難點。
下面講述一下這三點知識的主要內(nèi)容。
1、代數(shù)式的意義
用基本的運算符號(包括加、減、乘、除以及后面所要學(xué)的乘方、開方)將數(shù)及 表示數(shù)的字母連接而成的式子叫代數(shù)式。單個的數(shù)字或字母也叫代數(shù)式。如:5,a, 4x, ab, x+2y, , a2等
2.列代數(shù)式的注意點
、旁诖鷶(shù)式中出現(xiàn)的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。
⑵數(shù)字與數(shù)字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。
、菙(shù)字寫在字母的前面。
⑷在代數(shù)式中出現(xiàn)除法運算時,一般按照分?jǐn)?shù)的寫法來寫, 如s÷t寫作 。
、纱鷶(shù)式中帶分?jǐn)?shù)與字母相乘時,應(yīng)寫成假分?jǐn)?shù)與字母相乘的形式,如 應(yīng)寫作 。
(6)兩個代數(shù)式相乘,應(yīng)該用分?jǐn)?shù)形式表示。
3.代數(shù)式值的意義
用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式指明的運算,計算出的結(jié)果,就叫做代數(shù)式的值。
二、典型例題
例1 填空
、倮忾L是acm 的正方體的體積是___cm3。
、跍囟扔蓆°c下降2°c后是___°c。
、郛a(chǎn)量由m千克增長10%,就達(dá)到___千克。
、躠和b 的倒數(shù)和是___。
、輆和b的和的倒數(shù)是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
說明: ⑴列代數(shù)式的關(guān)鍵在于仔細(xì)審題,弄清題意,正確找出題中的數(shù)量關(guān)系和運算順序,對一些容易混淆的說法,要仔細(xì)進(jìn)行對比,對一些比較復(fù)雜的數(shù)量關(guān)系,可先分段考慮,要正確地使用括號。
、葡馻3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。
例2、用代數(shù)式表示
⑴被4整除得 m的數(shù)
、票2除商為 a余1的數(shù)
、莾蓴(shù)的平均數(shù)
、萢和b兩數(shù)的平方差與這兩數(shù)平方和的商
、梢豁椆こ,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數(shù)。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數(shù)式表示此人行完全路程的平均速度。
⑺個位數(shù)字是8,十位數(shù)字是 b 的兩位數(shù)。
解: ⑴4m ⑵2a+1 ⑶設(shè)這兩個數(shù)分別為a、b、則平均數(shù)為 。
、 ⑸ ⑹ ⑺10b+8
分析說明:
、艛(shù)a除以數(shù)b,除得的商正好是整數(shù),而沒有余數(shù),我們稱a能被b整除。
、颇鼙2整除的'數(shù)叫偶數(shù),不能被2整除的數(shù)叫奇數(shù)。兩個連續(xù)奇數(shù),若較小的是n,則較大的是n +2 。
、菍τ陬}⑶中兩數(shù)沒有給出,為說明其一般性?上仍O(shè)這兩個數(shù)為a, b;用字母表示數(shù)時,在同一個問題中,不同的數(shù)要用不同的字母表示。
、阮}⑷中的a,b兩數(shù)的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。
⑸題⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。
、势骄俣=
所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。
題⑺中主要應(yīng)清楚自然數(shù)的十進(jìn)制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數(shù)總可以用它各個數(shù)位上的數(shù)字來表示。
例3說出下列代數(shù)式的意義。
、 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:說出代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點。
、俨缓ㄌ柕拇鷶(shù)式習(xí)慣從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;
、诤ㄌ柕拇鷶(shù)應(yīng)該把括號里的代數(shù)式看作一個整體,按運算結(jié)果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;
、塾捎诜?jǐn)?shù)線具有除法和括號的雙重作用,應(yīng)該把分子與分母看成一個整體來讀。
解:(1)a的3倍與2的和;
(2)a與2的和的3倍;
(3)a與b的差除以c的商;
(4)a與b除以c的差;
(5)a與b的差的平方;
(6)a、b的平方差。
例4、當(dāng)x=7,y=4, z=0時,求代數(shù)式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
說明:⑴由比例題可以看出,求代數(shù)式值的一般步驟是:①代入 ②計算⑵在代數(shù)式中,數(shù)字與字母之間,字母與字母之間的乘號是省略不寫的。而當(dāng)代入數(shù)據(jù)求值時,都變成了數(shù)字相乘,原來省略的乘號“×”應(yīng)補(bǔ)上。
【一周一練】
1、選擇題
(1)下列各式中,屬于代數(shù)式的有( )個。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代數(shù)式,書寫正確的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代數(shù)式表示“a的 乘以b減去c的積”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用語言敘述代數(shù)式 ,表述不正確的是( )
