熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2024-06-21 10:20:58 八年級數(shù)學教案 我要投稿

八年級數(shù)學教案[通用]

  作為一位杰出的教職工,時常需要編寫教案,編寫教案有利于我們科學、合理地支配課堂時間。教案要怎么寫呢?下面是小編幫大家整理的八年級數(shù)學教案,僅供參考,大家一起來看看吧。

八年級數(shù)學教案[通用]

八年級數(shù)學教案1

  第11章平面直角坐標系

  11。1平面上點的坐標

  第1課時平面上點的坐標(一)

  教學目標

  【知識與技能】

  1。知道有序?qū)崝?shù)對的概念,認識平面直角坐標系的相關(guān)知識,如平面直角坐標系的構(gòu)成:橫軸、縱軸、原點等。

  2。理解坐標平面內(nèi)的點與有序?qū)崝?shù)對的一一對應關(guān)系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

  3。能在方格紙中建立適當?shù)钠矫嬷苯亲鴺讼祦砻枋鳇c的位置。

  【過程與方法】

  1。結(jié)合現(xiàn)實生活中表示物體位置的例子,理解有序?qū)崝?shù)對和平面直角坐標系的作用。

  2。學會用有序?qū)崝?shù)對和平面直角坐標系中的點來描述物體的位置。

  【情感、態(tài)度與價值觀】

  通過引入有序?qū)崝?shù)對、平面直角坐標系讓學生體會到現(xiàn)實生活中的問題的解決與數(shù)學的發(fā)展之間有聯(lián)系,感受到數(shù)學的價值。

  重點難點

  【重點】

  認識平面直角坐標系,寫出坐標平面內(nèi)點的坐標,已知坐標能在坐標平面內(nèi)描出點。

  【難點】

  理解坐標系中的坐標與坐標軸上的數(shù)字之間的關(guān)系。

  教學過程

  一、創(chuàng)設情境、導入新知

  師:如果讓你描述自己在班級中的位置,你會怎么說?

  生甲:我在第3排第5個座位。

  生乙:我在第4行第7列。

  師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數(shù)字確定下來。

  二、合作探究,獲取新知

  師:在以上幾個問題中,我們根據(jù)一個物體在兩個互相垂直的方向上的數(shù)量來表示這個物體

  的位置,這兩個數(shù)量我們可以用一個實數(shù)對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

  生:3排5號。

  師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數(shù)對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

  生:用一個有序的實數(shù)對來表示。

  師:對。我們學過實數(shù)與數(shù)軸上的點是一一對應的,有序?qū)崝?shù)對是不是也可以和一個點對應起來呢?

  生:可以。

  教師在黑板上作圖:

  我們可以在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸。水平的數(shù)軸叫做x軸或橫軸,取向右為

  正方向;豎直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構(gòu)成了平面直角坐標系,這個平面叫做坐標平面。

  師:有了平面直角坐標系,平面內(nèi)的點就可以用一個有序?qū)崝?shù)對來表示了,F(xiàn)在請大家自己動手畫一個平面直角坐標系。

  學生操作,教師巡視。教師指正學生易犯的錯誤。

  教師邊操作邊講解:

  如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

  教師多媒體出示:

  師:如圖,請同學們寫出A、B、C、D這四點的坐標。

  生甲:A點的坐標是(—5,4)。

  生乙:B點的坐標是(—3,—2)。

  生丙:C點的坐標是(4,0)。

  生。篋點的坐標是(0,—6)。

  師:很好!我們已經(jīng)知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

  教師邊操作邊講解:

  在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

  學生動手作圖,教師巡視指導。

  三、深入探究,層層推進

  師:兩個坐標軸把坐標平面劃分為四個區(qū)域,從x軸正半軸開始,按逆時針方向,把這四個區(qū)域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內(nèi)的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

  生:都一樣。

  師:對,由作垂線求坐標的過程,我們知道第一象限內(nèi)的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內(nèi)點的坐標的符號嗎?

