熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級數(shù)學(xué)下冊教案

八年級數(shù)學(xué)下冊教案

時間:2024-07-29 22:05:11 秀雯 數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)下冊教案(精選15篇)

  作為一位不辭辛勞的人民教師,可能需要進行教案編寫工作,借助教案可以更好地組織教學(xué)活動。那么寫教案需要注意哪些問題呢?下面是小編整理的八年級數(shù)學(xué)下冊教案,希望能夠幫助到大家。

八年級數(shù)學(xué)下冊教案(精選15篇)

  八年級數(shù)學(xué)下冊教案 1

  【教學(xué)目標(biāo)】

  一、知識目標(biāo)

  經(jīng)歷“實際問題-分式方程方程模型”的過程,經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程表示,體會分式方程的模型作用。

  二、能力目標(biāo)

  知道分時方程的意義,會解可化為一元一次方程的分式方程。

  三、情感目標(biāo)

  在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué)生努力尋找解決問題的進取心,體會數(shù)學(xué)的應(yīng)用價值。

  【教學(xué)重難點】

  將實際問題中的等量關(guān)系用分式方程表示。找實際問題中的等量關(guān)系。

  【教學(xué)過程】

  一、課前預(yù)習(xí)與導(dǎo)學(xué)

  1.什么叫做分式方程?解分式方程的步驟有哪幾步?

  2.判斷下面解方程的過程是否正確,若不正確,請加以改正。

  解方程:=3-

  解:兩邊同乘以(x-1),得

  2=3-x=1,①

  x=3+1-2,②

  所以x=2.③

  (不正確。正確的解:兩邊同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)

  3.解下列分式方程:(1)=(2)+=2.

  二、新課

  (一)情境創(chuàng)設(shè):

  1.甲、乙兩人加工同一種服裝,乙每天比甲多加工1件,已知乙加工24件服裝所用時間與甲加工20件服裝所用時間相同。怎樣用方程來描述其中數(shù)量之間的相等關(guān)系?

  設(shè)甲每天加工服裝多少件,可得方程:

  2.一個兩位數(shù)的各位數(shù)字是4,如果把各位數(shù)字與十位數(shù)字對調(diào),那么所得的兩位數(shù)與原兩位數(shù)的比值是。怎樣用方程來描述其中數(shù)量之間的相等關(guān)系?

  設(shè)這個兩位數(shù)的.十位數(shù)字是x,可得方程:

  3.某校學(xué)生到距離學(xué)校15km的山坡上植樹,一部分學(xué)生騎自行車出發(fā)40min后,另一部分學(xué)生乘汽車出發(fā),結(jié)果全體學(xué)生同時到達。已知汽車的速度是自行車的速度的3倍。怎樣用方程來描述其中數(shù)量之間的相等關(guān)系?

  設(shè)自行車的速度為xkm/h,可得方程:

 。ǘ┨剿骰顒樱

  1.上面所得到的方程有什么共同特點?

  2.這些方程與整式方程有什么區(qū)別?

  結(jié)論:分母中含有未知數(shù)的方程叫做分式方程。

  3.如何解分式方程=?

  解:這個分式方程的兩邊同乘各分式的最簡公分母x(x+1),

  可以得到一元一次方程:20(x+1)=24x

  解這個方程,得

  x=5

  為了判斷x=5是否是原方程的解,我們把x=5代入原方程:

  左邊==4,右邊==4,左邊=右邊。

  x=5是原方程的解。

  說明:解分式方程的一般步驟是先去分母(在分式方程的兩邊同乘各分式的最簡公分母),把不熟悉的分式方程轉(zhuǎn)化為熟悉的一元一次方程來解決。

  三、例題教學(xué):

  例1.解方程:-=0

  板書出解分式方程的一般過程及完整的書寫格式。

  解:方程兩邊同乘x(x-2),得

  3(x-2)-2x=0

  解這個方程,得

  x=6

  把x=6代入原方程:左邊=右邊=0,左邊=右邊。

  x=6是原方程的解。

  四、課堂練習(xí):

  1.下列各式中,分式方程是()

  A.B.C.D.

