【合集】高一數(shù)學(xué)教案15篇
作為一名教學(xué)工作者,就難以避免地要準(zhǔn)備教案,教案是教學(xué)活動的依據(jù),有著重要的地位。怎樣寫教案才更能起到其作用呢?下面是小編為大家整理的高一數(shù)學(xué)教案,希望對大家有所幫助。
高一數(shù)學(xué)教案1
[三維目標(biāo)]
一、知識與技能:
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個數(shù)問題的`討論說明
二、過程與方法
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法
三、情感態(tài)度與價值觀
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時安排]:1課時
[教學(xué)過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數(shù)分為:有限集和無窮集兩類
高一數(shù)學(xué)教案2
1.1 集合含義及其表示
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1) 全體自然數(shù)0,1,2,3,4,5,
2) 代數(shù)式 .
3) 拋物線 上所有的點
4) 今年本校高一(1)(或(2))班的全體學(xué)生
5) 本校實驗室的所有天平
6) 本班級全體高個子同學(xué)
7) 著名的科學(xué)家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的三個性質(zhì):
1)___________2)___________3)_____________
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______
4)有理數(shù)集______5)實數(shù)集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、 中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是 ( )
A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù) 的全體 值的集合;
3)函數(shù) 的全體自變量 的集合;
4)方程組 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)設(shè) , , 則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例6、設(shè)含有三個實數(shù)的集合既可以表示為 ,也可以表示為 ,則 的值等于___________
例7、已知: ,若 中元素至多只有一個,求 的取值范圍。
思考題:數(shù)集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。
小結(jié):
作業(yè) 班級 姓名 學(xué)號
1. 下列集合中,表示同一個集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .則 ( )
A . B. C. D.
3. 方程組 的`解集是____________________.
4. 在(1)難解的題目,(2)方程 在實數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5. 設(shè)集合 A= , B= ,
C= , D= ,E= 。
其中有限集的個數(shù)是____________.
6. 設(shè) ,則集合 中所有元素的和為
7. 設(shè)x,y,z都是非零實數(shù),則用列舉法將 所有可能的值組成的集合表示為
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,試用列舉法表示集合B=
9. 把下列集合用另一種方法表示出來:
(1) (2)
(3) (4)
10. 設(shè)a,b為整數(shù),把形如a+b 的一切數(shù)構(gòu)成的集合記為M,設(shè) ,試判斷x+y,x-y,xy是否屬于M,說明理由。
11. 已知集合A=
(1) 若A中只有一個元素,求a的值,并求出這個元素;
(2) 若A中至多只有一個元素,求a的取值集合。
12.若-3 ,求實數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來幫助!
高一數(shù)學(xué)教案3
第二十四教時
教材:倍角公式,推導(dǎo)和差化積及積化和差公式
目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強對公式靈活運用的訓(xùn)練;同時,讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對此有所了解。
過程:
一、 復(fù)習(xí)倍角公式、半角公式和萬能公式的推導(dǎo)過程:
例一、 已知 , ,tan = ,tan = ,求2 +
(《教學(xué)與測試》P115 例三)
解:
又∵tan2 0,tan 0 ,
2 + =
例二、 已知sin cos = , ,求 和tan的值
解:∵sin cos =
化簡得:
∵ 即
二、 積化和差公式的推導(dǎo)
sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]
sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]
cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]
cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]
這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點在于將積式化為和差,有利于簡化計算。(在告知公式前提下)
例三、 求證:sin3sin3 + cos3cos3 = cos32
證:左邊 = (sin3sin)sin2 + (cos3cos)cos2
= (cos4 cos2)sin2 + (cos4 + cos2)cos2
= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2
= cos4cos2 + cos2 = cos2(cos4 + 1)
= cos22cos22 = cos32 = 右邊
原式得證
三、 和差化積公式的`推導(dǎo)
若令 + = , = ,則 , 代入得:
這套公式稱為和差化積公式,其特點是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。
例四、 已知cos cos = ,sin sin = ,求sin( + )的值
解:∵cos cos = , ①
sin sin = , ②
四、 小結(jié):和差化積,積化和差
五、 作業(yè):《課課練》P3637 例題推薦 13
P3839 例題推薦 13
P40 例題推薦 13
高一數(shù)學(xué)教案4
[教學(xué)重、難點]
認(rèn)識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。
[教學(xué)準(zhǔn)備]
學(xué)生、老師剪下附頁2中的圖2。
[教學(xué)過程]
一、畫一畫,說一說
1、學(xué)生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。
2、教師巡查練習(xí)情況。
3、學(xué)生展示練習(xí),說一說為什么是銳角、直角、鈍角?