  生:能。第二象限內(nèi)的點的坐標的符號為(—,+),第三象限內(nèi)的點的坐標的符號為(—,—),第四象限內(nèi)的點的坐標的符號為(+,—)。

  師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

  生:能,在第二象限。

  四、練習新知

  師:現(xiàn)在我給出幾個點,你們判斷一下它們分別在哪個象限。

  教師寫出四個點的'坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

  生甲:A點在第三象限。

  生乙:B點在第四象限。

  生丙:C點不屬于任何一個象限,它在y軸上。

  生丁:D點不屬于任何一個象限,它在x軸上。

  師:很好!現(xiàn)在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

  學生作圖,教師巡視,并予以指導。

  五、課堂小結(jié)

  師:本節(jié)課你學到了哪些新的知識?

  生:認識了平面直角坐標系,會寫出坐標平面內(nèi)點的坐標,已知坐標能描點,知道了四個象限以及四個象限內(nèi)點的符號特征。

  教師補充完善。

  教學反思

  物體位置的說法和表述物體的位置等問題,學生在實際生活中經(jīng)常遇到,但可能沒有想到這些問題與數(shù)學的聯(lián)系。教師在這節(jié)課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數(shù)學的魅力。在教學中我讓學生由生活中的實例與坐標的聯(lián)系感受坐標的實用性,增強了學生學習數(shù)學的興趣。

  第2課時平面上點的坐標(二)

  教學目標

  【知識與技能】

  進一步學習和應用平面直角坐標系,認識坐標系中的圖形。

  【過程與方法】

  通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發(fā)展抽象思維能力。

  【情感、態(tài)度與價值觀】

  培養(yǎng)學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

  重點難點

  【重點】

  理解平面上的點連接成的圖形,計算圍成的圖形的面積。

  【難點】

  不規(guī)則圖形面積的求法。

  教學過程

  一、創(chuàng)設情境,導入新知

  師:上節(jié)課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

  學生作圖。

  教師邊操作邊講解:

  二、合作探究,獲取新知

  師:現(xiàn)在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

  生甲:三角形。

  生乙:直角三角形。

  師:你能計算出它的面積嗎?

  生:能。

  教師挑一名學生:你是怎樣算的呢?

  生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

  師:很好!

  教師邊操作邊講解:

  大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

  圖形?

  學生完成操作后回答:平行四邊形。

  師:你能計算它的面積嗎?

  生:能。

  教師挑一名學生:你是怎么計算的呢?

  生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

  教師多媒體出示下圖:

八年級數(shù)學教案2

   一、學習目標及重、難點:

  1、了解方差的定義和計算公式。

  2、理解方差概念的產(chǎn)生和形成的過程。

  3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。

  難點:理解方差公式

  二、自主學習:

  (一)知識我先懂:

  方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用

  來表示。

  給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  (二)自主檢測小練習:

  1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的`方差為 。

  2、甲、乙兩組數(shù)據(jù)如下:

  甲組:10 9 11 8 12 13 10 7;

  乙組:7 8 9 10 11 12 11 12.

  分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.

  三、新課講解:

  引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、 10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )

  (2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )

  歸納: 方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。

  (一)例題講解:

  例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、

  測試次數(shù) 第1次 第2次 第3次 第4次 第5次

  段巍 13 14 13 12 13

  金志強 10 13 16 14 12

  給力提示:先求平均數(shù),在利用公式求解方差。

  (二)小試身手

  1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定

  去參加比賽。

  1、求下列數(shù)據(jù)的眾數(shù):

  (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

  2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?

