- 相關(guān)推薦
高二數(shù)學優(yōu)秀教案優(yōu)秀
作為一名教學工作者,可能需要進行教案編寫工作,教案有助于順利而有效地開展教學活動。那么優(yōu)秀的教案是什么樣的呢?以下是小編幫大家整理的高二數(shù)學優(yōu)秀教案優(yōu)秀,僅供參考,歡迎大家閱讀。
教學目的:
1、使學生理解線段的垂直平分線的性質(zhì)定理及逆定理,掌握這兩個定理的關(guān)系并會用這兩個定理解決有關(guān)幾何問題。
2、了解線段垂直平分線的軌跡問題。
3、結(jié)合教學內(nèi)容培養(yǎng)學生的動作思維、形象思維和抽象思維能力。
教學重點:
線段的垂直平分線性質(zhì)定理及逆定理的引入證明及運用。
教學難點:
線段的垂直平分線性質(zhì)定理及逆定理的關(guān)系。
教學關(guān)鍵:
1、垂直平分線上所有的點和線段兩端點的距離相等。
2、到線段兩端點的距離相等的所有點都在這條線段的垂直平分線上。
教具:投影儀及投影膠片。
教學過程:
一、提問
1、角平分線的性質(zhì)定理及逆定理是什么?
2、怎樣做一條線段的垂直平分線?
二、新課
1、請同學們在課堂練習本上做線段AB的垂直平分線EF(請一名同學在黑板上做)。
2、在EF上任取一點P,連結(jié)PA、PB量出PA=?,PB=?引導(dǎo)學生觀察這兩個值有什么關(guān)系?
通過學生的觀察、分析得出結(jié)果PA=PB,再取一點P'試一試仍然有P'A=P'B,引導(dǎo)學生猜想EF上的所有點和點A、點B的距離都相等,再請同學把這一結(jié)論敘述成命題(用幻燈展示)。
定理:線段的垂直平分線上的點和這條線段的兩個端點的距離相等。
例題:
已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點P在EF上
求證:PA=PB
如何證明PA=PB學生分析得出只要證RTΔPCA≌RTΔPCB
答:證明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定義)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的對應(yīng)邊相等)。
反過來,如果PA=PB,P1A=P1B,點P,P1在什么線上?
過P,P1做直線EF交AB于C,可證明ΔPAP1≌PBP1(SSS)
∴EF是等腰三角型ΔPAB的頂角平分線
∴EF是AB的垂直平分線(等腰三角形三線合一性質(zhì))
∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發(fā)學生敘述)(用幻燈展示)。
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
根據(jù)上述定理和逆定理可以知道:直線MN可以看作和兩點A、B的距離相等的所有點的集合。
線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。
三、舉例(用幻燈展示)
例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點P,求證:PA=PB=PC。
證明:∵點P在線段AB的垂直平分線上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例題PA=PC知點P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點P,這點到三個頂點的距離相等。
四、小結(jié)
正確的運用這兩個定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點在線段的垂直平分線上。
《教案設(shè)計說明》
線段的垂直平分線的性質(zhì)定理及逆定理,都是幾何中的重要定理,也是一條重要軌跡。在幾何證明、計算、作圖中都有重要應(yīng)用。我講授這節(jié)課是線段垂直平分線的第一節(jié)課,主要完成定理的引出、證明和初步的運用。
在設(shè)計教案時,我結(jié)合教材內(nèi)容,對如何導(dǎo)入新課,引出定理以及證明進行了探索。在導(dǎo)入新課這一環(huán)節(jié)上我先讓學生做一條線段AB的垂直平分線EF,在EF上取一點P,讓學生量出PA、PB的長度,引導(dǎo)學生觀察、討論每個人量得的這兩個長度之間有什么關(guān)系:得到什么結(jié)論?學生回答:PA=PB。然后再讓學生取一點試一試,這兩個長度也相等,由此引導(dǎo)學生猜想到線段垂直平分線的性質(zhì)定理。在這一過程中讓學生主動積極的參與到教學中來,使學生通過作圖、觀察、量一量再得出結(jié)論。從而把知識的形成過程轉(zhuǎn)化為學生親自參與、發(fā)現(xiàn)、探索的過程。在教學時,引導(dǎo)學生分析性質(zhì)定理的題設(shè)與結(jié)論,畫圖寫出已知、求證,通過分析由學生得出證明性質(zhì)定理的方法,這個過程既是探索過程也是調(diào)動學生動腦思考的過程,只有學生動腦思考了,才能真正理解線段垂直平分線的性質(zhì)定理,以及證明方法。在此基礎(chǔ)上再提出如果有兩點到線段的兩端點的距離相等,這樣的點應(yīng)在什么樣的直線上?由條件得出這樣的點在線段的垂直平分線上,從而引出性質(zhì)定理的逆定理,由上述兩個定理使學生再進一步知道線段的垂直平分線可以看作是到線段兩端點距離的所有點的集合。這樣可以幫助學生認識理論來源于實踐又服務(wù)于實踐的道理,也能提高他們學習的積極性,加深對所學知識的理解。在講解例題時引導(dǎo)學生用所學的線段垂直平分線的性質(zhì)定理以及逆定理來證,避免用三角形全等來證。最后總結(jié)點P是三角形三邊垂直平分線的交點,這個點到三個頂點的距離相等。為了使學生當堂掌握兩個定理的靈活運用,讓學生做87頁的兩個練習,以達到鞏固知識的目的。