- 相關(guān)推薦
初中數(shù)學(xué)教案答案八年級上冊最新
作為一無名無私奉獻(xiàn)的教育工作者,往往需要進(jìn)行教案編寫工作,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。我們該怎么去寫教案呢?下面是小編為大家收集的初中數(shù)學(xué)教案答案八年級上冊最新,供大家參考借鑒,希望可以幫助到有需要的朋友。
初中數(shù)學(xué)教案答案八年級上冊最新1
教學(xué)目標(biāo)
1、知識與技能
能應(yīng)用所學(xué)的函數(shù)知識解決現(xiàn)實(shí)生活中的問題,會建構(gòu)函數(shù)“模型”。
2、過程與方法
經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維。
3、情感、態(tài)度與價值觀
培養(yǎng)變量與對應(yīng)的思想,形成良好的函數(shù)觀點(diǎn),體會一次函數(shù)的應(yīng)用價值。
重、難點(diǎn)與關(guān)鍵
1、重點(diǎn):一次函數(shù)的應(yīng)用。
2、難點(diǎn):一次函數(shù)的'應(yīng)用。
3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維。
教學(xué)方法
采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用。
教學(xué)過程
一、范例點(diǎn)擊,應(yīng)用所學(xué)
【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象。
【例6】A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?
解:設(shè)總運(yùn)費(fèi)為y元,A城往運(yùn)C鄉(xiāng)的肥料量為x噸,則運(yùn)往D鄉(xiāng)的肥料量為(200—x)噸。B城運(yùn)往C、D鄉(xiāng)的肥料量分別為(240—x)噸與(60+x)噸。y與x的關(guān)系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由圖象可看出:當(dāng)x=0時,y有最小值10040,因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)200噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸,此時總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元。
拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?
二、隨堂練習(xí),鞏固深化
課本P119練習(xí)。
三、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學(xué)生自我評價本節(jié)課的表現(xiàn)。
四、布置作業(yè),專題突破
課本P120習(xí)題14.2第9,10,11題。
板書設(shè)計
1、一次函數(shù)的應(yīng)用例:
初中數(shù)學(xué)教案答案八年級上冊最新2
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>
2。當(dāng)x
>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的'被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
(3)由于x取任何實(shí)數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學(xué)教案答案八年級上冊最新3
教學(xué)目標(biāo):
知識與技能
1、掌握直角三角形的判別條件,并能進(jìn)行簡單應(yīng)用;
2、進(jìn)一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型。
3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論。
情感態(tài)度與價值觀
敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。
教學(xué)重點(diǎn)
運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論。
教學(xué)難點(diǎn)
會辨析哪些問題應(yīng)用哪個結(jié)論。
課前準(zhǔn)備
標(biāo)有單位長度的細(xì)繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法。
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
、比绾蝸砼袛啵浚ㄓ弥苯侨前鍣z驗(yàn))
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的.關(guān)系?
就是說,如果三角形的三邊為,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:5,12,13;6,8,10;8,15,17。
(1)這三組數(shù)都滿足a2 +b2=c2嗎?
。2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2,那么這個三角形是直角三角形。
滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)。
、蠢1一個零件的形狀如左圖所示,按規(guī)定這個零件中∠A和∠DBC都應(yīng)為直角。工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習(xí):
⒈下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由。
、9,12,15;⑵15,36,39;
、12,35,36;⑷12,18,22。
、惨阎?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角。
、乘倪呅蜛BCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積。
、戳(xí)題1.3
課堂小結(jié):
、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2 +b2=c2,那么這個三角形是直角三角形。
、矟M足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)。勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)。
初中數(shù)學(xué)教案答案八年級上冊最新4
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識,主動探究的習(xí)慣,進(jìn)一步體會數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識及能力。
重點(diǎn)難點(diǎn):
重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示投影2(書中的`P2圖1—2)并回答:
1、觀察圖
1—2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即A的面積為______個單位。
正方形C中有_______個小方格,即A的面積為______個單位。
2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖
1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖
1—3中,A,B,C之間有什么關(guān)系?
2、圖
1—4中,A,B,C之間有什么關(guān)系?
3、從圖
1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖
1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以
5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題
△ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個題目條件不足,第三邊無法求得。
2、練習(xí)P
7 §1.1 1
六、作業(yè)
課本P7 §1.1 2、3、4
初中數(shù)學(xué)教案答案八年級上冊最新5
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的'取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實(shí)數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實(shí)數(shù)時,式子在實(shí)數(shù)范圍有意義?
解:略。
說明:這個問題實(shí)質(zhì)上是在x是什么數(shù)時,x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時,下列各式為二次根式:
初中數(shù)學(xué)教案答案八年級上冊最新6
教學(xué)目標(biāo):
1、經(jīng)歷運(yùn)用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣。
2、掌握勾股定理和他的簡單應(yīng)用
重點(diǎn)難點(diǎn):
重點(diǎn):能熟練運(yùn)用拼圖的方法證明勾股定理
難點(diǎn):用面積證勾股定理
教學(xué)過程
七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的`學(xué)習(xí)熱情,導(dǎo)入課題
我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實(shí)例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?
(同學(xué)們回答有這幾種可能:(1)(2))
在同學(xué)交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。
=請同學(xué)們對上面的式子進(jìn)行化簡,得到:即=
這就可以從理論上說明勾股定理存在。請同學(xué)們?nèi)ビ脛e的拼圖方法說明勾股定理。
八、講例
1、飛機(jī)在空中水平飛行,某一時刻剛好飛機(jī)飛到一個男孩頭頂正上方4000多米處,過20秒,飛機(jī)距離這個男孩頭頂5000米,飛機(jī)每時飛行多少千米?
分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機(jī)每小時飛行多少千米,就要知道飛機(jī)在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。
解:由勾股定理得
即BC=3千米飛機(jī)20秒飛行3千米,那么它1小時飛行的距離為:
答:飛機(jī)每個小時飛行540千米。
九、議一議
展示投影2(書中的圖1—9)
觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足
同學(xué)在議論交流形成共識之后,老師總結(jié)。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作業(yè)
1、課文P11§1.2 1 、2
2、選用作業(yè)。
【初中數(shù)學(xué)教案答案八年級上冊最新】相關(guān)文章:
八年級上冊數(shù)學(xué)教案11-09
八年級上冊數(shù)學(xué)教案12-11