  四、課堂小結(jié)

  方差公式:

  給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  每課一首詩:求方差,有公式;先平均,再求差;

  求平方,再平均;所得數(shù),是方差。

  五、課堂檢測:

  1、小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

  七、學習小札記:

  寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

八年級數(shù)學教案3

  教學目標:

  1、知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù))、

  2、掌握整數(shù)指數(shù)冪的運算性質(zhì)、

  3、會用科學計數(shù)法表示小于1的數(shù)、

  教學重點:

  掌握整數(shù)指數(shù)冪的運算性質(zhì)。

  難點:

  會用科學計數(shù)法表示小于1的數(shù)。

  情感態(tài)度與價值觀:

  通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐。能利用事物之間的類比性解決問題、

  教學過程:

  一、課堂引入

  1、回憶正整數(shù)指數(shù)冪的運算性質(zhì):

 。1)同底數(shù)的冪的乘法:am?an = am+n(m,n是正整數(shù));

 。2)冪的乘方:(am)n = amn (m,n是正整數(shù));

 。3)積的乘方:(ab)n = anbn (n是正整數(shù));

 。4)同底數(shù)的冪的.除法:am÷an = am?n(a≠0,m,n是正整數(shù),m>n);

 。5)商的乘方:()n = (n是正整數(shù));

  2、回憶0指數(shù)冪的規(guī)定,即當a≠0時,a0 = 1、

  3、你還記得1納米=10?9米,即1納米=米嗎?

  4、計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、總結(jié):一般地,數(shù)學中規(guī)定:當n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學生由特殊情形入手,來看這條性質(zhì)是否成立、事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n(m,n是整數(shù))這條性質(zhì)也是成立的、

  三、科學記數(shù)法:

  我們已經(jīng)知道,一些較大的數(shù)適合用科學記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學記數(shù)法來表示,例如:0。000012 = 1。2×10?即小于1的正數(shù)可以用科學記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0。0000000012 = 1。2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應該是?m?1。

八年級數(shù)學教案4

  第三十四學時:14.2.1平方差公式

  一、學習目標:

  1.經(jīng)歷探索平方差公式的過程。

  2.會推導平方差公式,并能運用公式進行簡單的運算。

  二、重點難點

  重點:平方差公式的推導和應用;

  難點:理解平方差公式的結(jié)構(gòu)特征,靈活應用平方差公式。

  三、合作學習

  你能用簡便方法計算下列各題嗎?

 。1)20xx×1999(2)998×1002

  導入新課:計算下列多項式的積.

  (1)(x+1)(x—1);

  (2)(m+2)(m—2)

 。3)(2x+1)(2x—1);

 。4)(x+5y)(x—5y)。

  結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的.積,等于這兩個數(shù)的平方差。

  即:(a+b)(a—b)=a2—b2

  四、精講精練

  例1:運用平方差公式計算:

 。1)(3x+2)(3x—2);

 。2)(b+2a)(2a—b);

 。3)(—x+2y)(—x—2y)。

  例2:計算:

  (1)102×98;

  (2)(y+2)(y—2)—(y—1)(y+5)。

  隨堂練習

  計算:

 。1)(a+b)(—b+a);

  (2)(—a—b)(a—b);

  (3)(3a+2b)(3a—2b);

 。4)(a5—b2)(a5+b2);

 。5)(a+2b+2c)(a+2b—2c);

 。6)(a—b)(a+b)(a2+b2)。

  五、小結(jié)

 。╝+b)(a—b)=a2—b2

八年級數(shù)學教案5

  一、教學目標

  1.使學生理解并掌握分式的概念,了解有理式的概念;

  2.使學生能夠求出分式有意義的條件;

  3.通過類比分數(shù)研究分式的教學,培養(yǎng)學生運用類比轉(zhuǎn)化的思想方法解決問題的能力;

  4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認識.

  二、重點、難點、疑點及解決辦法

  1.教學重點和難點 明確分式的分母不為零.

  2.疑點及解決辦法 通過類比分數(shù)的意義,加強對分式意義的理解.

  三、教學過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數(shù)的經(jīng)驗,可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結(jié)論:

  用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的'分子,叫做分式的分母.

  (2)由學生舉幾個分式的例子.

  (3)學生小結(jié)分式的概念中應注意的問題.

  ①分母中含有字母.

 、谌缤謹(shù)一樣,分式的分母不能為零.

  (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

  2.有理式的分類

  請學生類比有理數(shù)的分類為有理式分類:

  例1 當取何值時,下列分式有意義?