二、分一分
1、小組活動;把附頁2中的圖2中的三角形進(jìn)行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?
2、匯報:分類的標(biāo)準(zhǔn)和方法。可以按角來分,可以按邊來分。
二、按角分類:
1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。
2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的三角形是直角三角形
3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的三角形是鈍角三角形。
三、按邊分類:
1、觀察這類三角形的'邊有什么共同的特點,引導(dǎo)學(xué)生發(fā)現(xiàn)每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。
2、引導(dǎo)學(xué)生發(fā)現(xiàn)有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?
四、填一填:
24、25頁讓學(xué)生辨認(rèn)各種三角形。
五、練一練:
第1題:通過“猜三角形游戲”讓學(xué)生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。
第2題:在點子圖上畫三角形第3題:剪一剪。
六、完成26頁實踐活動。
高一數(shù)學(xué)教案5
學(xué) 習(xí) 目 標(biāo)
1明確空間直角坐標(biāo)系是如何建立;明確空間中任意一點如何表示;
2 能夠在空間直角坐標(biāo)系中求出點坐標(biāo)
教 學(xué) 過 程
一 自 主 學(xué) 習(xí)
1平面直角坐標(biāo)系建立方法,點坐標(biāo)確定過程、表示方法?
2一個點在平面怎么表示?在空間呢?
3關(guān)于一些對稱點坐標(biāo)求法
關(guān)于坐標(biāo)平面 對稱點 ;
關(guān)于坐標(biāo)平面 對稱點 ;
關(guān)于坐標(biāo)平面 對稱點 ;
關(guān)于 軸對稱點 ;
關(guān)于 對軸稱點 ;
關(guān)于 軸對稱點 ;
二 師 生 互動
例1在長方體 中, , 寫出 四點坐標(biāo)
討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標(biāo)系,則各頂點坐標(biāo)又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標(biāo)系,并確定各頂點坐標(biāo)
練1 建立適當(dāng)直角坐標(biāo)系,確定棱長為3正四面體各頂點坐標(biāo)
練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當(dāng)空間直角坐標(biāo)系,試寫出圖中各中點坐標(biāo)
三 鞏 固 練 習(xí)
1 關(guān)于空間直角坐標(biāo)系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標(biāo)系中點與一個三元有序數(shù)組是一種一一對應(yīng)關(guān)系
C空間直角坐標(biāo)系中三條坐標(biāo)軸把空間分為八個部分
D某點在不同空間直角坐標(biāo)系中坐標(biāo)位置可以相同
2 已知點 ,則點 關(guān)于原點對稱點坐標(biāo)為( )
A B C D
3 已知 三個頂點坐標(biāo)分別為 ,則 重心坐標(biāo)為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點 坐標(biāo)
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習(xí)
1 在空間直角坐標(biāo)系中,給定點 ,求它分別關(guān)于坐標(biāo)平面,坐標(biāo)軸和原點對稱點坐標(biāo)
2 設(shè)有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標(biāo)系
⑴求 坐標(biāo);
、魄 坐標(biāo);
高一數(shù)學(xué)教案6
第一節(jié) 集合的含義與表示
學(xué)時:1學(xué)時
[學(xué)習(xí)引導(dǎo)]
一、自主學(xué)習(xí)
1.閱讀課本 .
2.回答問題:
、疟竟(jié)內(nèi)容有哪些概念和知識點?