  2.分式方程解的情況是()

  A.有解,B.有解C.有解,D.無解

  3.解下列方程:

  4.為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為人,那么滿足怎樣的方程?并求解。

  八年級數(shù)學(xué)下冊教案 2

  教學(xué)目標(biāo):

  1、理解運用平方差公式分解因式的方法。

  2、掌握提公因式法和平方差公式分解因式的綜合運用。

  3、進一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問題的能力。

  教學(xué)重點:

  運用平方差公式分解因式。

  教學(xué)難點:

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運用。

  教學(xué)過程:

  我們數(shù)學(xué)組的觀課議課主題:

  1、關(guān)注學(xué)生的合作交流

  2、如何使學(xué)困生能積極參與課堂交流。

  在精心備課過程中,我設(shè)計了這樣的自學(xué)提示:

  1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

  2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?

 、-x2+y2②-x2-y2③4-9x2

 、(x+y)2-(x-y)2⑤a4-b4

  3、試總結(jié)運用平方差公式因式分解的條件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導(dǎo),生自主探究后交流合作。

  生交流熱情很高,但把全部問題分析完已用了30分鐘。

  生展示自學(xué)成果。

  生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。

  生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對,應(yīng)分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數(shù)或整式的平方差的形式。

  生5:a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對,a2-b2還能繼續(xù)分解為a+b)(a-b)

  師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數(shù)或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止!

  反思:這節(jié)課我備課比較認真,自學(xué)提示的`設(shè)計也動了一番腦筋,為讓學(xué)生順利得出運用平方差公式因式分解的條件,我設(shè)計了問題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計了問題4,自認為,本節(jié)課一定會上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨立完成,反思這節(jié)課主要有以下幾個問題:

  (1)我在備課時,過高估計了學(xué)生的能力,問題2中的③、④、⑤多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時,多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學(xué)生的注意力,導(dǎo)致難點、重點不突出,若能把問題2改為:

  下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。

  (2)教師備課時,要考慮學(xué)生的知識層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進,切莫過于心急,過分追求課堂容量、習(xí)題類型全等等,例如在問題2的設(shè)計時可寫一些簡單的,像④、⑤可到練習(xí)時再出現(xiàn),發(fā)現(xiàn)問題后再強調(diào)、歸納,效果也可能會更好。

  我及時調(diào)整了自學(xué)提示的內(nèi)容,在另一個班也上了這節(jié)課。果然,學(xué)生的討論有了重點,很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時有點不能應(yīng)對自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試!鄙珠_始緊張地練習(xí)……下課后,無意間發(fā)現(xiàn)竟還有好幾個同學(xué)課后題沒做。原因是預(yù)習(xí)時不會,上課又沒時間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學(xué)生的齊答,要發(fā)揮組長的職責(zé),注重過關(guān)落實。給學(xué)生一點機動時間,讓學(xué)習(xí)有困難的學(xué)生有機會釋疑,練習(xí)不在于多,要注意融會貫通,會舉一反三。

  確實,“學(xué)海無涯,教海無邊”。我們備課再認真,預(yù)設(shè)再周全,面對不同的學(xué)生,不同的學(xué)情,仍然會產(chǎn)生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學(xué)設(shè)計,更新教育觀念,直到永遠……

  八年級數(shù)學(xué)下冊教案 3

  教學(xué)目標(biāo):

  學(xué)會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。

  教學(xué)重點:

  去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的.方法、

  教學(xué)難點:

  解分式方程的一般步驟。

  教學(xué)過程:

  復(fù)習(xí)引入:

  1、什么叫分式方程?

  2、解分式方程的基本思想:分式方程整式方程

  3、解方程(學(xué)生板演)

  講授新課:

  1、由上述學(xué)生的板演歸納出解分式方程的一般步驟

  (1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;

 。2)解這個整式方程;

 。3)檢驗:將所得的解代入原方程的最簡公分母,若最簡公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、

  2、范例講解

 。▽W(xué)生嘗試練習(xí)后,教師講評)

  例1:解方程例2:解方程例3:解方程講評時強調(diào):

  1、怎樣確定最簡公分母?(先將各分母因式分解)

  2、解分式方程的步驟、

  鞏固練習(xí):P1471t,2t、

  課堂小結(jié):解分式方程的一般步驟

  布置作業(yè):見作業(yè)本。

  八年級數(shù)學(xué)下冊教案 4

  一、教學(xué)目標(biāo)