  (1);

  解:由分母得.

  ∴當時,原分式有意義.

  (2);

  解:由分母得.

  ∴當時,原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實數(shù)時,原分式都有意義.

  (4).

  解:由分母得.

  ∴當且時,原分式有意義.

  思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

  例2 當取何值時,下列分式的值為零?

  (1);

  解:由分子得.

  而當時,分母.

  ∴當時,原分式值為零.

  小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當時,分母,分式無意義.

  當時,分母.

  ∴當時,原分式值為零.

  (3);

  解:由分子得.

  而當時,分母.

  當時,分母.

  ∴當或時,原分式值都為零.

  (4).

  解:由分子得.

  而當時,,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結(jié)、擴展

  1.分式與分數(shù)的區(qū)別.

  2.分式何時有意義?

  3.分式何時值為零?

  (五)隨堂練習

  1.填空題:

  (1)當時,分式的值為零

  (2)當時,分式的值為零

  (3)當時,分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設計

  課題 例1

  1.定義例2

  2.有理式分類

八年級數(shù)學教案6

  一、素質(zhì)教育目標

  (一)知識教學點

  1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應用.

  2.使學生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.

  3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.

  (二)能力訓練點

  1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.

  2.通過教學,使學生逐步學會分別從題設或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的'能力.

  (三)德育滲透點

  通過一題多解激發(fā)學生的學習興趣.

  (四)美育滲透點

  通過學習,體會幾何證明的方法美.

  二、學法引導

  構(gòu)造逆命題,分析探索證明,啟發(fā)講解.

  三、重點·難點·疑點及解決辦法

  1.教學重點:平行四邊形的判定定理1、2、3的應用.

  2.教學難點:綜合應用判定定理和性質(zhì)定理.

  3.疑點及解決辦法:在綜合應用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理

  (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).

八年級數(shù)學教案7

  一、教學目的

  1.使學生進一步理解自變量的取值范圍和函數(shù)值的意義.

  2.使學生會用描點法畫出簡單函數(shù)的圖象.

  二、教學重點、難點

  重點:1.理解與認識函數(shù)圖象的意義.

  2.培養(yǎng)學生的看圖、識圖能力.

  難點:在畫圖的三個步驟的列表中,如何恰當?shù)剡x取自變量與函數(shù)的對應值問題.

  三、教學過程

  復習提問

  1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

  2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?

  3.說出下列各點所在象限或坐標軸:

  新課

  1.畫函數(shù)圖象的方法是描點法.其步驟:

  (1)列表.要注意適當選取自變量與函數(shù)的對應值.什么叫“適當”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.

  一般地,我們把自變量與函數(shù)的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數(shù)的對應值列出表來.

  (2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標,在直角坐標系中描出相應的點.

  (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.

  一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).

  2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.

  小結(jié)

  本節(jié)課的重點是讓學生根據(jù)函數(shù)解析式畫函數(shù)圖象的'三個步驟,自己動手畫圖.

  練習

 、龠x用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)

 、谘a充題:畫出函數(shù)y=5x-2的圖象.

  作業(yè)

  選用課本習題.

  四、教學注意問題

  1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認識函數(shù)的本質(zhì)特征.

  2.注意充分調(diào)動學生自己動手畫圖的積極性.

  3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養(yǎng)學生看圖、識圖的能力.

八年級數(shù)學教案8

  一、教學目標

 、俳(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學生獨立思考、集體協(xié)作的能力。

 、诶斫庹匠ǖ乃憷,發(fā)展有條理的思考及表達能力。

  二、教學重點與難點

  重點:整式除法的運算法則及其運用。

  難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。

  三、教學準備

  卡片及多媒體課件。

  四、教學設計

 。ㄒ唬┣榫骋

  教科書第161頁問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?

  重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

  注:教科書從實際問題引入單項式的除法運算,學生在探索這個問題的.過程中,將自然地體會到學習單項式的除法運算的必要性,了解數(shù)學與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。

 。ǘ┨骄啃轮

 。1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據(jù)是什么?