a、比a的倒數(shù)小2的數(shù); b、a與2的差的倒數(shù)
c、1除以a減去2的商 d、比a小2的數(shù)的倒數(shù)
2、判斷題
、舗除m用代數(shù)式可表示成 ( )
、迫齻連續(xù)的奇數(shù),中間一個是n,其余兩個分別是n-2和n+2( )
⑶如果n是偶數(shù),則緊跟在n后面的兩個連續(xù)奇數(shù)分別是n+1,n+3( )
3、填空題
、琶勘揪毩(xí)本是0.3元,買a本練習(xí)本需__元。
、菩∶饔5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。
、潜3整除得n 的數(shù)是__。
、葌位上的數(shù)是a,十位上的數(shù)是個位上的數(shù)的2倍少3的兩位數(shù)是_。
、杉庸ひ慌慵瞞個,乙先加工n個零件后,甲單獨再做3天才完成任務(wù),則甲平均每天加工零件__個。
、室环N小麥磨成面粉后,重量減少數(shù)15%, b千克小麥磨成面粉后,面粉的重量是__千克。
、艘粋長方形的長是a,寬是長的 還多1,這個長方形的周長是__
⑻a、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。
4.求下列代數(shù)式的值。
、 其中a=2
、飘(dāng) 時,求代數(shù)式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班級里男生人數(shù)比女生人數(shù)的 多16人,男生人數(shù)是a,問a的代數(shù)式表示:⑴女生人數(shù)。 ⑵該班學(xué)生總數(shù);當(dāng)a=25時,求該班學(xué)生總數(shù)。
七年級數(shù)學(xué)教案 篇10
課題:1.2.3相反數(shù)
教學(xué)目標(biāo)
1,掌握相反數(shù)的概念,進(jìn)一步理解數(shù)軸上的點與數(shù)的對應(yīng)關(guān)系;
2,通過歸納相反數(shù)在數(shù)軸上所表示的點的特征,培養(yǎng)歸納能力;
3,體驗數(shù)形結(jié)合的思想。
教學(xué)難點歸納相反數(shù)在數(shù)軸上表示的點的特征
知識重點相反數(shù)的概念
教學(xué)過程(師生活動)設(shè)計理念
設(shè)置情境
引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類
4,-2,-5,+2
允許學(xué)生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當(dāng)?shù)囊龑?dǎo),逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導(dǎo)學(xué)生觀察與原點的距離)
思考結(jié)論:教科書第13頁的思考
再換2個類似的數(shù)試一試。
歸納結(jié)論:教科書第13頁的歸納。以開放的形式創(chuàng)設(shè)情境,以學(xué)生進(jìn)行討論,并培養(yǎng)分類的能力
培養(yǎng)學(xué)生的觀察與歸納能力,滲透數(shù)形思想
深化主題提煉定義給出相反數(shù)的定義
問題2:你怎樣理解相反數(shù)定義中的“只有符號不同”和“互為”一詞的含義?零的相反數(shù)是什么?為什么?
學(xué)生思考討論交流,教師歸納總結(jié)。
規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a
思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關(guān)系?
練一練:教科書第14頁第一個練習(xí)體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準(zhǔn)備。
深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。
強(qiáng)化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義
給出規(guī)律
解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學(xué)生交流。
分別表示+5和-5的相反數(shù)是-5和+5
練一練:教科書第14頁第二個練習(xí)利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法
小結(jié)與作業(yè)
課堂小結(jié)
1,相反數(shù)的定義
2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征
3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?
本課作業(yè)1,必做題教科書第18頁習(xí)題1.2第3題
2,選做題教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的`特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質(zhì)均有廣泛的應(yīng)用.所以本教學(xué)設(shè)計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結(jié)合的思想.
2,教學(xué)引人以開放式的問題人手,培養(yǎng)學(xué)生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復(fù)習(xí)數(shù)軸知識的同時,滲透了數(shù)形結(jié)合的數(shù)學(xué)方法,數(shù)與形的相互轉(zhuǎn)化也能加深對相反數(shù)概念的理解;問題2能幫助學(xué)生準(zhǔn)確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.