  (一)教學(xué)知識點

  1.掌握三角形相似的判定方法2、3。

  2.會用相似三角形的判定方法2、3來判斷、證明及計算。

  (二)能力訓(xùn)練要求

  1.通過自己動手并總結(jié)推出相似三角形的判定方法2、3,培養(yǎng)學(xué)生的動手操作能力,總結(jié)概括能力。

  2.利用相似三角形的判定方法2、3進行判斷,訓(xùn)練學(xué)生的靈活運用能力。

  (三)情感與價值觀要求

  1.通過探索相似三角形的判定方法2、3,體現(xiàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。

  2.通過對判定方法的探索,發(fā)展學(xué)生思維的靈活性,進一步培養(yǎng)邏輯推理能力,領(lǐng)會分類思想。

  二、教學(xué)重難點

  教學(xué)重點:相似三角形判定方法2、3的推導(dǎo)過程,掌握判定方法2、3并能靈活運用。

  教學(xué)難點:判定方法的推導(dǎo)及運用

  三、教學(xué)過程設(shè)計

  (一)創(chuàng)設(shè)情境,引入新課

  投影片

  [生]有四對相似三角形,它們是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他們相似的理由都是用相似三角形的判定方法1。

  [師]現(xiàn)在我們已經(jīng)有兩種方法可以判定兩個三角形相似,一種是定義,一種是判定方法1,除此之外,是否還有其他的辦法來判定兩個三角形相似?這一問題就是本節(jié)課我們需要研究的問題。

  (二)新課講授

  [師]相似三角形的判定方法1是只從角的方面考慮的,下面我們只從邊的方面去考慮。我們在學(xué)習(xí)全等三角形的判定方法中,也有只用邊來進行判斷的,即SSS公理。大家能不能用類比的方法,猜想只用邊來判定三角形相似的方法呢?

  [生]三邊對應(yīng)成比例的兩個三角形相似。

  [師]下面我們就來驗證一下。

  1.相似三角形的判定方法2:三邊對應(yīng)成比例的兩個三角形相似。

  投影片

  個組取一個相同的k值,不同的組取不同的k值,好嗎?

  [生]好。

  [師]經(jīng)過大家的親身參與體會,你們得出的結(jié)論是什么呢?

  [生]結(jié)論為∠A=∠A′,∠B=∠B′,∠C=∠C′

  △ABC∽△A′B′C′,理由是:

  ∠A=∠A′,∠B=∠B′,∠C=∠C′

  根據(jù)相似三角形的定義可知:△ABC∽△A′B′C′。

  [師]其他組的同學(xué)的結(jié)論相同嗎?

  [生]相同。

  [師]經(jīng)過大家的探討,我們又掌握了一種相似三角形的判定方法,即三邊對應(yīng)成比例的兩個三角形相似。

  2.相似三角形的判定方法3。

  [師]前面兩種判定方法我們都是只從角或只從邊的方面去考慮的,下面我們要從兩方面來考慮。還是要類比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我們就不用考慮了,因為我們已經(jīng)有判定方法1、3,下面來驗證SAS,大家還是先猜想,然后再驗證。

  [生]兩邊對應(yīng)成比例且夾角相等的兩個三角形相似。

  [師]好,下面我們還是由大家自己推導(dǎo)吧,請看投影片

  [師]請大家按照上面的步驟進行,同時還要采取不同的組取不同的值法。

  [生]按照要求作出的△ABC與△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根據(jù)判定方法1可知,△ABC∽△A′B′C′。

  [師]大家同意嗎?

  [生]同意。

  [師]好,我們又探索出一個相似三角形的判定方法,即兩邊對應(yīng)成比例且夾角相等的兩個三角形相似。

  3.想一想

  107

  [師]下面驗證SSA,即兩邊對應(yīng)成比例,其中一邊的對角對應(yīng)相等,這兩個三角形相似嗎?

  在全等三角形的.判定中SSA就不成立。大家還可以仿照上面的驗證過程來進行推導(dǎo),下面是小明和小穎分別畫出的一個滿足條件的三角形,由此你能得到什么結(jié)論?

  [生]從上面的圖中可以得出結(jié)論:有兩邊對應(yīng)成比例,其中一邊的對角相等的三角形不相似。

  4.做一做

  [師]在這兩節(jié)課中我們已經(jīng)學(xué)完了一般相似三角形的判定方法,下面請大家總結(jié)一下有幾種方法。

  [生]一共有四種方法

  第一種:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似,即定義法。

  第二種:即判定方法1

  兩角對應(yīng)相等的兩個三角形相似

  第三種:即判定方法2

  三邊對應(yīng)成比例的兩個三角形相似

  第四種:即判定方法3

  兩邊對應(yīng)成比例且夾角相等的兩個三角形相似

  [師]從這四種方法中我們可以看出,第一種判定方法比較麻煩,需要研究三對角、三對邊,而后面的幾種方法最多只需要研究三對邊或角,因此定義法一般不利用。如果已知條件只涉及角,就用第二種判定方法;如果已知條件只涉及邊,就用第三種判定方法;如果既有角又有邊,則可考慮用第四種方法判斷。

  5.議一議

  如圖,△ABC與△A′B′C′相似嗎?你有哪些判斷方法?