 。2)你能利用(1)中的方法計算下列各式嗎?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

  (3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?

  注:教師可以鼓勵學生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的語言進行描述。

  單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分數(shù)的約分進行。在這些活動過程中,學生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標所強調(diào)的。

 。ㄈw納法則

  單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。

  注:通過總結(jié)法則,培養(yǎng)學生的概括能力,養(yǎng)成用數(shù)學語言表達自己想法的數(shù)學學習習慣。

 。ㄋ模⿷眯轮

  例2計算:

  (1)28x4y2÷7x3y;

 。2)—5a5b3c÷15a4b。

  首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成。口述和板書都應注意展示法則的應用,計算過程要詳盡,使學生盡快熟悉法則。

  注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現(xiàn)照看不全的情況,所以更應督促學生細心解答問題。

  鞏固新知教科書第162頁練習1及練習2。

  學生自己嘗試完成計算題,同桌交流。

  注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學生良好的思維習慣和主動參與學習的習慣。

 。ㄎ澹┳鳂I(yè)

  1、必做題:教科書第164頁習題15。3第1題;第2題。

  2、選做題:教科書第164頁習題15。3第8題

八年級數(shù)學教案9

  教學目標

  1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

  2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題

  教學重點:平行四邊形的判定方法及應用

  教學難點:平行四邊形的判定定理與性質(zhì)定理的靈活應用

  一.引

  小明的父親手中有一些木條,他想通過適當?shù)?測量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

  二.探

  閱讀教材P44至P45

  利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:

  (1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

  (2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

  (3)你能說出你的做法及其道理嗎?

  (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

  (5)你還能找出其他方法嗎?

  從探究中得到:

  平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

  平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

  證一證

  平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

  證明:(畫出圖形)

  平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

八年級數(shù)學教案10

  分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。

 。2)—3x≥0,x≤0,即x≤0時,是二次根式。

 。3),且x≠0,∴x>0,當x>0時,是二次根式。

 。4),即,故x—2≥0且x—2≠0,∴x>

  2。當x

  >2時,是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的`取值范圍是全體實數(shù)。

  (4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

八年級數(shù)學教案11

  教學目標

  理解平行四邊形的定義,能根據(jù)定義探究平行四邊形的性質(zhì).

  教學思考

  1.通過觀察、實驗、猜想、驗證、推理、交流等數(shù)學活動,發(fā)展學生合情推理能力和動手操作能力及應用數(shù)學的意識與能力.

  2.能夠根據(jù)平行四邊形的性質(zhì)進行簡單的推理和計算.

  解決問題

  通過平行四邊形性質(zhì)的探索過程,豐富學生從事數(shù)學活動的經(jīng)驗與體驗,能運用平行四邊形的性質(zhì)進行有關(guān)的推理和計算,發(fā)展應用意識.

  情感態(tài)度

  在應用平行四邊形的性質(zhì)的過程養(yǎng)成獨立思考的習慣,在數(shù)學學習活動中獲得成功的體驗.

  重點

  平行四邊形的性質(zhì)的'探究和平行四邊形的性質(zhì)的應用.

  難點

  平行四邊形的性質(zhì)的應用.

  教學流程安排

  活動流程圖

  活動內(nèi)容和目的

  活動1欣賞圖片,了解生活中的特殊四邊形

  活動2剪三角形紙片,拼凸四邊形

  活動3理解平行四邊形的概念

  活動4探究平行四邊形邊、角的性質(zhì)

  活動5平行四邊形性質(zhì)的應用

  活動6評價反思、布置作業(yè)

  熟悉生活中特殊的四邊形,導出課題.

  通過用三角形拼四邊形的過程,滲透轉(zhuǎn)化思想,激發(fā)探索精神.

  掌握平行四邊形的定義及表示方法.

  探究平行四邊形的性質(zhì).

  運用平行四邊形的性質(zhì).

  學生交流,內(nèi)化知識,課后鞏固知識.

