高中數(shù)學教案(精品)
作為一名為他人授業(yè)解惑的教育工作者,編寫教案是必不可少的,編寫教案助于積累教學經驗,不斷提高教學質量。那么你有了解過教案嗎?下面是小編精心整理的高中數(shù)學教案,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數(shù)學教案1
教學目標
理解數(shù)列的概念,掌握數(shù)列的運用
教學重難點
理解數(shù)列的概念,掌握數(shù)列的`運用
教學過程
【知識點精講】
1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)
2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。
(通項公式不)
3、數(shù)列的表示:
(1)列舉法:如1,3,5,7,9……;
(2)圖解法:由(n,an)點構成;
(3)解析法:用通項公式表示,如an=2n+1
(4)遞推法:用前n項的值與它相鄰的項之間的關系表示各項,如a1=1,an=1+2an-1
4、數(shù)列分類:有窮數(shù)列,無窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動數(shù)列,常數(shù)數(shù)列;有界數(shù)列,xx數(shù)列
5、任意數(shù)列{an}的前n項和的性質
高中數(shù)學教案2
教學準備
1.教學目標
1、知識與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依
賴關系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.
2、過程與方法:
。1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;
。2)了解構成函數(shù)的要素;
。3)會求一些簡單函數(shù)的定義域和值域;
。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;
3、情感態(tài)度與價值觀,使學生感受到學習函數(shù)的必要性和重要性,激發(fā)學習的積極性.
教學重點/難點
重點:理解函數(shù)的模型化思想,用集合與對應的語言來刻畫函數(shù);
難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學用具
多媒體
4.標簽
函數(shù)及其表示
教學過程
。ㄒ唬﹦(chuàng)設情景,揭示課題
1、復習初中所學函數(shù)的概念,強調函數(shù)的模型化思想;
2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:
。1)炮彈的射高與時間的變化關系問題;
。2)南極臭氧空洞面積與時間的變化關系問題;
(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關系問題.
3、分析、歸納以上三個實例,它們有什么共同點;
4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;
5、根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關系是否是函數(shù)關系.
。ǘ┭刑叫轮
1、函數(shù)的有關概念
。1)函數(shù)的概念:
設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
①“y=f(x)”是函數(shù)符號,可以用任意的`字母表示,如“y=g(x)”;
、诤瘮(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.
。2)構成函數(shù)的三要素是什么?
定義域、對應關系和值域
(3)區(qū)間的概念
、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
②無窮區(qū)間;
、蹍^(qū)間的數(shù)軸表示.
。4)初中學過哪些函數(shù)?它們的定義域、值域、對應法則分別是什么?
通過三個已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會.
師:歸納總結
。ㄈ┵|疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
。1)求函數(shù)的定義域;
。2)求f(-3),f()的值;
。3)當a>0時,求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設一個矩形周長為80,其中一邊長為x,求它的面積關于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.
所以s==(40-x)x(0<x<40)
引導學生小結幾類函數(shù)的定義域:
。1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.
2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.
。3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內的式子大于或等于零的實數(shù)的集合.
。4)如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)
。5)滿足實際問題有意義.
鞏固練習:課本P19第1
2、如何判斷兩個函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個與函數(shù)y=x相等?
分析:
1構成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
2兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。
解:
課本P18例2
(四)歸納小結
、購木唧w實例引入了函數(shù)的概念,用集合與對應的語言描述了函數(shù)的定義及其相關概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.
。ㄎ澹┰O置問題,留下懸念
1、課本P24習題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應關系.
課堂小結
高中數(shù)學教案3
教學目標
。1)了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;
。2)了解線性規(guī)劃問題的圖解法,并能應用它解決一些簡單的.實際問題;
。3)培養(yǎng)學生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結合的數(shù)學思想,提高學生“建!焙徒鉀Q實際問題的能力;
。4)結合教學內容,培養(yǎng)學生學習數(shù)學的興趣和“用數(shù)學”的意識,激勵學生勇于創(chuàng)新.
重點難點
理解二元一次不等式表示平面區(qū)域是教學重點。
如何擾實際問題轉化為線性規(guī)劃問題,并給出解答是教學難點。
教學步驟
(一)引入新課
我們已研究過以二元一次不等式組為約束條件的二元線性目標函數(shù)的線性規(guī)劃問題。那么是否有多個兩個變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識來解決呢?
高中數(shù)學教案4
教材分析:
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教B版)數(shù)學必修四,第一章第二節(jié)內容,其主要內容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法。
教案背景:
通過學生在已經掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內容在三角函數(shù)中占有非常重要的地位.
教學方法:
以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
教學目標:
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學重點:
誘導公式(三)的推導及應用。
教學難點:
誘導公式的應用。
教學手段:
多媒體。
教學情景設計:
一.復習回顧:
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學生發(fā)現(xiàn))
所以
于是可得: (三)
設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設計意圖:結合學過的公式(一)(二),發(fā)現(xiàn)特點,總結公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結:將任意角三角函數(shù)轉化為銳角三角函數(shù),體現(xiàn)轉化化歸,數(shù)形結合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
五.課后作業(yè):課后練習A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節(jié)的東西,語速需要改正
3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作
4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數(shù)學的'樂趣
5.上課的生動化,形象化需要加強
聽課者評價:
1.評議者:網絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側重點;網絡設計上,網頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結論總結出來,并形成自我的經驗。
4.評議者:引導學生通過網絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調相對平緩,總結時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 3)網絡平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導,點與點的對稱的誘導,終邊的關系的誘導,要進一步的修正;2.公式的概括要注意引導學生怎么用,學習這個誘導公式的作用
( 4)給學生答案,這個網頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規(guī)范化的推理
高中數(shù)學教案5
猴子搬香蕉
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。
河岸的距離
兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?
解答:
當兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當它們雙方抵達對岸時,走過的總長度
等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當它到達z點時,已經走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。
變量交換
不使用任何其他變量,交換a,b變量的值?
分析與解答
a = a+b
b = a-b
a= a-b
步行時間
某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。
有一次,司機比以往遲了半個小時出發(fā)。溫斯頓到站后,找不到
他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開。回到家中,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?
解答:
假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發(fā),因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現(xiàn)在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現(xiàn)在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經等了30-4=26分鐘了。但是懼內的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。
因此,溫斯頓步行了26分鐘。
付清欠款
有四個人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;
貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?
解答:
貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的.辦法就是用100美元來一一付清。
貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復雜的問題只要有條理地分析就會很簡單。養(yǎng)成經常性地歸納整理、摸索實質的好習慣。
一美元紙幣
注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。
一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當這三位男士同時站起來付帳的時候,出現(xiàn)了以下的情況:
。1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。
(2)這四人中沒有一人能夠兌開任何一枚硬幣。
。3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要
付的帳單款額其次,一個叫內德的男士要付的賬單款額最小。
(4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。
(5)如果這三位男士相互之間等值調換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。
。6)當這三位男士進行了兩次等值調換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。
。7)隨著事情的進一步發(fā)展,又出現(xiàn)如下的情況:
(8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。
現(xiàn)在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?
解答:
對題意的以下兩點這樣理解:
。2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。
。6)中指如果A,B換過,并且A,C換過,這就是兩次交換。
高中數(shù)學教案6
1.1.1 任意角
教學目標
。ㄒ唬 知識與技能目標
理解任意角的概念(包括正角、負角、零角) 與區(qū)間角的概念.
(二) 過程與能力目標
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
。ㄈ 情感與態(tài)度目標
1. 提高學生的推理能力;
2.培養(yǎng)學生應用意識. 教學重點
任意角概念的理解;區(qū)間角的集合的書寫. 教學難點
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學過程
一、引入:
1.回顧角的定義
、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角.
、诮堑牡诙N定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.
二、新課:
1.角的有關概念:
、俳堑亩x:
角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.