  [生]解:△ABC∽△A′B′C′

  判斷方法有

  1.三邊對應(yīng)成比例的兩個三角形相似

  2.兩角對應(yīng)相等的兩個三角形相似

  3.兩邊對應(yīng)成比例且夾角相等

  4.定義法

  (三)鞏固應(yīng)用,拓展研究

  下面每組的兩個三角形是否相似?為什么?

  生]解:(1)△ABC∽△DEF

  ∵

  ∴△ABC∽△DEF

  (2)在△ABC中

  AB=2,AC=6

  ∵∠A=∠A

  ∴△ABC∽△AEF

  (四)練習(xí)鞏固,促進遷移

  依據(jù)下列各組條件,判定△ABC與△A′B′C′是不是相似,并說明為什么

  (1)∠A=120°,AB=7 cm,AC=14 cm,

  ∠A′=120°,A′B′=3 cm,A′C′=6 cm,

  (2)AB=4 cm,BC=6 cm,AC=8 cm,

  A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.解:

  又∵∠A=∠A′

  ∴△ABC∽△A′B′C′(兩邊對應(yīng)成比例且夾角相等,兩三角形相似)

  ∴△ABC∽△A′B′C′(三邊對應(yīng)成比例,兩三角形相似)

  (五)回顧聯(lián)系,形成結(jié)構(gòu)

  本節(jié)課主要探討了相似三角形的另兩種判定方法,即三邊對應(yīng)成比例與兩邊對應(yīng)成比例且夾角相等的兩個三角形相似.培養(yǎng)了大家的探索精神,同時讓學(xué)生懂得了數(shù)學(xué)活動充滿著探索與創(chuàng)新,學(xué)習(xí)的目的是能運用學(xué)過的知識去解決問題,在這里就是能利用判定方法進行有關(guān)證明。

  八年級數(shù)學(xué)下冊教案 5

  教學(xué)準(zhǔn)備

  教師準(zhǔn)備:投影儀,教具:課本“探究”內(nèi)容;補充材料制成投影片.

  學(xué)生準(zhǔn)備:復(fù)習(xí)平行四邊形性質(zhì);學(xué)具:課本“探究”內(nèi)容.

  學(xué)法解析

  1.認知題后:學(xué)習(xí)了三角形全等、平行四邊形定義、性質(zhì)以后學(xué)習(xí)本節(jié)課內(nèi)容.

  2.知識線索:

  3.學(xué)習(xí)方式:采用動手操作來發(fā)現(xiàn)新的知識,通過交流形成知識體系.

  教學(xué)過程

  一、回顧交流,逆向思索

  教師提問:

  1.平行四邊形定義是什么?如何表示?

  2.平行四邊形性質(zhì)是什么?如何概括?

  學(xué)生活動:思考后舉手回答:

  回答:1.兩組對邊分別平行的四邊形叫做平行四邊形(教師在黑板上畫出下圖:幫助學(xué)生直觀理解)

  回答:2.平行四邊形性質(zhì)從邊考慮:

 。1)對邊平行

 。2)對邊相等

 。3)對邊平行且相等;從角考慮:對角相等;從對角線考慮:兩條對角線互相平分.(借助上圖直觀理解).

  教師歸納:(投影顯示)

  平行四邊形【活動方略】

  教師活動:操作投影儀,顯示課本P96和P97“探究”的問題.用問題牽引學(xué)生動手操作、思考、發(fā)現(xiàn)、歸納、論證,可以讓學(xué)生分成4人小組討論,然后再進行小組匯報,教師同時也拿出教具同學(xué)在一起探索.

  學(xué)生活動:分四人小組,拿出準(zhǔn)備好的學(xué)具探究.在活動中發(fā)現(xiàn):

 。1)將兩長兩短的四根細木條(或用硬紙片),用小釘鉸合在一起,做成四邊形,如果等長的木條成對邊,那么無論如何轉(zhuǎn)動這四邊形,它的形狀都是平行四邊形;

 。2)若將兩根細木條中點用釘子釘合在一起,用像皮筋連接木條的'頂點,做成一個四邊形,轉(zhuǎn)動兩根木條,這個四邊形是平行四邊形.

