- 相關推薦
高一數(shù)學優(yōu)秀教案最新
作為一名為他人授業(yè)解惑的教育工作者,常常要寫一份優(yōu)秀的教案,借助教案可以更好地組織教學活動。教案要怎么寫呢?以下是小編整理的高一數(shù)學優(yōu)秀教案最新,歡迎大家借鑒與參考,希望對大家有所幫助。
高一數(shù)學優(yōu)秀教案最新1
教學目標:
(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體
問題,感受集合語言的意義和作用;
教學重點:
集合的基本概念與表示方法;
教學難點:
運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學過程:
一、引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。
二、新課教學
。ㄒ唬┘系挠嘘P概念
1、集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這
些東西,并且能判斷一個給定的東西是否屬于這個總體。
2、一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡
稱集。
3、關于集合的元素的特征
。1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
。2)互異性:一個給定集合中的元素,指屬于這個集合的'互不相同的個體(對象),因此,同一集合中不應重復出現(xiàn)同一元素。
。3)集合相等:構(gòu)成兩個集合的元素完全一樣
4、元素與集合的關系;
。1)如果a是集合A的元素,就說a屬于(belongto)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(notbelongto)A,記作aA(或aA)
5、常用數(shù)集及其記法
非負整數(shù)集(或自然數(shù)集),記作N
正整數(shù)集,記作N__或N+;
整數(shù)集,記作Z
有理數(shù)集,記作Q
實數(shù)集,記作R
。ǘ┘系谋硎痉椒
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
。1)列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},;
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
。2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。
具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},;
強調(diào):描述法表示集合應注意集合的代表元素
{(x,y)|y=x2+3x+2}與{y|y=x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。
說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
三、歸納小結(jié)
本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關系
教材分析:類比實數(shù)的大小關系引入集合的包含與相等關系
高一數(shù)學優(yōu)秀教案最新2
教學目標:
1、掌握對數(shù)的運算性質(zhì),并能理解推導這些法則的依據(jù)和過程;
2、能較熟練地運用法則解決問題;
教學重點:
對數(shù)的運算性質(zhì)
教學過程:
一、問題情境:
1、指數(shù)冪的運算性質(zhì);
2、問題:對數(shù)運算也有相應的運算性質(zhì)嗎?
二、學生活動:
1、觀察教材P59的表2—3—1,驗證對數(shù)運算性質(zhì)、
2、理解對數(shù)的運算性質(zhì)、
3、證明對數(shù)性質(zhì)、
三、建構(gòu)數(shù)學:
1)引導學生驗證對數(shù)的運算性質(zhì)、
2)推導和證明對數(shù)運算性質(zhì)、
3)運用對數(shù)運算性質(zhì)解題、
探究:
、俸喴渍Z言表達:“積的對數(shù)=對數(shù)的和”……
②有時逆向運用公式運算:如
、壅鏀(shù)的.取值范圍必須是:不成立;不成立、
④注意:
四、數(shù)學運用:
1、例題:
例1、(教材P60例4)求下列各式的值:
。1);(2)125;(3)(補充)lg、
例2、(教材P60例4)已知,求下列各式的值(結(jié)果保留4位小數(shù))
(1);(2)、
例3、用,表示下列各式:
例4、計算:
2、練習:
P60(練習)1,2,4,5、
五、回顧小結(jié):
本節(jié)課學習了以下內(nèi)容:對數(shù)的運算法則,公式的逆向使用、
六、課外作業(yè):
P63習題5
補充:
1、求下列各式的值:
。1)6—3;(2)lg5+lg2;(3)3+、
2、用lgx,lgy,lgz表示下列各式:
(1)lg(xyz);(2)lg;(3);(4)、
3、已知lg2=0、3010,lg3=0、4771,求下列各對數(shù)的值(精確到小數(shù)點后第四位)
。1)lg6;(2)lg;(3)lg;(4)lg32、
高一數(shù)學優(yōu)秀教案最新3
數(shù)學教案-圓錐的體積
教學目標
1、使學生理解求圓錐體積的計算公式。
2、會運用公式計算圓錐的體積。
教學重點
圓錐體體積計算公式的推導過程。
教學難點
正確理解圓錐體積計算公式。
教學步驟
一、鋪墊孕伏
1、提問:
。1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側(cè)面和高。
2、導入:同學們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題。(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式。
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法。老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土。實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里。倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2、學生分組實驗
3、學生匯報實驗結(jié)果(課件演示:圓錐體的體積1、2、3、4、5)下載1下載2下載3下載4下載5
①圓柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿。
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿。
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿。
……
4、引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的。
板書:
5、推導圓錐的體積公式:用字母表示圓錐的體積公式。板書:
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是( )
圓錐的底面積是10,高是9,體積是( )
(二)教學例1
1、例1一個圓錐形的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
學生獨立計算,集體訂正。
板書:
答:這個零件的體積是76立方厘米。
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
(1)已知圓錐的底面半徑和高,求體積。
。2)已知圓錐的底面直徑和高,求體積。
(3)已知圓錐的底面周長和高,求體積。
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
(三)教學例2
1、例2在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應怎么辦?
這道題應先求什么?再求什么?最后求什么?
2、學生獨立解答,集體訂正。
板書:(1)麥堆底面積:
=3.14×4
=12.56(平方米)
。2)麥堆的`體積:
12.56×1.2
=15.072(立方米)
。3)小麥的重量:
735×15.072
=11077.92
≈11078(千克)
答:這堆小麥大約重11078千克。
3、教學如何測量麥堆的底面直徑和高。
。1)啟發(fā)學生根據(jù)自己的生活經(jīng)驗來討論、談想法。
(2)教師補充介紹。
a.測量麥堆的底面直徑可以用繩子在麥堆底部圓周圍圈一圈,量得麥堆的周長,再算直徑。也可用兩根竹竿平行地放在麥堆的兩側(cè),量得兩根竹竿的距離,就是麥堆的'直徑。
b.測量麥堆的高,可用兩根竹竿在麥堆旁邊組成兩個直角后量得。
三、全課小結(jié)
通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
【高一數(shù)學優(yōu)秀教案最新】相關文章:
高一數(shù)學優(yōu)秀教案12-27
高一優(yōu)秀數(shù)學教案09-28
高一數(shù)學教案優(yōu)秀09-05
高一數(shù)學的教案04-27
職高數(shù)學高一教案10-13
高一數(shù)學必修一優(yōu)秀教案(5篇)12-31
最新數(shù)學教案02-14