②角的名稱:
、劢堑姆诸悾 A
正角:按逆時針方向旋轉形成的角 零角:射線沒有任何旋轉形成的角
負角:按順時針方向旋轉形成的角
、茏⒁猓
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱涍^推廣后,已包括正角、負角和零角.
、菥毩暎赫堈f出角α、β、γ各是多少度?
2.象限角的概念:
、俣x:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.
、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內,可構成一個集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和. 注意: ⑴ k∈Z
、 α是任一角;
、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數(shù)倍;
、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內,找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
、牛120°;
、640°;
、牵950°12’.
答:⑴240°,第三象限角;
、280°,第四象限角;
、129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結
、俳堑亩x;
②角的分類:
正角:按逆時針方向旋轉形成的角 零角:射線沒有任何旋轉形成的角
負角:按順時針方向旋轉形成的角
、巯笙藿;
、芙K邊相同的角的表示法.
5.課后作業(yè):
①閱讀教材P2-P5;
、诮滩腜5練習第1-5題;
、劢滩腜.9習題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負半軸上的角. 又k·180°+90°<
各是第幾象限角?
<k·180°+135°(k∈Z) .
。糿·360°+135°(n∈Z) ,
當k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
。糿·360°+315°(n∈Z) ,
當k為奇數(shù)時,令k=2n+1 (n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
(一)
教學目標
。ǘ 知識與技能目標
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應的關系;熟記特殊角的弧度數(shù).
。ㄈ 過程與能力目標
能正確地進行弧度與角度之間的換算,能推導弧度制下的.弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
。ㄋ模 情感與態(tài)度目標
通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學重點
弧度的概念.弧長公式及扇形的面積公式的推導與證明. 教學難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學過程
一、復習角度制:
初中所學的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學和其他許多科學研究中還要經常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
(1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關嗎?
。2)引導學生完成P6的探究并歸納: 弧度制的性質:
①半圓所對的圓心角為
、谡麍A所對的圓心角為
、壅堑幕《葦(shù)是一個正數(shù).
、茇摻堑幕《葦(shù)是一個負數(shù).
、萘憬堑幕《葦(shù)是零.
、藿铅恋幕《葦(shù)的絕對值|α|= .
4.角度與弧度之間的轉換:
、賹⒔嵌然癁榛《龋
、趯⒒《然癁榻嵌龋
5.常規(guī)寫法:
① 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).
、 弧度與角度不能混用.
弧長等于弧所對應的圓心角(的弧度數(shù))的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
①閱讀教材P6 –P8;
、诮滩腜9練習第1、2、3、6題;
、劢滩腜10面7、8題及B2、3題.
高中數(shù)學教案7
一、自我介紹
我姓x,是你們的數(shù)學老師,因為是數(shù)學老師所以在自我介紹的時候喜歡給出自己的數(shù)字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學,一起來思考為什么要學習數(shù)學及如何學好數(shù)學這兩個問題。
(一)為什么要學習數(shù)學
相信高一的第一節(jié)課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數(shù)學老師我表達上不如文科老師迂回婉轉和風趣幽默,我們更喜歡用數(shù)字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數(shù)學系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數(shù)學是有用的,數(shù)學有助于提高能力。
數(shù)學家華羅庚在《人民日報》精彩描述了數(shù)學在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻。
問題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請出十大行星行列的?
海王星的發(fā)現(xiàn)是在數(shù)學計算過程中發(fā)現(xiàn)的,天文望遠鏡的觀測只是驗證了人們的推論。
1812年,法國人布瓦德在計算天王星的運動軌道時,發(fā)現(xiàn)理論計算值同觀測資料發(fā)生了一系列誤差。這使許多天文學家紛紛致力這個問題的研究,進而發(fā)現(xiàn)天王星的脫軌與一個未知的引力的存在相關。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的一封快信。發(fā)信人就是勒威耶。信中,勒威耶預告了一顆以往沒有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學慣例,用神話里的名字把這顆星命名為"海王星"。
1930年美國天文學家湯博發(fā)現(xiàn)冥王星,當時錯估了冥王星的質量,以為冥王星比地球還大,所以命名為大行星。然而,經過近30年的進一步觀測和計算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經過多年的爭論,國際天文學聯(lián)合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國際天文學聯(lián)合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數(shù)量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭議。
馬克思說:"一種科學只有在成功運用數(shù)學時,才算達到了真正完善的地步。"正因為數(shù)學是日常生活和進一步學習必不可少的基礎和工具,一切科學到了最后都歸結為數(shù)學問題。
其實在我們的周圍有很多事情都是可以用數(shù)學可以來解決的,無非很多人都沒有用數(shù)學的眼光來看待。
問題2:徒認為上帝是萬能的。你們認為呢?如何來證明你的結論呢?(讓同學發(fā)言)
我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。
證明:(反證法)假如上帝是萬能的
那么他能夠制作出一塊無論什么力量都搬不動的石頭
根據(jù)假設,既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭
這與"無論什么力量都搬不動的石頭"相矛盾
所以假設不成立
所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?
當然,我們學習的數(shù)學只是數(shù)學學科體系中很基礎,很小的一部分,F(xiàn)在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數(shù)學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:"讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數(shù)學使人聰明…",也有人形象地稱數(shù)學是思維的體操。下面我們通過具體的例子來體驗一下某些數(shù)學思想方法和思維方式。
故事一:據(jù)說國際象棋是古印度的一位宰相發(fā)明的。國王很欣賞他的這項發(fā)明,問他的宰相要什么賞賜。聰明的.宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發(fā)現(xiàn)即使把全國所有的谷子抬來也遠遠不夠。
人們通常憑借自己掌握的數(shù)學知識耍些小聰明,使問題妙不可言。
數(shù)學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。
數(shù)學思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問題,你認為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現(xiàn)了數(shù)學學習中經常用到的發(fā)散式思維。在數(shù)學學習中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯(lián)系思維方式,表現(xiàn)為對解題方法的模仿和繼承;而發(fā)散式思維即對問題開拓、創(chuàng)新,表現(xiàn)為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。
學數(shù)學有利于培養(yǎng)人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優(yōu)化意識、反思意識,盡管數(shù)學在培養(yǎng)學生的這些思維品質方面和其他學科存在著交集,但數(shù)學在其中的地位是無法被代替的?傊瑢W習數(shù)學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創(chuàng)造……
(二)如何學好數(shù)學
高中數(shù)學的內容多,抽象性、理論性強,高中很注重自學能力的培養(yǎng)的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學能力的培養(yǎng),誰的自學能力強,那么在一定的程度上影響著你的成績以及你將來你發(fā)展的前途。同時要注意以下幾點:
第一:對數(shù)學學科特點有清楚的認識
主編寄語里是這樣描述數(shù)學的特征的:數(shù)學是自然的。數(shù)學的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復數(shù),都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產生的背景,它的形成過程以及它的應用,讓數(shù)學顯得合情合理,渾然天成。數(shù)學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學規(guī)則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當然"的話,那就學不下去了。
第二:要改變一個觀念。
有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎好不好。過去的幾年里我分別帶過五十一中和一中的學生,兩邊學生的課堂感覺差不多,應該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學外課自主時間的投入太少,學習習慣不太好。
第三:學數(shù)學要摸索自己的學習方法
學習、掌握并能靈活應用數(shù)學的途徑有千萬條,每個人都可以有與眾不同的數(shù)學學習方法。做習題、用數(shù)學解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。此外,還要發(fā)揮問題的作用,學會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學習。同時,注意前后知識的銜接,類比地學、聯(lián)系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
第四:養(yǎng)成良好的學習習慣(與一中學生相比較)
㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。
㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數(shù)學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。
、珀P于作業(yè)。絕對不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰抄作業(yè),那么既然他這樣喜歡抄,我就要你把當天的作業(yè)多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養(yǎng)成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流
、铚蕚湟槐竟P記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數(shù)學成績提高。
好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。
高中數(shù)學教案8
【教學目標】
1.知識與技能
(1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務等差數(shù)列的通項公式及其推導過程:
(3)會應用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項公式
【教學難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;
、诘炔顢(shù)列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數(shù)學學習,大部分學生知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設計思路】
1、教法
、賳l(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調動學生的積極性.