  教學過程設計

  問題與情景

  師生行為

  設計意圖

[活動1]

  下面的圖片中,有你熟悉的哪些圖形?

 。ǔ鍪緢D片)

  演示圖片,學生欣賞.

  教師介紹四邊形與我們生活密切聯(lián)系,學生可再補充列舉.

  從實例圖片中,抽象出的特殊四邊形,培養(yǎng)學生的抽象思維.通過舉例,讓學生感受到數(shù)學與我們的生活緊密聯(lián)系.

  問題與情景

  師生行為

  設計意圖

  [活動2]

  拼一拼

  將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.

 。1)你拼出了怎樣的凸四邊形?與同伴交流.

 。2)一位同學拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關(guān)系?說說你的理由.

  學生經(jīng)過實驗操作,開展獨立思考與合作學習.

  教師深入學生之中,觀察學生頻出的方法與過程,接受學生質(zhì)疑并指導個別學生探究.

  教師待學生充分探究后,請學生展示拼圖的方法和不同的圖形.并引導學生分析(2)中的四邊形的邊的位置特征,從而引出本節(jié)課研究的內(nèi)容

八年級數(shù)學教案12

  學習目標:

  1. 在同一直角坐標系中,感受點的坐標變化與圖形的變化之間的關(guān)系,并能找出變化規(guī)律。

  2. 通過坐標的變化探索新舊圖形之間的變化。

  重點:

  1. 對稱軸的對稱圖形,并且能寫出所得圖形各點的坐標。

  2. 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。

  難點:

  1. 理解并應用直角坐標與極坐標。

  2. 解決一些簡單的問題。

  學習過程:

  第一課時

  一、舊知回顧:

  1. 平面直角坐標系定義:在平面內(nèi),兩條垂直且有公共端點的數(shù)軸組成平面直角坐標系。

  2. 坐標平面內(nèi)點的坐標的表示方法是(x,y)。

  3. 各象限點的坐標的特征:

  第一象限:x和y坐標都是正數(shù)。第二象限:x坐標為負數(shù),y坐標為正數(shù)。第三象限:x和y坐標都是負數(shù)。第四象限:x坐標為正數(shù),y坐標為負數(shù)。

  二、新知檢索:

  1. 在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形。

  三、典例分析:

  例1、

  (1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?

  (2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?

  例2、

  (1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  (2) 將魚的頂點的橫坐標不變,縱坐標變成原來的一半,并繪制圖形。分析得到的圖形和原圖形之間有什么不同?

  四、習題組訓練

  1、在平面直角坐標系中,將點(0,0)、(2,4)、(2,0)和(4,4)連接形成一個圖案。

  (1)將這四個點的縱坐標保持不變,橫坐標變成原來的一半,然后依次連接得到新圖形。得到的圖形和原圖形之間有什么變化?

  (2)將縱坐標和橫坐標都增加3,所得到的圖形會發(fā)生怎樣的變化?

  (3)將縱坐標和橫坐標都乘以2,所得到的圖形會發(fā)生怎樣的變化?

  歸納得出:圖形坐標變化的規(guī)律

  1、平移規(guī)律

  2、圖形伸縮規(guī)律

  第二課時

  一、已學內(nèi)容回顧:

  1、軸對稱圖形的定義:如果一個圖形能夠沿著某條軸翻折成重合的兩部分,那么這個圖形就是軸對稱圖形。

  2、中心對稱圖形的定義:如果一個圖形繞著某個點旋轉(zhuǎn)一定的度數(shù)后與原圖形完全重合,那么這個圖形就是中心對稱圖形。

  二、新學內(nèi)容引入:

  1、如下圖所示,左邊的魚和右邊的魚是關(guān)于y軸對稱的。

  (1) 左邊的魚可以通過平移、壓縮或拉伸來得到右邊的魚嗎?

  (2) 左邊魚和右邊魚的頂點坐標之間有怎樣的關(guān)系?