  (3)將兩條等長的木條平行放置,另外用兩根木條(不一定等長)用釘子予以加固,得到的四邊形一定是平行四邊形。

  八年級數(shù)學(xué)下冊教案 6

  教學(xué)目標(biāo):

  情意目標(biāo):培養(yǎng)學(xué)生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。

  能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

  認知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

  教學(xué)重點、難點

  重點:等腰梯形性質(zhì)的探索;

  難點:梯形中輔助線的添加。

  教學(xué)課件:

  PowerPoint演示文稿

  教學(xué)方法:

  啟發(fā)法、

  學(xué)習(xí)方法:

  討論法、合作法、練習(xí)法

  教學(xué)過程:

  (一)導(dǎo)入

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

  4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

  (二)等腰梯形性質(zhì)的`探究

  【探究性質(zhì)一】

  思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。

  【操練】

  (1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

  (2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

  【探究性質(zhì)二】

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質(zhì):等腰梯形的兩條對角線相等。

  【探究性質(zhì)三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等

  (三)質(zhì)疑反思、小結(jié)

  讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

  學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

  八年級數(shù)學(xué)下冊教案 7

  一、教學(xué)目標(biāo):

  1、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題

  2、會用計算器求加權(quán)平均數(shù)的值

  3、會運用樣本估計總體的方法來獲得對總體的認識

  二、重點、難點:

  1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  三、教學(xué)過程:

  1、復(fù)習(xí)

  組中值的定義:上限與下限之間的中點數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2。

  因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的`好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計算量。

  為了更好的理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實際意義。

  2、教材P140探究欄目的意圖

 、、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。

  ②、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。

  這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。

  3、教材P140的思考的意圖。

 、佟⑹箤W(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題。

 、、幫助學(xué)生理解表中所表達出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。

  4、利用計算器計算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。

  5、運用樣本估計總體

  要使學(xué)生掌握在哪些情況下需要通過用樣本估計總體的方法來獲得對總體的認識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況。

  八年級數(shù)學(xué)下冊教案 8

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點、難點

  1、重點:理解分式的基本性質(zhì)。

  2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認知難點與突破方法

  教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1、P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

  2、P9的例3、例4地目的是進一步運用分式的'基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

  3。P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘—’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。

  四、課堂引入

  1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分數(shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2。填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

  P11例3。約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4。通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  八年級數(shù)學(xué)下冊教案 9

  教學(xué)目標(biāo):

  1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

  2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標(biāo)準(zhǔn)差和方差,能借助計算器求出相應(yīng)的數(shù)值。

  教學(xué)重點:

  會計算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。

  教學(xué)難點:

  理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。

  教學(xué)準(zhǔn)備:

  計算器,投影片等

  教學(xué)過程:

  一、創(chuàng)設(shè)情境

  1、投影課本P138引例。

  2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。

  二、活動與探究

  如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿(投影課本159頁圖)

  問題:

  1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

  2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。

  3、在甲、丙兩廠中,你認為哪個廠雞腿質(zhì)量更符合要求?為什么?

  (在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時導(dǎo)致學(xué)生思想認識上的.矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。

  三、講解概念:

  方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

  設(shè)有一組數(shù)據(jù):

  則s2=

  而s=稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)

  從上面計算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  四、做一做

  你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

  (通過對此問題的解決,使學(xué)生回顧了用計算器求平均數(shù)的步驟,并自由探索求方差的詳細步驟)

  五、鞏固練習(xí):課本第172頁隨堂練習(xí)

  六、課堂小結(jié):

  1、怎樣刻畫一組數(shù)據(jù)的離散程度?

  2、怎樣求方差和標(biāo)準(zhǔn)差?

  七、布置作業(yè):習(xí)題5.5第1、2題。

  八年級數(shù)學(xué)下冊教案 10

  一、教材分析:

  《正方形》這節(jié)課是九年義務(wù)版數(shù)學(xué)教材八年級下冊第章第二節(jié)的內(nèi)容。縱觀整個教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識及簡單圖形的平移和旋轉(zhuǎn)等平面幾何知識,并且具備有初步的觀察、操作等活動經(jīng)驗的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。

  本節(jié)課的重點是正方形的概念和性質(zhì),難點是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標(biāo)。

  (一)知識目標(biāo):

  1、要求學(xué)生掌握正方形的概念及性質(zhì);

  2、能正確運用正方形的性質(zhì)進行簡單的計算、推理、論證;