③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.
2、學法
引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一、創(chuàng)設情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學生:
①0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎?
教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.
(設計意圖:通過對一定數(shù)量感性材料的.觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.
(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).
2、思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質,激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)
五、應用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六、反饋練習:教材13頁練習1
七、歸納總結:
1、一個定義:
等差數(shù)列的定義及定義表達式
2、一個公式:
等差數(shù)列的通項公式
3、二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.
高中數(shù)學教案15
【教學目標】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
2.能根據(jù)幾何結構特征對空間物體進行分類。
3.提高學生的觀察能力;培養(yǎng)學生的空間想象能力和抽象括能力。
【教學重難點】
教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
教學難點:柱、錐、臺、球的結構特征的概括。
【教學過程】
1.情景導入
教師提出問題,引導學生觀察、舉例和相互交流,提出本節(jié)課所學內容,出示課題。
2.展示目標、檢查預習
3、合作探究、交流展示
。1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
。2)組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
。3)提出問題:請列舉身邊的棱柱并對它們進行分類
。4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
。5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。
。6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
。7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
4.質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
。2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
。3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
(4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5、典型例題
例1:判斷下列語句是否正確。
、庞幸粋面是多邊形,其余各面都是三角形的幾何體是棱錐。
⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案 A B
6、課堂檢測:
課本P8,習題1.1 A組第1題。
7.歸納整理
由學生整理學習了哪些內容
【板書設計】
一、柱、錐、臺、球的結構
二、例題
例1
變式1、2
【作業(yè)布置】
導學案課后練習與提高
1.1.1柱、錐、臺、球的結構特征
課前預習學案
一、預習目標:
通過圖形探究柱、錐、臺、球的結構特征
二、預習內容:
閱讀教材第2—6頁內容,然后填空
。1)多面體的概念: 叫多面體,
叫多面體的面, 叫多面體的棱,
叫多面體的頂點。
、 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱
②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐
、劾馀_:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。
。2)旋轉體的概念: 叫旋轉體, 叫旋轉體的軸。
①圓柱: 所圍成的幾何體叫做圓柱
、趫A錐: 所圍成的幾何
體叫做圓錐
、蹐A臺: 的部分叫圓臺
. ④球的定義
思考:
。1)試分析多面體與旋轉體有何去別
。2)球面球體有何去別
。3)圓與球有何去別
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中
疑惑點 疑惑內容
高中數(shù)學教案9
一. 學習目標
(1)通過實例體會分布的意義與作用; (2)在表示樣本數(shù)據(jù)的過程中,學會列頻率分布表,畫頻率分布直方圖,頻率折線圖; (3)通過實例體會頻率分布直方圖,頻率折線圖,莖葉圖的各自特點,從而恰當?shù)倪x擇上述方法分析樣本的分布,準確的作出總體估計。
二. 學習重點
三.學習難點
能通過樣本的頻率分布估計總體的分布。
四.學習過程
(一)復習引入
(1 )統(tǒng)計的核心問題是什么?
(2 )隨機抽樣的幾種常用方法有哪些?
(3)通過抽樣方法收集數(shù)據(jù)的目的是什么?
(二)自學提綱
1.我們學習了哪些統(tǒng)計圖?不同的統(tǒng)計圖適合描述什么樣的數(shù)據(jù)?
2.如何列頻率分布表?
3.如何畫頻率分布直方圖?基本步驟是什么?
4.頻率分布直方圖的縱坐標是什么?
5.頻率分布直方圖中小長方形的面積表示什么?
6.頻率分布直方圖中小長方形的面積之和是多少?
(三)課前自測
1.從一堆蘋果中任取了20只,并得到了它們的質量(單位:g)數(shù)據(jù)分布表如下:
分組 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 頻數(shù) 1 2 3 10 1 則這堆蘋果中,質量不小于120g的蘋果數(shù)約占蘋果總數(shù)的xxx%. 2.關于頻率分布直方圖,下列說法正確的是( ) a.直方圖的高表示該組上的個體在樣本中出現(xiàn)的頻率 b.直方圖的高表示取某數(shù)的頻率 c.直方圖的高表示該組上的樣本中出現(xiàn)的頻率與組距的比值 d.直方圖的高表示該組上的'個體在樣本中出現(xiàn)的頻數(shù)與組距的比值 3.已知樣本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么頻率為0.2的范圍是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教學 典例:城市缺水問題(自學教材65頁~68頁)
問題1.你認為為了較為合理地確定出這個標準,需要做哪些工作? 2.如何分析數(shù)據(jù)?根據(jù)這些數(shù)據(jù)你能得出用水量其他信息嗎? 知識整理: 1.頻率分布的概念: 頻率分布: 頻數(shù): 頻率:
2.畫頻率分布直方圖的步驟: (1).求極差: (2).決定組距與組數(shù) 組距: 組數(shù): (3).將數(shù)據(jù)分組 (4).列頻率分布表 (5).畫頻率分布直方圖 問題: .
1.月平均用水量在2.5—3之間的頻率是多少?
2.月均用水量最多的在哪個區(qū)間?
3.月均用水量小于4.5 的頻率是多少?
4.小長方形的面積=?
5.小長方形的面積總和=?
6.如果希望85%以上居民不超出標準,如何制定標準?
7.直方圖有那些優(yōu)點和缺點?
例題講解: 例1有一個容量為50的樣本數(shù)據(jù)的分組的頻數(shù)如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出樣本的頻率分布表; (2)畫出頻率分布直方圖; (3)根據(jù)頻率分布直方圖估計,數(shù)據(jù)落在[15.5, 24.5)的百分比是多少? (4)數(shù)據(jù)小于21.5的百分比是多少?
3.頻率分布折線圖、總體密度曲線 問題1:如何得到頻率分布折線圖 ? 頻率分布折線圖的概念:
問題2:在城市缺水問題中將樣本容量為100,增至1000,其頻率分布直方圖的情況會有什么變化?假如增至10000呢?