  (3) 如果將右邊的魚沿著x軸正方向平移1個單位長度,然后通過不改變關(guān)于y軸對稱的條件,那么左邊的魚的.頂點坐標會發(fā)生怎樣的變化?

  三、典型例題解析:

  1、如下圖所示,右邊的魚是通過何種變換得到左邊的魚的?

  2、如果將右邊魚的橫坐標保持不變,縱坐標變成原來的一倍,繪制得到的圖形與原圖形之間有何不同?

  3、如果將右邊魚的縱坐標和橫坐標都變成原來的一倍,所得到的圖形和原圖形之間有何不同?

  四、習題組練習:

  1、當坐標發(fā)生如下變化時,圖形會做出怎樣的變化?

  1、已知點位移的矩陣:

 、 (x,y) → (x,y + 4)

 、 (x,y) → (x,y - 2)

 、 (x,y) → (1/2x,y)

  ④ (x,y) → (3x,y)

 、 (x,y) → (x,1/2y)

  ⑥ (x,y) → (3x,3y)

  2、在第一象限內(nèi)有一只蝴蝶,現(xiàn)在在第二象限內(nèi)畫出一個與它形狀大小完全一樣的蝴蝶,并標出它們的各個頂點坐標。

  3、以圖中的字母M為輪廓,在y軸上作出與它關(guān)于軸對稱圖形,并標出相應端點的坐標。

  4、簡要描繪圖示中楓葉圖案關(guān)于x軸對稱的軸對稱圖形。

  學習筆記:

八年級數(shù)學教案13

  【教學目標】:

  1、幫助學生總結(jié)一般三角形全等的判定條件,使他們自覺運用各種全等判定法進行說理;

  2、通過一般三角形全等判定條件的歸納,幫助學生認識事物間存在著的因果關(guān)系和制約的關(guān)系。

  【重點難點】:

  1、重點:讓學生識別三角的哪些元素能用來確定三角形的形狀與大小,因而可用來判定三角形全等。

  2、難點:靈活應用各種判定法識別全等三角形。

  【教學準備】:

  卡紙剪出的圖1、2中的六個三角形。

  (圖1)(圖2)

  【教學過程】:

  一、復習

  1、判定兩個三角形全等的條件有哪些?

 。ㄓ蠸AS、ASA、AAS、SSS。HL)

  2、一個三角形共有三條邊與三個角,你是否想到這樣一問題了:除了上述四種判定法,還有其他的三角形全等判定法嗎?比如說“SSA”、“AAA”能成為判定兩個三角形全等的條件嗎?

  二、新授

  1、演示

  (1)演示圖1中的I、II三角形,它們間有兩邊及一對角對應相等,這兩個三角形能完全重合,是全等形。但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合不是全等形,因此我們進一點證實了:有兩邊和其中一邊的對角對應相等的兩個三角形不一定全等!癝SA”不是判定三角形全等的方法。

 。2)演示圖2中的I、II三角形,它們間有三個角對應相等,這兩個三角形能完全重合,是全等形,但再取出III的三角形與I疊在一起后,發(fā)現(xiàn)它們不重合,不是全等形。因此我們進一步證實了:三個角對應相等的兩個三角形不一定全等“AAA”也不是判定三角形全等的方法。

  2、填下表(掛出小黑板,讓學生思考、討論,共同填答)。

  兩個三角形中對應相等的元素兩個三角形是否全等依據(jù)的判定法反例

  SSS√SSS

  SAS√SAS

  SSAX可舉反例

  ASA√ASA

  AAS√AAS

  AAAX可舉反例

  3、范例

  例:如圖,,,點F是CD的.中點,嗎?試說明理由。

  教學要點:

 。1)分析題目結(jié)論假定,可轉(zhuǎn)化為,需證它們所在的兩個三角形全等;

 。2)觀察圖形,、中,并不在三角形中,為此添輔助線AC、AD;

 。3)在△ACF與△ADF中,已知AF是公共邊,CF= FD,尚缺一條件,它只能是AC與AD相等;