 。ǘ┠芰δ繕(biāo):

  1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動手、探究、分析、歸納、等能力;

  2、發(fā)展學(xué)生合情推理意識,主動探究的習(xí)慣,逐步掌握說理的基本方法;

  (三)情感目標(biāo):

  1、讓學(xué)生樹立科學(xué)、嚴(yán)謹、理論聯(lián)系實際的良好學(xué)風(fēng);

  2、培養(yǎng)學(xué)生互相幫助、團結(jié)協(xié)作、相互討論的精神;

  3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。

  二、學(xué)生分析:

  該段學(xué)生具有一定的獨立思考和探究的能力,但表達能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過程中,特意設(shè)計了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。

  三、教法分析:

  針對本節(jié)課的特點,采用"--觀察--總結(jié)歸納--運用"為主線的教學(xué)方法。

  通過學(xué)生動手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對定義、性質(zhì)理解、鞏固加以升華。

  四、學(xué)法分析:

  本節(jié)課重點是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點,著重指導(dǎo)學(xué)生動手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗合作學(xué)習(xí)的樂趣。

  五、教學(xué)程序:

  第一環(huán)節(jié):相關(guān)知識回顧

  以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實質(zhì)是由平行四邊形角度、邊變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學(xué)生們通過手上的`學(xué)具演示以上兩種變化,從而得出結(jié)論。

  第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”

  1、正方形的定義:引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學(xué)們舉手,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

  2、正方形的性質(zhì)

  定理1:正方形的四個角都是直角,四條邊都相等;

  定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。

  以上是對正方形定義和性質(zhì)的學(xué)習(xí),之后是進行例題講解。

  4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質(zhì)的進一步理解,并考察學(xué)生掌握的情況。

  第二部分是選擇題,通過體現(xiàn)生活中實際問題,來提升學(xué)生所學(xué)的知識,并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認識到數(shù)學(xué)實質(zhì)是來源于生活并要于生活。

  5、課堂小結(jié):此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識充實自己,達到理想中的完美。

  6、作業(yè)設(shè)計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進一步鞏固有關(guān)正方形的知識。

  八年級數(shù)學(xué)下冊教案 11

  一、教材分析

  1、特點與地位:重點中的重點。

  本課是教材求兩結(jié)點之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運輸、通訊網(wǎng)絡(luò)等方面具有一定的實用意義。

  2、重點與難點:結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

 。1)重點:如何將現(xiàn)實問題抽象成求解最短路徑問題,以及該問題的解決方案。

 。2)難點:求解最短路徑算法的程序?qū)崿F(xiàn)。

  3、教學(xué)安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結(jié)點的最短路徑,另一種是求每一對結(jié)點之間的最短路徑。根據(jù)教學(xué)大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應(yīng)用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結(jié)合,逐步推動教學(xué)過程。

  二、教學(xué)目標(biāo)分析

  1、知識目標(biāo):掌握最短路徑概念、能夠求解最短路徑。

  2、能力目標(biāo):

 。1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。

 。2)通過旅游景點線路選擇問題的解決,培養(yǎng)學(xué)生的獨立思考、分析問題、解決問題的能力。

  3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。

  三、教法分析

  課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時輔以多媒體課件,以啟發(fā)的方式展開教學(xué)。由于本節(jié)課的`內(nèi)容屬于圖這一章的難點,考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進度是本節(jié)課成功的關(guān)鍵。

  四、學(xué)法指導(dǎo)

  1、課前上次課結(jié)課時給學(xué)生布置任務(wù),使其有針對性的預(yù)習(xí)。

  2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識點。

  3、課后給學(xué)生布置同類型任務(wù),加強練習(xí)。

  五、教學(xué)過程分析

 。ㄒ唬┱n前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

  教學(xué)方法及注意事項:

  (1)采用提問方式,注意及時小結(jié),提問的目的是幫助學(xué)生回憶概念。

 。2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

 。ǘ⿲(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個點間最短距離的實際需要,引出本課教學(xué)內(nèi)容“求最短路徑問題”。教學(xué)方法及注意事項:

 。1)先講實例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實現(xiàn)教學(xué)內(nèi)容的自然過渡。

  (2)此處使用案例教學(xué)法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

 。ㄈ┲v授新課(25~30分鐘)

  1、求某一結(jié)點到其他各結(jié)點的最短路徑(重點)主要采用案例教學(xué)法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。

  (1)將實際問題抽象成圖中求任一結(jié)點到其他結(jié)點最短路徑問題。(3~5分鐘)教學(xué)方法及注意事項:

  ①主要采用講授法,將實際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

 、谧⒁馐痉懂媹D只進行一部分,讓學(xué)生獨立思考、自主完成余下部分的轉(zhuǎn)化。

 、奂皶r總結(jié),原型抽象(景點作為圖的結(jié)點,景點間的線路作為圖的邊,旅途費用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點到其他各結(jié)點的最短路徑問題。

 、芾枚嗝襟w課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。

  教學(xué)方法及注意事項:

 、賳l(fā)式教學(xué),如何實現(xiàn)按路徑長度遞增產(chǎn)生最短路徑?