3,本教學(xué)設(shè)計體現(xiàn)了新課標(biāo)的教學(xué)理念,學(xué)生在教師的引導(dǎo)下進(jìn)行自主學(xué)習(xí),自主探究,觀察歸納,重視學(xué)生的思維過程,并給學(xué)生留有發(fā)揮的余地.
七年級數(shù)學(xué)教案 篇11
一、教學(xué)目標(biāo)
1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。
2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;
3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。
二、教學(xué)重難點
教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。
教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。
三、教法
主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。
四、教學(xué)過程
(一)創(chuàng)設(shè)情境激活思維
1.學(xué)生觀看鐘祥二中相關(guān)背景視頻
意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。
2.聯(lián)系實際,提出問題。
問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。
學(xué)生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關(guān)地點用什么代表?(直線上的點)
3.學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?
師生活動:
學(xué)生思考后回答解決方法,學(xué)生代表畫圖。
學(xué)生畫圖后提問:
1.0代表什么?
2.數(shù)的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。
問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?
設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負(fù)數(shù)的作用,引導(dǎo)學(xué)生用三要素表達(dá),為定義數(shù)軸的概念提供直觀基礎(chǔ)。
問題4:你能說說上述2個實例的共同點嗎?
設(shè)計意圖:進(jìn)一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。
(二)自主學(xué)習(xí)探究新知
學(xué)生活動:帶著以下問題自學(xué)課本第8頁:
1.什么樣的直線叫數(shù)軸?它具備什么條件。
2.如何畫數(shù)軸?
3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
師生活動:
學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。
設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。
至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)
、贁(shù)軸的定義。
、跀(shù)軸三要素。
練習(xí):(媒體展示)
1.判斷下列圖形是否是數(shù)軸。
2.口答:數(shù)軸上各點表示的數(shù)。
3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?
數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和-a的點進(jìn)行同樣的討論。
設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。
(四)歸納總結(jié)反思提高
師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:
1.什么是數(shù)軸?
2.數(shù)軸的“三要素”各指什么?
3.數(shù)軸的畫法。
設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。
(五)目標(biāo)檢測設(shè)計
1.下列命題正確的是()
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的`數(shù)是_______。
五、板書
1.數(shù)軸的定義。
2.數(shù)軸的三要素(圖)。
3.數(shù)軸的畫法。
4.性質(zhì)。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。
思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數(shù)軸?
定義:規(guī)定了_______、_______、_______的直線叫數(shù)軸。
數(shù)軸的三要素:_______、_______、_______。
2.畫數(shù)軸的步驟是什么?
3.“原點”起什么作用?_______
4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?
練習(xí):
1.畫一條數(shù)軸
2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?
歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的_______邊,與原點的距離是_______個單位長度;表示數(shù)-a的點在原點的_______邊,與原點的距離是_______個單位長度.
練習(xí):
1.數(shù)軸上表示-3的點在原點的_______側(cè),距原點的距離是_______;表示6的點在原點的_______側(cè),距原點的距離是_______;兩點之間的距離為_______個單位長度。
2.距離原點距離為5個單位的點表示的數(shù)是_______。
3.在數(shù)軸上,把表示3的點沿著數(shù)軸負(fù)方向移動5個單位長度,到達(dá)點B,則點B表示的數(shù)是_______。
附:目標(biāo)檢測
1.下列命題正確的是( )
A.數(shù)軸上的點都表示整數(shù)。
B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。
C.數(shù)軸包括原點與正方向兩個要素。
D.數(shù)軸上的點只能表示正數(shù)和零。
2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。
3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。
4.在數(shù)軸上點A表示-4,如果把原點O向負(fù)方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。
七年級數(shù)學(xué)教案 篇12
教學(xué)目標(biāo)
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;
2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類
知識重點 正確理解有理數(shù)的概念
教學(xué)過程
探索新知
在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進(jìn)行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),”。
按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的.意思.