總體密度曲線的概念:
注:用樣本分布直方圖去估計相應的總體分布時,一般樣本容量越大,頻率分布直方圖就會無限接近總體密度曲線,就越精確地反映了總體的分布規(guī)律,即越精確地反映了總體在各個范圍內1.總體分布指的是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計總體的分布。
4. 莖葉圖 莖葉圖的概念: 莖葉圖的特征:
小結:.總體的分布分兩種情況:當總體中的個體取值很少時,用莖葉圖估計總體的分布;當總體中的個體取值較多時,將樣本數(shù)據(jù)恰當分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。
課堂小結:
當堂檢測:
1. 一個社會調查機構就某地居民的月收入調查了10000人, 并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖)。 為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系, 要從這10000人中再用分層抽樣方法抽出100人作進一步 調查,則 [2500,3000)(元)月收入段應抽取 人。
2、為了解某校高三學生的視力情況,隨機抽查了該校200名高三學生的視力情況,得到頻率分布直方圖(如圖), 由于不慎將部分數(shù)據(jù)丟失,但知道前四組的頻數(shù)成等比數(shù) 列,后6組的頻數(shù)成等差數(shù)列,設最多一組學生數(shù)為a,視 力在4.6到5.0之間的頻率為b,則
a+b= . 3.在抽查產品的尺寸過程中,將其尺寸分成若干組,[a,b)是其中的一組,抽查出的個體在該組上的頻率為m,該組上的直方圖的高為h,則ba?=xx. 4.為了了解中學生的身高情況,對育才中學同齡的50名男學生的身高進行了測量,結果如下:(單位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181
(1)列出樣本的頻率分布表。
(2)畫出頻率分布直方圖。
(3)畫頻率分布折線圖;
高中數(shù)學教案10
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數(shù)次實踐后的高度抽象,恰當?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當?shù)亟o出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節(jié)課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數(shù)學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當?shù)淖冃,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求|PA|
【設計意圖】
運用圓錐曲線定義中的數(shù)量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。
【學情預設】
根據(jù)以往的經驗,多數(shù)學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數(shù)學猜想、試驗的機會。
練習:
設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導學生對自己的結論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的'方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。
七、教學反思
1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優(yōu)勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數(shù)學思維能力。
高中數(shù)學教案11
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
1、說出下列圓的方程
⑴圓心(3,—2)半徑為5
、茍A心(0,3)半徑為3
2、指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的'方程(突出待定系數(shù)的數(shù)學方法)
練習:1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學教案12
整體設計
教學分析
我們在初中的學習過程中,已了解了整數(shù)指數(shù)冪的概念和運算性質。從本節(jié)開始我們將在回顧平方根和立方根的基礎上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分數(shù)指數(shù)。進而推廣到有理數(shù)指數(shù),再推廣到實數(shù)指數(shù),并將冪的運算性質由整數(shù)指數(shù)冪推廣到實數(shù)指數(shù)冪。
教材為了讓學生在學習之外就感受到指數(shù)函數(shù)的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題。前一個問題,既讓學生回顧了初中學過的整數(shù)指數(shù)冪,也讓學生感受到其中的函數(shù)模型,并且還有思想教育價值。后一個問題讓學生體會其中的函數(shù)模型的同時,激發(fā)學生探究分數(shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學習作了鋪墊。
本節(jié)安排的內容蘊涵了許多重要的數(shù)學思想方法,如推廣的思想(指數(shù)冪運算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質)等,同時,充分關注與實際問題的結合,體現(xiàn)數(shù)學的應用價值。
根據(jù)本節(jié)內容的特點,教學中要注意發(fā)揮信息技術的力量,盡量利用計算器和計算機創(chuàng)設教學情境,為學生的數(shù)學探究與數(shù)學思維提供支持。
三維目標
1、通過與初中所學的知識進行類比,理解分數(shù)指數(shù)冪的概念,進而學習指數(shù)冪的性質。掌握分數(shù)指數(shù)冪和根式之間的互化,掌握分數(shù)指數(shù)冪的運算性質。培養(yǎng)學生觀察分析、抽象類比的能力。
2、掌握根式與分數(shù)指數(shù)冪的互化,滲透“轉化”的數(shù)學思想。通過運算訓練,養(yǎng)成學生嚴謹治學,一絲不茍的學習習慣,讓學生了解數(shù)學來自生活,數(shù)學又服務于生活的哲理。
3、能熟練地運用有理指數(shù)冪運算性質進行化簡、求值,培養(yǎng)學生嚴謹?shù)乃季S和科學正確的計算能力。
4、通過訓練及點評,讓學生更能熟練掌握指數(shù)冪的運算性質。展示函數(shù)圖象,讓學生通過觀察,進而研究指數(shù)函數(shù)的性質,讓學生體驗數(shù)學的簡潔美和統(tǒng)一美。
重點難點
教學重點
(1)分數(shù)指數(shù)冪和根式概念的理解。
。2)掌握并運用分數(shù)指數(shù)冪的運算性質。
(3)運用有理指數(shù)冪的性質進行化簡、求值。
教學難點
(1)分數(shù)指數(shù)冪及根式概念的理解。
(2)有理指數(shù)冪性質的靈活應用。
課時安排
3課時
教學過程
第1課時
作者:路致芳
導入新課
思路1.同學們在預習的過程中能否知道考古學家如何判斷生物的發(fā)展與進化,又怎樣判斷它們所處的年代?(考古學家是通過對生物化石的研究來判斷生物的發(fā)展與進化的,第二個問題我們不太清楚)考古學家是按照這樣一條規(guī)律推測生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算。
思路2.同學們,我們在初中學習了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算。
推進新課
新知探究
提出問題
(1)什么是平方根?什么是立方根?一個數(shù)的平方根有幾個,立方根呢?
。2)如x4=a,x5=a,x6=a,根據(jù)上面的結論我們又能得到什么呢?
。3)根據(jù)上面的結論我們能得到一般性的結論嗎?
(4)可否用一個式子表達呢?
活動:教師提示,引導學生回憶初中的時候已經學過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結論進行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學生,具體問題一般化,歸納類比出n次方根的概念,評價學生的思維。
討論結果:(1)若x2=a,則x叫做a的平方根,正實數(shù)的平方根有兩個,它們互為相反數(shù),如:4的平方根為±2,負數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數(shù)的立方根只有一個,如:-8的立方根為-2.
(2)類比平方根、立方根的定義,一個數(shù)的四次方等于a,則這個數(shù)叫a的四次方根。一個數(shù)的五次方等于a,則這個數(shù)叫a的五次方根。一個數(shù)的六次方等于a,則這個數(shù)叫a的六次方根。
。3)類比(2)得到一個數(shù)的n次方等于a,則這個數(shù)叫a的n次方根。
。4)用一個式子表達是,若xn=a,則x叫a的n次方根。
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。
提出問題
(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。
①4的平方根;②±8的立方根;③16的'4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
。2)平方根,立方根,4次方根,5次方根,7次方根,分別對應的方根的指數(shù)是什么數(shù),有什么特點?4,±8,16,-32,32,0,a6分別對應什么性質的數(shù),有什么特點?
。3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負,還有零,結論有一個的,也有兩個的,你能否總結一般規(guī)律呢?
(4)任何一個數(shù)a的偶次方根是否存在呢?
活動:教師提示學生切實緊扣n次方根的概念,求一個數(shù)a的n次方根,就是求出的那個數(shù)的n次方等于a,及時點撥學生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點,對問題(2)中的結論,類比推廣引申,考慮要全面,對回答正確的學生及時表揚,對回答不準確的學生提示引導考慮問題的思路。
討論結果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
。2)方根的指數(shù)是2,3,4,5,7…特點是有奇數(shù)和偶數(shù)。總的來看,這些數(shù)包括正數(shù),負數(shù)和零。
。3)一個數(shù)a的奇次方根只有一個,一個正數(shù)a的偶次方根有兩個,是互為相反數(shù)。0的任何次方根都是0.
。4)任何一個數(shù)a的偶次方根不一定存在,如負數(shù)的偶次方根就不存在,因為沒有一個數(shù)的偶次方是一個負數(shù)。
類比前面的平方根、立方根,結合剛才的討論,歸納出一般情形,得到n次方根的性質:
、佼攏為偶數(shù)時,正數(shù)a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負數(shù),負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。
、趎為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負數(shù)的n次方根是一個負數(shù),這時a的n次方根用符號na表示。
③負數(shù)沒有偶次方根;0的任何次方根都是零。
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù),a的n次方根有一個為na,n為偶數(shù),a的n次方根有兩個為±na.
a為負數(shù):n為奇數(shù),a的n次方根只有一個為na,n為偶數(shù),a的n次方根不存在。
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質是n次方根的性質的特例。
思考
根據(jù)n次方根的性質能否舉例說明上述幾種情況?
活動:教師提示學生對方根的性質要分類掌握,即正數(shù)的奇偶次方根,負數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學生,隨機給出一個數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學生在舉例過程中的問題。
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個名稱——根式。
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù)。
如3-27中,3叫根指數(shù),-27叫被開方數(shù)。
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動:教師讓學生注意討論n為奇偶數(shù)和a的符號,充分讓學生多舉實例,分組討論。教師點撥,注意歸納整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.