、茋L試說出相關(guān)概念的含義?
3完成 練習(xí)
4小結(jié)
二、方法指導(dǎo)
1、要結(jié)合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。
2、理解集合元素的特性,并會判斷元素與集合的關(guān)系
3、掌握集合的表示方法,并會正確運用它們表示一些簡單集合。
4、在學(xué)習(xí)中要特別注意理解空集的意義和記法
[思考引導(dǎo)]
一、提問題
1.集合中的元素有什么特點?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語言表述?
5集合 和 是否相同?
二、變題目
1.下列各組對象不能構(gòu)成集合的是( )
A.北京大學(xué)2008級新生
B.26個英文字母
C.著名的藝術(shù)家
D.2008年北京奧運會中所設(shè)定的比賽項目
2.下列語句:①0與 表示同一個集合;
、谟1,2,3組成的`集合可表示為 或 ;
、鄯匠 的解集可表示為 ;
④集合 可以用列舉法表示。
其中正確的是( )
A.①和④ B.②和③
C.② D.以上語句都不對
[總結(jié)引導(dǎo)]
1.集合中元素的三特性:
2.集合、元素、及其相互關(guān)系的數(shù)學(xué)符號語言的表示和理解:
3.空集的含義:
[拓展引導(dǎo)]
1.課外作業(yè): 習(xí)題11第 題;
2.若集合 ,求實數(shù) 的值;
3.若集合 只有一個元素,則實數(shù) 的值為 ;若 為空集,則 的取值范圍是 .
撰稿:程曉杰 審稿:宋慶
高一數(shù)學(xué)教案7
教學(xué)目標(biāo)
1、使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì)。
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如的圖象。
2、通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。
3、通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
教學(xué)建議
教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點研究。
(2)本節(jié)的教學(xué)重點是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì)。難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分。
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如等都不是指數(shù)函數(shù)。
(2)對底數(shù)的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的`認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來。
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計算,描點得圖象。
高一數(shù)學(xué)教案8
教學(xué) 目標(biāo)
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項、
。1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的、
。2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第 項 與項數(shù) 的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式、
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項、
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力、
3、通過由 求 的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣、
教學(xué) 建議
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等、
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系、在 教學(xué) 中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列、函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法、由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法??遞推公式法、
。3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法, 教師 應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助、
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用 來調(diào)整等、如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系、
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前 項和的概念,用 表示 的問題是重點問題,可先提出一個具體問題讓學(xué)生分析 與 的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強調(diào) 的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況、
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的、
教學(xué) 設(shè)計示例