試一試:
按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個引入具有開放的特點,學(xué)生樂于參與
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會
練一練
1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進(jìn)行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號:。
思考:
問題1:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
創(chuàng)新探究
問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時,分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結(jié)與作業(yè)
到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
七年級數(shù)學(xué)教案 篇13
教學(xué)設(shè)計思路
以小組討論的形式在教師的指導(dǎo)下通過回顧與反思前三章所學(xué)內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系,總結(jié)知識結(jié)構(gòu)及主要知識點,側(cè)重對重點知識內(nèi)容、數(shù)學(xué)思想和方法、思維策略的總結(jié)與反思,再通過練習(xí)鞏固這些知識點。
教學(xué)目標(biāo)
知識與技能
對前三章所學(xué)知識作一次系統(tǒng)整理,系統(tǒng)地把握這三章的知識要點;
通過回顧與反思這三章所學(xué)內(nèi)容,領(lǐng)悟新舊知識之間的內(nèi)在聯(lián)系;
通過練習(xí),對所學(xué)知識的認(rèn)識深化一步,以有利于掌握;
發(fā)展觀察問題、分析問題、解決問題的能力;
提高對所學(xué)知識的概括整理能力;
進(jìn)一步發(fā)展有條理地思考和表達(dá)的能力。
過程與方法
在老師的引導(dǎo)下逐張復(fù)習(xí)每張的知識要點,通過練習(xí)來鞏固這些知識點。
情感態(tài)度價值觀
進(jìn)一步體會知識點之間的聯(lián)系;
進(jìn)一步感受數(shù)形結(jié)合的'思想。
教學(xué)重點和難點
重點是這三章的重點內(nèi)容;
難點是能靈活利用這三章的知識來解決問題。
教學(xué)方法
引導(dǎo)、小組討論
課時安排
3課時
教具學(xué)具準(zhǔn)備
多媒體
教學(xué)過程設(shè)計
通過每一章的知識結(jié)構(gòu)及一些相關(guān)問題引導(dǎo)學(xué)生總結(jié)出每一章的知識點。
七年級數(shù)學(xué)教案 篇14
教材分析:
本節(jié)課是新教材幾何教學(xué)的第一節(jié)課,通過學(xué)生身邊的現(xiàn)實生活中的實物,讓學(xué)生感覺圖形世界豐富多彩。經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程.激發(fā)學(xué)生學(xué)習(xí)幾何的熱情.。無需對具體定義的深刻理解,只要學(xué)生能用自己的語言描述它們的某些特征。
教學(xué)目標(biāo):
知識目標(biāo):
在具體情境中認(rèn)識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進(jìn)一步認(rèn)識點、線、面、體,初步感受點、線、面、體之間的'關(guān)系。
能力目標(biāo):
讓學(xué)生經(jīng)歷“幾何模形---圖形---文字”這個抽象過程,培養(yǎng)學(xué)生抽象、辨別能力。
情感目標(biāo):
感受圖形世界的豐富多彩,激發(fā)學(xué)習(xí)幾何的熱情。
教學(xué)重點:
經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關(guān)系。
教學(xué)難點:
抽象能力的培養(yǎng),學(xué)習(xí)熱情的激發(fā)。
教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)、師生互動。
教學(xué)準(zhǔn)備:
多媒體課件、學(xué)生身邊的實物等。
教學(xué)過程:
合作學(xué)習(xí)
問題1:
我們已學(xué)過的或認(rèn)得的存有哪些幾何體?
。▽W(xué)生討論、交流)
問題2:
你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?
。▽W(xué)生討論、舉例)
課本中P162中的合作學(xué)習(xí)
。ń處熆啥嗯e一些平面與曲面的實例讓學(xué)生感受、辨別)
特別指出:
數(shù)學(xué)中的平面是可以無限伸展的
議一論
P163課內(nèi)練習(xí)1
P163課內(nèi)練習(xí)2
師生討論指出:
線與線相交成點,面與面相交成線。
想一想:
觀察下圖,你發(fā)現(xiàn)什么?
師生討論
議一議:
日常生活中的哪些事物給人以點、線的形象。
指出:
日常生活中點與面只是相對的一個感念。如:
在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。
活動探究:
P164課內(nèi)練習(xí)3
應(yīng)用拓展:
請以給定的圖形“〇〇、△△、═”(兩個圓、兩個三角形、兩條平行線)為構(gòu)件,盡可能多地構(gòu)思獨特且有意義的圖形,并寫上一句貼切、詼諧的解說詞。如圖就是符合要求的一個圖形。你還能構(gòu)思出其他的圖形嗎?比一比,看誰想得多。
議一議:
本節(jié)課有什么收獲?
布置作業(yè)
【七年級數(shù)學(xué)教案】相關(guān)文章:
七年級數(shù)學(xué)教案08-19
七年級人教版數(shù)學(xué)教案11-03
七年級數(shù)學(xué)教案03-18
七年級上數(shù)學(xué)教案02-07
初中七年級數(shù)學(xué)教案06-24
七年級下冊數(shù)學(xué)教案08-26
最新七年級數(shù)學(xué)教案09-28
人教版七年級數(shù)學(xué)教案11-14
七年級下冊數(shù)學(xué)教案12-05