因此我們得到n次方根的運算性質:
、(na)n=a.先開方,再乘方(同次),結果為被開方數(shù)。
、趎為奇數(shù),nan=a.先奇次乘方,再開方(同次),結果為被開方數(shù)。
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結果為被開方數(shù)的絕對值。
應用示例
思路1
例求下列各式的值:
。1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活動:求某些式子的值,首先考慮的應是什么,明確題目的要求是什么,都用到哪些知識,關鍵是啥,搞清這些之后,再針對每一個題目仔細分析。觀察學生的解題情況,讓學生展示結果,抓住學生在解題過程中出現(xiàn)的問題并對癥下藥。求下列各式的值實際上是求數(shù)的方根,可按方根的運算性質來解,首先要搞清楚運算順序,目的是把被開方數(shù)的符號定準,然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結果必須是非負數(shù)。
解:(1)3(-8)3=-8;
(2)(-10)2=10;
。3)4(3-π)4=π-3;
。4)(a-b)2=a-b(a>b)。
點評:不注意n的奇偶性對式子nan的值的影響,是導致問題出現(xiàn)的一個重要原因,要在理解的基礎上,記準,記熟,會用,活用。
變式訓練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解。
思路2
例1下列各式中正確的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質,應首先考慮根據(jù)方根的意義和運算性質來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴格按求方根的步驟,體會方根運算的實質,學生先思考哪些地方容易出錯,再回答。
解析:(1)4a4=a,考查n次方根的運算性質,當n為偶數(shù)時,應先寫nan=|a|,故A項錯。
(2)6(-2)2=3-2,本質上與上題相同,是一個正數(shù)的偶次方根,根據(jù)運算順序也應如此,結論為6(-2)2=32,故B項錯。
(3)a0=1是有條件的,即a≠0,故C項也錯。
(4)D項是一個正數(shù)的偶次方根,根據(jù)運算順序也應如此,故D項正確。所以答案選D.
答案:D
點評:本題由于考查n次方根的運算性質與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細心。
例2 3+22+3-22=__________.
活動:讓同學們積極思考,交流討論,本題乍一看內容與本節(jié)無關,但仔細一想,我們學習的內容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運算求出結果是解題的關鍵,因此將根號下面的式子化成一個完全平方式就更為關鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關鍵,教師提示,引導學生解題的思路。
解析:因為3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點評:不難看出3-22與3+22形式上有些特點,即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式。
思考
上面的例2還有別的解法嗎?
活動:教師引導,去根號常常利用完全平方公式,有時平方差公式也可,同學們觀察兩個式子的特點,具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消。同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法。
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解。
變式訓練
若a2-2a+1=a-1,求a的取值范圍。
解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點評:利用方根的運算性質轉化為去絕對值符號,是解題的關鍵。
知能訓練
(教師用多媒體顯示在屏幕上)
1、以下說法正確的是()
A.正數(shù)的n次方根是一個正數(shù)
B.負數(shù)的n次方根是一個負數(shù)
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)
答案:C
2、化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、計算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明。
活動:組織學生結合前面的例題及其解答,進行分析討論,解決這一問題要緊扣n次方根的定義。
通過歸納,得出問題結果,對a是正數(shù)和零,n為偶數(shù)時,n為奇數(shù)時討論一下。再對a是負數(shù),n為偶數(shù)時,n為奇數(shù)時討論一下,就可得到相應的結論。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,當n為奇數(shù),當n為偶數(shù)。
當n為奇數(shù)時,a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
當n為偶數(shù)時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。
點評:實質上是對n次方根的概念、性質以及運算性質的深刻理解。
課堂小結
學生仔細交流討論后,在筆記上寫出本節(jié)課的學習收獲,教師用多媒體顯示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù)。
。1)當n為偶數(shù)時,a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負數(shù),負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0)。
(2)n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負數(shù)的n次方根是一個負數(shù),這時a的n次方根用符號na表示。
(3)負數(shù)沒有偶次方根。0的任何次方根都是零。
2、掌握兩個公式:n為奇數(shù)時,(na)n=a,n為偶數(shù)時,nan=|a|=a,-a,a≥0,a<0.
作業(yè)
課本習題2.1A組1.
補充作業(yè):
1、化簡下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
答案:2a-13
3.5+26+5-26=__________.
解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,
不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
設計感想
學生已經學習了數(shù)的平方根和立方根,根式的內容是這些內容的推廣,本節(jié)課由于方根和根式的概念和性質難以理解,在引入根式的概念時,要結合已學內容,列舉具體實例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進行,每種情況又分a>0,a<0,a=0三種情況,并結合具體例子講解,因此設計了大量的類比和練習題目,要靈活處理這些題目,幫助學生加以理解,所以需要用多媒體信息技術服務教學。
第2課時
作者:郝云靜
導入新課
思路1.碳14測年法。原來宇宙射線在大氣層中能夠產生放射性碳14,并與氧結合成二氧化碳后進入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機體內保持一定的水平。而當有機體死亡后,即會停止吸收碳14,其組織內的碳14便以約5 730年的半衰期開始衰變并消失。對于任何含碳物質只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經過一定的時間,變?yōu)樵瓉淼囊话耄。引出本?jié)課題:指數(shù)與指數(shù)冪的運算之分數(shù)指數(shù)冪。
思路2.同學們,我們在初中學習了整數(shù)指數(shù)冪及其運算性質,那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運算之分數(shù)指數(shù)冪。
推進新課
新知探究
提出問題
(1)整數(shù)指數(shù)冪的運算性質是什么?
(2)觀察以下式子,并總結出規(guī)律:a>0,
、伲
、赼8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
、2a10=2(a5)2=a5= 。
。3)利用(2)的規(guī)律,你能表示下列式子嗎?
,,,(x>0,m,n∈正整數(shù)集,且n>1)。
(4)你能用方根的意義來解釋(3)的式子嗎?
(5)你能推廣到一般的情形嗎?
活動:學生回顧初中學習的整數(shù)指數(shù)冪及運算性質,仔細觀察,特別是每題的開始和最后兩步的指數(shù)之間的關系,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發(fā)學生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他學生鼓勵提示。
討論結果:(1)整數(shù)指數(shù)冪的運算性質:an=a?a?a?…?a,a0=1(a≠0);00無意義;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實質上①5a10=,②a8=,③4a12=,④2a10=結果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質沒變。
根據(jù)4個式子的最后結果可以總結:當根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時,根式可以寫成分數(shù)作為指數(shù)的形式(分數(shù)指數(shù)冪形式)。
。3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。
結果表明方根的結果和分數(shù)指數(shù)冪是相通的。
。5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。
綜上所述,我們得到正數(shù)的正分數(shù)指數(shù)冪的意義,教師板書:
規(guī)定:正數(shù)的正分數(shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。
提出問題
。1)負整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
。2)你能得出負分數(shù)指數(shù)冪的意義嗎?
。3)你認為應怎樣規(guī)定零的分數(shù)指數(shù)冪的意義?
(4)綜合上述,如何規(guī)定分數(shù)指數(shù)冪的意義?
。5)分數(shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個規(guī)定會產生什么樣的后果?
(6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質是否也適用于有理數(shù)指數(shù)冪呢?
活動:學生回想初中學習的情形,結合自己的學習體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負整數(shù)指數(shù)冪的意義來類比,把正分數(shù)指數(shù)冪的意義與負分數(shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運算性質類比可得有理數(shù)指數(shù)冪的運算性質,教師在黑板上板書,學生合作交流,以具體的實例說明a>0的必要性,教師及時作出評價。
討論結果:(1)負整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。
。2)既然負整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分數(shù)指數(shù)冪的意義可得正數(shù)的負分數(shù)指數(shù)冪的意義。
規(guī)定:正數(shù)的負分數(shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。
。3)規(guī)定:零的分數(shù)指數(shù)冪的意義是:零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義。
。4)教師板書分數(shù)指數(shù)冪的意義。分數(shù)指數(shù)冪的意義就是:
正數(shù)的正分數(shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負分數(shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義。
(5)若沒有a>0這個條件會怎樣呢?