 。4)為證AC與AD相等。又要找它們分別在的△ACB與△ADE;

 。5)△ACB與△ADE,由已知條件可由SAS證它們?nèi)龋?/p>

 。6)書寫范例。

  解:連結(jié)AC、AD,由已知AB=AE,,BC=DE

  由SAS三角形全等判定法可知:

  △ABC≌△AED

  根據(jù)全等三角形的對應相等可知

  由,,(公共邊),根據(jù)SSS可知△ACF≌△ADF

  根據(jù)全等三角形的對應角相等可知

  又由于F在直線CD上,可得,即。

  你們可有其他方法嗎?

 三、鞏固練習

  1、如圖,在△ABC中,,,試說明△AED是等腰三角形。

  2、如圖,AB∥CD,AD∥BC,與,與相等嗎?說明理由。

  四、小結(jié)由學生對本節(jié)的學習過程進行總結(jié)。

  五、作業(yè)

  (一)、填空題:

  1、有一邊對應相等的兩個三角形全等;

  2、有一邊和對應相等的兩個三角形全等;3、有兩邊和一角對應相等的兩個三角形全等;

  4、如圖,AB∥CD,AD∥BC,AC、BD相交于點O。

 。1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;

 。2)由,可得AD=CB,由,可得△AOD≌△COB;

  (3)圖中全等三角形共有對。

 。ǘ、選擇題:

  1、若△ABC≌△BAD,A和B、C和D是對應頂點,如果,,,則BC的長是()

  A、 B、 C、 D、無法確定

  2、下列各說法中,正確的是()

  A、有兩邊和一角對應相等的兩個三角形全等;

  B、有兩個角對應相等且周長相等的兩個三角形全等;

  C、兩個銳角對應相等的兩個直角三角形全等;

  D、有兩組邊相等且周長相等的兩個三角形全等。

 。ㄈ、解答題:

  1 、如圖,,,AC、BD交于點,圖中共有幾對長度相等的線段,你是通過什么辦法找到的?

  2、如圖,,,(1)等于多少度?

 。2)圖中有哪幾組平行線?

 。3)與的和是定值嗎?

八年級數(shù)學教案14

  一、教學目標

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點、難點

  1、重點:理解分式的基本性質(zhì)。

  2、難點:靈活應用分式的基本性質(zhì)將分式變形。

  3、認知難點與突破方法

  教學難點是靈活應用分式的基本性質(zhì)將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。

  三、練習題的意圖分析

  1、P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

  2、P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解。

  3。P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘—’號”是分式的基本性質(zhì)的應用之一,所以補充例5。

  四、課堂引入

  1、請同學們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的'基本性質(zhì)。

  五、例題講解

  P7例2。填空:

  [分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

  P11例3。約分:

  [分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4。通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

八年級數(shù)學教案15

  一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。

  根與系數(shù)的關(guān)系也稱為韋達定理(韋達是法國數(shù)學家)。韋達定理是初中代數(shù)中的一個重要定理。這是因為通過韋達定理的學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數(shù)學中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數(shù)的學習研究也是作用非凡。

  通過近些年的中考數(shù)學試卷的分析可以得出:韋達定理及其應用是各地市中考數(shù)學命題的熱點之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。

  通過韋達定理的教學,可以培養(yǎng)學生的.創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學問題的能力,也為學生今后學習方程理論打下基礎。

  (二)重點、難點

  一元二次方程根與系數(shù)的關(guān)系是重點,讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

  (三)教學目標

  1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。

【八年級數(shù)學教案】相關(guān)文章:

八年級的數(shù)學教案12-14

八年級《函數(shù)》數(shù)學教案08-17

八年級數(shù)學教案12-09

人教版八年級數(shù)學教案11-04

八年級數(shù)學教案【精】12-04

八年級數(shù)學教案【推薦】12-04

八年級下冊數(shù)學教案01-01

八年級的數(shù)學教案15篇12-14

八年級上冊數(shù)學教案12-11

八年級數(shù)學教案[精品]05-29