 、诮Y(jié)合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨立思考完成。

 。ㄋ模┱n堂小結(jié)(3~5分鐘)

  1、明確本節(jié)課重點

  2、提示學(xué)生,這種方式形成的圖又可以解決哪類實際問題呢?

 。ㄎ澹┎贾米鳂I(yè)

  書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時間安排。

  六、教學(xué)特色

  以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動起來。在順利開展教學(xué)的同時,體現(xiàn)所講內(nèi)容的實用性,提高學(xué)生的學(xué)習(xí)興趣。

  八年級數(shù)學(xué)下冊教案 12

  一、學(xué)習(xí)目標(biāo)及重、難點:

  1、了解方差的定義和計算公式。

  2、理解方差概念產(chǎn)生和形成過程。

  3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。

  重點:掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

  難點:理解方差公式。

  二、自主學(xué)習(xí):

  (一)知識詳解:

  方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為

  用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即

  給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。

  (二)自主檢測小練習(xí):

  1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。

  2、甲、乙兩組數(shù)據(jù)如下:

  甲組:10 9 11 8 12 13 10 7;

  乙組:7 8 9 10 11 12 11 12。

  分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。

  三、新課講解:

  引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):

  甲:9.10.10.13.7.13.10.8.11.8;

  乙:8.13.12.11.10.12.7.7.10.10;

  問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù): = )?

  (2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))

  歸納:方差:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為

  用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。

  (一)例題講解:

  例1、段巍和金志強兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭,哪個人的'成績比較穩(wěn)定?為什么?

  測試次數(shù)第1次第2次第3次第4次第5次段巍1314131213金志強101291311

  金志強 10 13 16 14 12

  提示:先求平均數(shù),然后使用公式計算方差。

  (二)小試身手

  1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:

  甲:7.8.6.8.6.5.9.10.7.4

  乙:9.5.7.8.7.6.8.6.7.7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但 S = ,S = ,則 S S ,所以確定去參加比賽。

  1、求下列數(shù)據(jù)的眾數(shù):

  (1)3.2.5.3.1.2.3 (2)5.2.1.5.3.5.2.2

  2.8年級一班有46個學(xué)生,其中13歲的有5人,14歲的有20人,15歲的有15人,16歲的有6人。8年級一班學(xué)生年齡的平均數(shù)、中位數(shù)、眾數(shù)分別是多少?

  四、課堂小結(jié)

  方差公式:

  提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。

  每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。

  五、課堂檢測:

  1、小爽和小兵在10次百米跑步練習(xí)中的成績?nèi)缦卤硭荆?單位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?

  六、課后作業(yè):

  必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊對應(yīng)部分習(xí)題。

  七、學(xué)習(xí)小札記:

  寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

  八年級數(shù)學(xué)下冊教案 13

  一、教學(xué)目標(biāo)

  ①經(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨立思考、集體協(xié)作的能力。

  ②理解整式除法的算理,發(fā)展有條理的思考及表達能力。

  二、教學(xué)重點與難點

  重點:整式除法的運算法則及其運用。

  難點:整式除法的運算法則的推導(dǎo)和理解,尤其是單項式除以單項式的運算法則。

  三、教學(xué)準(zhǔn)備

  卡片及多媒體課件。

  四、教學(xué)設(shè)計

 。ㄒ唬┣榫骋

  教科書第161頁問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?

  重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

  注:教科書從實際問題引入單項式的'除法運算,學(xué)生在探索這個問題的過程中,將自然地體會到學(xué)習(xí)單項式的除法運算的必要性,了解數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。

 。ǘ┨骄啃轮

 。1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據(jù)是什么?

  (2)你能利用(1)中的方法計算下列各式嗎?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

  (3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?