如=3-1=-1,=6(-1)2=1具有同樣意義的兩個式子出現(xiàn)了截然不同的結果,這只說明分數(shù)指數(shù)冪在底數(shù)小于零時是無意義的。因此在把根式化成分數(shù)指數(shù)時,切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2=,同時負數(shù)開奇次方是有意義的,負數(shù)開奇次方時,應把負號移到根式的外邊,然后再按規(guī)定化成分數(shù)指數(shù)冪,也就是說,負分數(shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負數(shù),負數(shù)只是出現(xiàn)在指數(shù)上。
。6)規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。
有理數(shù)指數(shù)冪的運算性質:對任意的有理數(shù)r,s,均有下面的運算性質:
、賏r?as=ar+s(a>0,r,s∈Q),
、(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q)。
我們利用分數(shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質可以解決一些問題,來看下面的例題。
應用示例
例1求值:(1);(2);(3)12-5;(4) 。
活動:教師引導學生考慮解題的方法,利用冪的運算性質計算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運算性質可以解答,完成后,把自己的答案用投影儀展示出來。
解:(1) =22=4;
。2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4)=23-3=278.
點評:本例主要考查冪值運算,要按規(guī)定來解。在進行冪值運算時,要首先考慮轉化為指數(shù)運算,而不是首先轉化為熟悉的根式運算,如=382=364=4.
例2用分數(shù)指數(shù)冪的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活動:學生觀察、思考,根據(jù)解題的順序,把根式化為分數(shù)指數(shù)冪,再由冪的運算性質來運算,根式化為分數(shù)指數(shù)冪時,要由里往外依次進行,把握好運算性質和順序,學生討論交流自己的解題步驟,教師評價學生的解題情況,鼓勵學生注意總結。
解:a3?a=a3? =;
a2?3a2=a2? =;
a3a= 。
點評:利用分數(shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質進行根式運算時,其順序是先把根式化為分數(shù)指數(shù)冪,再由冪的運算性質來運算。對于計算的結果,不強求統(tǒng)一用什么形式來表示,沒有特別要求,就用分數(shù)指數(shù)冪的形式來表示,但結果不能既有分數(shù)指數(shù)又有根式,也不能既有分母又有負指數(shù)。
例3計算下列各式(式中字母都是正數(shù))。
。1);
。2)。
活動:先由學生觀察以上兩個式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內的,整數(shù)冪的運算性質及運算規(guī)律擴充到分數(shù)指數(shù)冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進行計算,熟悉后可以簡化步驟。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
。2)=m2n-3=m2n3.
點評:分數(shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分數(shù)指數(shù)冪,就可把根式轉化成分數(shù)指數(shù)冪的形式,用分數(shù)指數(shù)冪的運算法則進行運算了。
本例主要是指數(shù)冪的運算法則的綜合考查和應用。
變式訓練
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4計算下列各式:
。1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活動:先由學生觀察以上兩個式子的特征,然后分析,化為同底。利用分數(shù)指數(shù)冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分數(shù)指數(shù)冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉化為分數(shù)指數(shù)冪后再由運算法則計算,最后寫出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能訓練
課本本節(jié)練習1,2,3
【補充練習】
教師用實物投影儀把題目投射到屏幕上讓學生解答,教師巡視,啟發(fā),對做得好的同學給予表揚鼓勵。
1、(1)下列運算中,正確的是()
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
。2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()
A.①② B.①③ C.①②③④ D.①③④
。3)(34a6)2?(43a6)2等于()
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改寫成分數(shù)指數(shù)冪的形式為()
A. B.
C. D.
。5)化簡的結果是()
A.6a B.-a C.-9a D.9a
2、計算:(1) --17-2+ -3-1+(2-1)0=__________.
。2)設5x=4,5y=2,則52x-y=__________.
3、已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3、解:。 因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因為x 所以原式= =12-6-63=-33. 拓展提升 1、化簡:。 活動:學生觀察式子特點,考慮x的指數(shù)之間的關系可以得到解題思路,應對原式進行因式分解,根據(jù)本題的特點,注意到: x-1= -13=; x+1= +13=; 。 構建解題思路教師適時啟發(fā)提示。 解: = = = = 。 點撥:解這類題目,要注意運用以下公式, =a-b, =a± +b, =a±b. 2、已知,探究下列各式的值的求法。 (1)a+a-1;(2)a2+a-2;(3) 。 解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7; 。2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47; 。3)由于, 所以有=a+a-1+1=8. 點撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。 課堂小結 活動:教師,本節(jié)課同學們有哪些收獲?請把你的學習收獲記錄在你的筆記本上,同學們之間相互交流。同時教師用投影儀顯示本堂課的知識要點: (1)分數(shù)指數(shù)冪的意義就是:正數(shù)的正分數(shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負分數(shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義。 (2)規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。 。3)有理數(shù)指數(shù)冪的運算性質:對任意的有理數(shù)r,s,均有下面的運算性質: ①ar?as=ar+s(a>0,r,s∈Q), ②(ar)s=ars(a>0,r,s∈Q), ③(a?b)r=arbr(a>0,b>0,r∈Q)。 。4)說明兩點: 、俜謹(shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關系。 ②整數(shù)指數(shù)冪的運算性質對任意的有理數(shù)指數(shù)冪也同樣適用。因而分數(shù)指數(shù)冪與根式可以互化,也可以利用=am來計算。 作業(yè) 課本習題2.1A組2,4. 設計感想 本節(jié)課是分數(shù)指數(shù)冪的意義的引出及應用,分數(shù)指數(shù)是指數(shù)概念的又一次擴充,要讓學生反復理解分數(shù)指數(shù)冪的意義,教學中可以通過根式與分數(shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習,強化訓練,鞏固知識,要輔助以信息技術的手段來完成大容量的課堂教學任務。 第3課時 作者:鄭芳鳴 導入新課 思路1.同學們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分數(shù)到負分數(shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴充過程,自然數(shù)到整數(shù),整數(shù)到分數(shù)(有理數(shù)),有理數(shù)到實數(shù)。并且知道,在有理數(shù)到實數(shù)的擴充過程中,增添的數(shù)是無理數(shù)。對無理數(shù)指數(shù)冪,也是這樣擴充而來。既然如此,我們這節(jié)課的主要內容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運算(3)〕之無理數(shù)指數(shù)冪。 思路2.同學們,在初中我們學習了函數(shù)的知識,對函數(shù)有了一個初步的了解,到了高中,我們又對函數(shù)的概念進行了進一步的學習,有了更深的理解,我們僅僅學了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠遠不能滿足我們的需要,隨著科學的發(fā)展,社會的進步,我們還要學習許多函數(shù),其中就有指數(shù)函數(shù),為了學習指數(shù)函數(shù)的知識,我們必須學習實數(shù)指數(shù)冪的運算性質,為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴充到實數(shù)指數(shù)冪,因此我們本節(jié)課學習:指數(shù)與指數(shù)冪的運算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。 推進新課 新知探究 提出問題 。1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? 。2)多媒體顯示以下圖表:同學們從上面的兩個表中,能發(fā)現(xiàn)什么樣的規(guī)律? 2的過剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … 。3)你能給上述思想起個名字嗎? 。4)一個正數(shù)的無理數(shù)次冪到底是一個什么性質的數(shù)呢?如,根據(jù)你學過的知識,能作出判斷并合理地解釋嗎? 。5)借助上面的結論你能說出一般性的結論嗎? 活動:教師引導,學生回憶,教師提問,學生回答,積極交流,及時評價學生,學生有困惑時加以解釋,可用多媒體顯示輔助內容: 問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。 問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關聯(lián)。 問題(3)上述方法實際上是無限接近,最后是逼近。 問題(4)對問題給予大膽猜測,從數(shù)軸的觀點加以解釋。 問題(5)在(3)(4)的基礎上,推廣到一般的情形,即由特殊到一般。 討論結果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過剩近似值。 (2)第一個表:從大于2的方向逼近2時,就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。 第二個表:從小于2的方向逼近2時,就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。 從另一角度來看這個問題,在數(shù)軸上近似地表示這些點,數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結果,事實上表示這些數(shù)的點從兩個方向向表示的點靠近,但這個點一定在數(shù)軸上,由此我們可得到的結論是一定是一個實數(shù),即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明是一個實數(shù)。 。3)逼近思想,事實上里面含有極限的思想,這是以后要學的知識。 。4)根據(jù)(2)(3)我們可以推斷是一個實數(shù),猜測一個正數(shù)的無理數(shù)次冪是一個實數(shù)。 。5)無理數(shù)指數(shù)冪的意義: 一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù)。 也就是說無理數(shù)可以作為指數(shù),并且它的結果是一個實數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)。我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個確定的實數(shù),結合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴充到實數(shù)指數(shù)冪。 提出問題 。1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時,必須規(guī)定底數(shù)是正數(shù)? 。2)無理數(shù)指數(shù)冪的運算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運算法則相通呢? 。3)你能給出實數(shù)指數(shù)冪的運算法則嗎? 活動:教師組織學生互助合作,交流探討,引導他們用反例說明問題,注意類比,歸納。 對問題(1)回顧我們學習分數(shù)指數(shù)冪的意義時對底數(shù)的規(guī)定,舉例說明。 對問題(2)結合有理數(shù)指數(shù)冪的運算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù),那么無理數(shù)指數(shù)冪的運算法則應當與有理數(shù)指數(shù)冪的運算法則類似,并且相通。 對問題(3)有了有理數(shù)指數(shù)冪的運算法則和無理數(shù)指數(shù)冪的運算法則,實數(shù)的運算法則自然就得到了。 討論結果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個確定的實數(shù),就不會再造成混亂。 。2)因為無理數(shù)指數(shù)冪是一個確定的實數(shù),所以能進行指數(shù)的運算,也能進行冪的運算,有理數(shù)指數(shù)冪的運算性質,同樣也適用于無理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運算性質可以得到無理數(shù)指數(shù)冪的運算法則: 、賏r?as=ar+s(a>0,r,s都是無理數(shù))。 、冢╝r)s=ars(a>0,r,s都是無理數(shù))。 、郏╝?b)r=arbr(a>0,b>0,r是無理數(shù))。 (3)指數(shù)冪擴充到實數(shù)后,指數(shù)冪的運算性質也就推廣到了實數(shù)指數(shù)冪。 實數(shù)指數(shù)冪的運算性質: 對任意的實數(shù)r,s,均有下面的運算性質: 、賏r?as=ar+s(a>0,r,s∈R)。 、(ar)s=ars(a>0,r,s∈R)。 、(a?b)r=arbr(a>0,b>0,r∈R)。 應用示例 例1利用函數(shù)計算器計算。(精確到0.001) (1)0.32.1;(2)3.14-3;(3);(4) 。 活動:教師教會學生利用函數(shù)計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值; 對于(2),先按底數(shù)3.14,再按xy鍵,再按負號-鍵,再按3,最后按=即可; 對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可; 對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時也可按2ndf或shift鍵,使用鍵上面的功能去運算。 學生可以相互交流,挖掘計算器的用途。 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 點評:熟練掌握用計算器計算冪的值的方法與步驟,感受現(xiàn)代技術的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點后n位,只需看第(n+1)位能否進位即可。 例2求值或化簡。 (1)a-4b23ab2(a>0,b>0); 。2)(a>0,b>0); (3)5-26+7-43-6-42. 活動:學生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應使所化式子達到最簡,對既有分數(shù)指數(shù)冪又有根式的式子,應該把根式統(tǒng)一化為分數(shù)指數(shù)冪的形式,便于運算,教師有針對性地提示引導,對(1)由里向外把根式化成分數(shù)指數(shù)冪,要緊扣分數(shù)指數(shù)冪的意義和運算性質,對(2)既有分數(shù)指數(shù)冪又有根式,應當統(tǒng)一起來,化為分數(shù)指數(shù)冪,對(3)有多重根號的式子,應先去根號,這里是二次根式,被開方數(shù)應湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學生作及時的評價,注意總結解題的方法和規(guī)律。 解:(1)a-4b23ab2= =3b46a11 。 點評:根式的運算常;蓛绲倪\算進行,計算結果如沒有特殊要求,就用根式的形式來表示。 課程概述: 本課程為高中數(shù)學網課教學,針對的學生群體為高一學生,總共有40節(jié)課。課程主要內容包括:集合、函數(shù)、三角函數(shù)、數(shù)列、立體幾何、概率論等。 教學歷程: 在教學歷程中,我們采用在線直播教學的方式,每節(jié)課的時長為1小時。每周安排4節(jié)課,共進行2個月。每節(jié)課開始前,我們會提前通知學生上課的時間和地點,以確保學生能夠準時參加。 教學內容和教學方法: 在教學內容方面,我們按照高中數(shù)學的教學大綱進行安排,包括基礎概念、公式和解題方法等。教學方法上,我們采用多種形式的教學方式,包括在線直播講解、PPT演示、習題講解等。為了提高學生的學習興趣,我們還會引入一些生活中的例子進行講解。 教學效果: 通過本課程的學習,學生們的數(shù)學成績有了明顯的提高。其中,80%的.學生掌握了課程中的所有內容,15%的學生掌握了一些難度較高的內容。在課后作業(yè)的完成情況方面,85%的學生能夠獨立完成作業(yè),15%的學生需要在老師的指導下完成作業(yè)。此外,學生們還學會了如何應用數(shù)學知識解決生活中的問題。 反思和建議: 在課程結束后,我們對本次教學進行了反思,發(fā)現(xiàn)在教學的過程中需要進一步加強習題的講解,以幫助學生更好地掌握數(shù)學知識和解題方法。同時,我們建議教師在教學過程中注重學生的個體差異,針對不同的學生采用不同的教學方法和策略。 1.課題 填寫課題名稱(高中代數(shù)類課題) 2.教學目標 (1)知識與技能: 通過本節(jié)課的學習,掌握......知識,提高學生解決實際問題的能力; (2)過程與方法: 通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力; (3)情感態(tài)度與價值觀: 通過本節(jié)課的學習,增強學生的學習興趣,將數(shù)學應用到實際生活中,增加學生數(shù)學學習的樂趣。 3.教學重難點 (1)教學重點:本節(jié)課的知識重點 (2)教學難點:易錯點、難以理解的知識點 4.教學方法(一般從中選擇3個就可以了) (1)討論法 (2)情景教學法 (3)問答法 (4)發(fā)現(xiàn)法 (5)講授法 5.教學過程 (1)導入 簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節(jié)課的課題) (2)新授課程(一般分為三個小步驟) ①簡單講解本節(jié)課基礎知識點(例:奇函數(shù)的定義)。 、跉w納總結該課題中的重點知識內容,尤其對該注意的一些情況設置易錯點,進行強調?梢栽O計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設置定義域不關于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。 、弁卣寡由,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。 。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細。) (3)課堂小結 教師提問,學生回答本節(jié)課的收獲。 (4)作業(yè)提高 布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。 6.教學板書 2.高中數(shù)學教案格式 一.課題(說明本課名稱) 二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務) 三.課型(說明屬新授課,還是復習課) 四.課時(說明屬第幾課時) 五.教學重點(說明本課所必須解決的關鍵性問題) 六.教學難點(說明本課的學習時易產生困難和障礙的知識傳授與能力培養(yǎng)點) 七.教學方法要根據(jù)學生實際,注重引導自學,注重啟發(fā)思維 八.教學過程(或稱課堂結構,說明教學進行的內容、方法步驟) 九.作業(yè)處理(說明如何布置書面或口頭作業(yè)) 十.板書設計(說明上課時準備寫在黑板上的內容) 十一.教具(或稱教具準備,說明輔助教學手段使用的工具) 十二.教學反思:(教者對該堂課教后的感受及學生的收獲、改進方法) 3.高中數(shù)學教案范文 【教學目標】 1.知識與技能 (1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列: (2)賬務等差數(shù)列的通項公式及其推導過程: (3)會應用等差數(shù)列通項公式解決簡單問題。 2.過程與方法 在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的`能力,滲透函數(shù)與方程的思想。 3.情感、態(tài)度與價值觀 通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。 【教學重點】 、俚炔顢(shù)列的概念; ②等差數(shù)列的通項公式 【教學難點】 、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義; 、诘炔顢(shù)列的通項公式的推導過程. 【學情分析】 我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數(shù)學學習,大部分學生知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。 【設計思路】 1、教法 、賳l(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發(fā)揮其創(chuàng)造性. 、诜纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調動學生的積極性. 、壑v練結合法:可以及時鞏固所學內容,抓住重點,突破難點. 2、學法 引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法. 