  注:教師可以鼓勵學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。

  單項式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進行。探究活動的安排,是使學(xué)生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分數(shù)的約分進行。在這些活動過程中,學(xué)生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強調(diào)的。

 。ㄈw納法則

  單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

  注:通過總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語言表達自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

 。ㄋ模⿷(yīng)用新知

  例2計算:

  (1)28x4y2÷7x3y;

 。2)—5a5b3c÷15a4b。

  首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學(xué)生口述,教師板書的形式完成?谑龊桶鍟紤(yīng)注意展示法則的應(yīng)用,計算過程要詳盡,使學(xué)生盡快熟悉法則。

  注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學(xué)生來講,難免會出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細心解答問題。

  鞏固新知教科書第162頁練習(xí)1及練習(xí)2。

  學(xué)生自己嘗試完成計算題,同桌交流。

  注:在獨立解題和同伴的相互交流過程中讓學(xué)生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動參與學(xué)習(xí)的習(xí)慣。

 。ㄎ澹┳鳂I(yè)

  1、必做題:教科書第164頁習(xí)題15。3第1題;第2題。

  2、選做題:教科書第164頁習(xí)題15。3第8題

  八年級數(shù)學(xué)下冊教案 14

  一、學(xué)習(xí)目標(biāo)

  1.使學(xué)生了解運用公式法分解因式的意義;

  2.使學(xué)生掌握用平方差公式分解因式

  二、重點難點

  重點:掌握運用平方差公式分解因式。

  難點:將單項式化為平方形式,再用平方差公式分解因式。

  學(xué)習(xí)方法:歸納、概括、總結(jié)。

  三、合作學(xué)習(xí)

  創(chuàng)設(shè)問題情境,引入新課

  在前兩學(xué)時中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的.因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

  如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。

  1.請看乘法公式

  左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

  利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式講解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精講精練

  例1、把下列各式分解因式:

 。1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

 。1)9(m+n)2—(m—n)2;(2)2x3—8x。

  補充例題:判斷下列分解因式是否正確。

 。1)(a+b)2—c2=a2+2ab+b2—c2。

 。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、課堂練習(xí)

  教科書練習(xí)。

  六、作業(yè)

  1、教科書習(xí)題。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

  八年級數(shù)學(xué)下冊教案 15

  教學(xué)目標(biāo):

  1、了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。

  2、了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。

  教學(xué)重點:

  算術(shù)平方根的概念。

  教學(xué)難點:

  根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。

  教學(xué)過程

  一、情境導(dǎo)入

  請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少?如果這塊畫布的面積是?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的'問題?

  這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容。這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念。

  二、導(dǎo)入新課:

  1、提出問題:(書P68頁的問題)

  你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)

  這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值。

  一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術(shù)平方根。a的算術(shù)平方根記為,讀作根號a,a叫做被開方數(shù)。規(guī)定:0的算術(shù)平方根是0。

  也就是,在等式=a(x0)中,規(guī)定x = 。

  2、試一試:你能根據(jù)等式:=144說出144的算術(shù)平方根是多少嗎?并用等式表示出來。

  3、想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值。例如表示25的算術(shù)平方根。

  4、例1求下列各數(shù)的算術(shù)平方根:

 。1)100;(2)1;(3);(4)0。0001

  三、練習(xí)

  P69練習(xí)1、2

  四、探究:(課本第69頁)

  怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵學(xué)生探究。

  問題:這個大正方形的邊長應(yīng)該是多少呢?

  大正方形的邊長是,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

  建議學(xué)生觀察圖形感受的大小。小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究。

  五、小結(jié):

  1、這節(jié)課學(xué)習(xí)了什么呢?

  2、算術(shù)平方根的具體意義是怎么樣的?

  3、怎樣求一個正數(shù)的算術(shù)平方根

  六、課外作業(yè):

  P75習(xí)題13.1活動第1、2、3題

【八年級數(shù)學(xué)下冊教案】相關(guān)文章:

八年級數(shù)學(xué)下冊教案05-16

八年級數(shù)學(xué)下冊教案01-10

數(shù)學(xué)下冊教案03-16

八年級下冊數(shù)學(xué)教案01-01

八年級數(shù)學(xué)下冊教案【優(yōu)秀】05-22

八年級數(shù)學(xué)下冊教案[優(yōu)選]05-19

人教版八年級數(shù)學(xué)下冊教案04-27

八年級數(shù)學(xué)下冊教案【熱門】05-19

八年級下冊數(shù)學(xué)教案優(yōu)秀02-29

八年級數(shù)學(xué)下冊教案15篇01-10