【教學過程】 一、創(chuàng)設情境,引入新課 1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么? 2、水庫管理人員為了保證優(yōu)質魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列? 3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數(shù)列? 教師:以上三個問題中的數(shù)蘊涵著三列數(shù). 學生: ①0,5,10,15,20,25,…. 、18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360. (設置意圖:從實例引入,實質是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力. 二、觀察歸納,形成定義 、0,5,10,15,20,25,…. 、18,15.5,13,10.5,8,5.5. 、10072,10144,10216,10288,10360. 思考1上述數(shù)列有什么共同特點? 思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎? 思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎? 教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念. 學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定. 教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義. (設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.) 三、舉一反三,鞏固定義 1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d. (1)1,1,1,1,1; (2)1,0,1,0,1; (3)2,1,0,-1,-2; (4)4,7,10,13,16. 教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題. 注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0. (設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用). 2、思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么? (設計意圖:強化等差數(shù)列的證明定義法) 四、利用定義,導出通項 1、已知等差數(shù)列:8,5,2,…,求第200項? 2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢? 教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法. (設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質,激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力) 五、應用通項,解決問題 1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項? 2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an. 3、求等差數(shù)列3,7,11,…的第4項和第10項 教師:給出問題,讓學生自己操練,教師巡視學生答題情況. 學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式 (設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.) 六、反饋練習:教材13頁練習1 七、歸納總結: 1、一個定義: 等差數(shù)列的定義及定義表達式 2、一個公式: 等差數(shù)列的通項公式 3、二個應用: 定義和通項公式的應用 教師:讓學生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充 (設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.) 【設計反思】 本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率. 教學目標 1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題. 。1)正確理解的定義,了解公比的概念,明確一個數(shù)列是的限定條件,能根據(jù)定義判斷一個數(shù)列是,了解等比中項的概念; 。2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數(shù)及指定的項; 。3)通過通項公式認識的性質,能解決某些實際問題. 2.通過對的研究,逐步培養(yǎng)學生觀察、類比、歸納、猜想等思維品質. 3.通過對概念的歸納,進一步培養(yǎng)學生嚴密的思維習慣,以及實事求是的科學態(tài)度. 教學建議 教材分析 。1)知識結構 是另一個簡單常見的數(shù)列,研究內容可與等差數(shù)列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用. 。2)重點、難點分析 教學重點是的定義和對通項公式的認識與應用,教學難點在于通項公式的推導和運用. ①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質,但也有明顯的區(qū)別,可根據(jù)定義與通項公式得出的特性,這些是教學的重點. 、陔m然在等差數(shù)列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點. 、蹖Φ炔顢(shù)列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點. 教學建議 。1)建議本節(jié)課分兩課時,一節(jié)課為的概念,一節(jié)課為通項公式的應用. (2)概念的引入,可給出幾個具體的例子,由學生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個等差數(shù)列和幾個混在一起給出,由學生將這些數(shù)列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義. 。3)根據(jù)定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解. 。4)對比等差數(shù)列的表示法,由學生歸納的各種表示法.啟發(fā)學生用函數(shù)觀點認識通項公式,由通項公式的結構特征畫數(shù)列的圖象. 。5)由于有了等差數(shù)列的研究經驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn). 。6)可讓學生相互出題,解題,講題,充分發(fā)揮學生的主體作用. 教學設計示例 課題:的概念 教學目標 1.通過教學使學生理解的概念,推導并掌握通項公式. 2.使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力. 3.培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹?shù)目茖W態(tài)度. 教學重點,難點 重點、難點是的定義的歸納及通項公式的推導. 教學用具 投影儀,多媒體軟件,電腦. 教學方法 討論、談話法. 教學過程 一、提出問題 給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片) ①-2,1,4,7,10,13,16,19,… ②8,16,32,64,128,256,… 、1,1,1,1,1,1,1,… 、243,81,27,9,3,1,,,… 、31,29,27,25,23,21,19,… 、1,-1,1,-1,1,-1,1,-1,… 、1,-10,100,-1000,10000,-100000,… 、0,0,0,0,0,0,0,… 由學生發(fā)表意見(可能按項與項之間的關系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質的一類數(shù)列(學生看不出③的情況也無妨,得出定義后再考察③是否為). 二、講解新課 請學生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步) 。ò鍟 1.的定義(板書) 根據(jù)與等差數(shù)列的名字的.區(qū)別與聯(lián)系,嘗試給下定義.學生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎是可以由學生概括出來的教師寫出的定義,標注出重點詞語. 請學生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數(shù)列的一般形式,學生可能說形如的數(shù)列都滿足既是等差又是,讓學生討論后得出結論:當時,數(shù)列既是等差又是,當時,它只是等差數(shù)列,而不是.教師追問理由,引出對的認識: 2.對定義的認識(板書) 。1)的首項不為0; 。2)的每一項都不為0,即; 問題:一個數(shù)列各項均不為0是這個數(shù)列為的什么條件? (3)公比不為0. 用數(shù)學式子表示的定義. 是①.在這個式子的寫法上可能會有一些爭議,如寫成,可讓學生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能? 式子給出了數(shù)列第項與第項的數(shù)量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式. 3.的通項公式(板書) 問題:用和表示第項. 、俨煌耆珰w納法 . ②疊乘法 ,…,,這個式子相乘得,所以. 。ò鍟1)的通項公式 得出通項公式后,讓學生思考如何認識通項公式. 。ò鍟2)對公式的認識 由學生來說,最后歸結: 、俸瘮(shù)觀點; 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認識,此處再復習鞏固而已). 這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓練) 如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節(jié)課再研究.同學可以試著編幾道題. 三、小結 1.本節(jié)課研究了的概念,得到了通項公式; 2.注意在研究內容與方法上要與等差數(shù)列相類比; 3.用方程的思想認識通項公式,并加以應用. 四、作業(yè)(略) 五、板書設計 1.等比數(shù)列的定義 2.對定義的認識 3.等比數(shù)列的通項公式 。1)公式 (2)對公式的認識 探究活動 將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米. 參考答案: 30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(用對數(shù)算也行). 【高中數(shù)學教案】相關文章: 高中數(shù)學教案12-30 高中數(shù)學教案02-21 高中數(shù)學教案模板02-02 高中數(shù)學教案【精】02-01 高中數(shù)學教案【推薦】01-25 【推薦】高中數(shù)學教案01-25 【熱】高中數(shù)學教案01-25 高中數(shù)學教案優(yōu)秀12-10 【通用】高中數(shù)學教案06-17 高中數(shù)學教案(通用)10-27高中數(shù)學教案13
高中數(shù)學教案14
高中數(shù)學教案15