數(shù)列的概念
教學(xué) 目標(biāo)
1、通過 教學(xué) 使學(xué)生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項公式寫出數(shù)列的項、
2、通過數(shù)列定義的歸納概括,初步培養(yǎng)學(xué)生的觀察、抽象概括能力;滲透函數(shù)思想、
3、通過有關(guān)數(shù)列實際應(yīng)用的介紹,激發(fā)學(xué)生學(xué)習(xí)研究數(shù)列的積極性、
教學(xué) 重點,難點
教學(xué) 重點是數(shù)列的定義的歸納與認(rèn)識; 教學(xué) 難點是數(shù)列與函數(shù)的聯(lián)系與區(qū)別、
教學(xué) 用具: 電腦,課件(媒體資料),投影儀,幻燈片
教學(xué) 方法: 講授法為主
教學(xué) 過程
一、揭示課題
今天開始我們研究一個新課題、
先舉一個生活中的例子:場地上堆放了一些圓鋼,最底下的'一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律、實際上我們要研究的是這樣的一列數(shù)
。 板書 ) 象這樣排好隊的數(shù)就是我們的研究對象??數(shù)列、
。 板書 )第三章 數(shù)列
。ㄒ唬⿺(shù)列的概念
二、講解新課
要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學(xué)概括出數(shù)列的定義,再給出幾列數(shù):
(幻燈片)
、
自然數(shù)排成一列數(shù):
②
3個1排成一列:
、
無數(shù)個1排成一列:
④
的不足近似值,分別近似到 排列起來:
、
正整數(shù) 的倒數(shù)排成一列數(shù):
、
函數(shù) 當(dāng) 依次取 時得到一列數(shù):
⑦
函數(shù) 當(dāng) 依次取 時得到一列數(shù):
、
請學(xué)生觀察8列數(shù),說明每列數(shù)就是一個數(shù)列,數(shù)列中的每個數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù)、
。 板書 )1、數(shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列、
為表述方便給出幾個名稱:項,項數(shù),首項(以幻燈片的形式給出)、以上述八個數(shù)列為例,讓學(xué)生練習(xí)了指出某一個數(shù)列的首項是多少,第二項是多少,指出某一個數(shù)列的一些項的項數(shù)、
由此可以看出,給定一個數(shù)列,應(yīng)能夠指明第一項是多少,第二項是多少,……,每一項都是確定的,即指明項數(shù),對應(yīng)的項就確定、所以數(shù)列中的每一項與其項數(shù)有著對應(yīng)關(guān)系,這與我們學(xué)過的函數(shù)有密切關(guān)系、
。 板書 )2、數(shù)列與函數(shù)的關(guān)系
數(shù)列可以看作特殊的函數(shù),項數(shù)是其自變量,項是項數(shù)所對應(yīng)的函數(shù)值,數(shù)列的定義域是正整數(shù)集 ,或是正整數(shù)集 的有限子集 、
于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點看待數(shù)列、
遇到數(shù)學(xué)概念不單要下定義,還要給其數(shù)學(xué)表示,以便研究與交流,下面探討數(shù)列的表示法、
。 板書 )3、數(shù)列的表示法
數(shù)列可看作特殊的函數(shù),其表示也應(yīng)與函數(shù)的表示法有聯(lián)系,首先請學(xué)生回憶函數(shù)的表示法:列表法,圖象法,解析式法、相對于列表法表示一個函數(shù),數(shù)列有這樣的表示法:用 表示第一項,用 表示第一項,……,用 表示第 項,依次寫出成為
( 板書 )(1)列舉法
。ㄈ缁脽羝系睦樱┖営洖
一個函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個數(shù)列,把它稱作圖示法、
。 板書 )(2)圖示法
啟發(fā)學(xué)生仿照函數(shù)圖象的畫法畫數(shù)列的圖形、具體方法是以項數(shù) 為橫坐標(biāo),相應(yīng)的項 為縱坐標(biāo),即以 為坐標(biāo)在平面直角坐標(biāo)系中做出點(以前面提到的數(shù)列 為例,做出一個數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點,因為橫坐標(biāo)為正整數(shù),所以這些點都在 軸的右側(cè),而點的個數(shù)取決于數(shù)列的項數(shù)、從圖象中可以直觀地看到數(shù)列的項隨項數(shù)由小到大變化而變化的趨勢、
有些函數(shù)可以用解析式來表示,解析式反映了一個函數(shù)的函數(shù)值與自變量之間的數(shù)量關(guān)系,類似地有一些數(shù)列的項能用其項數(shù)的函數(shù)式表示出來,即 ,這個函數(shù)式叫做數(shù)列的通項公式、
。 板書 )(3)通項公式法
如數(shù)列 的通項公式為 ;
的通項公式為 ;
的通項公式為 ;
數(shù)列的通項公式具有雙重身份,它表示了數(shù)列的第 項,又是這個數(shù)列中所有各項的一般表示、通項公式反映了一個數(shù)列項與項數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項公式,這個數(shù)列便確定了,代入項數(shù)就可求出數(shù)列的每一項、
例如,數(shù)列 的通項公式 ,則 、
值得注意的是,正如一個函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項公式,即便有通項公式,通項公式也未必唯一、
除了以上三種表示法,某些數(shù)列相鄰的兩項(或幾項)有關(guān)系,這個關(guān)系用一個公式來表示,叫做遞推公式、
。 板書 )(4)遞推公式法
如前面所舉的鋼管的例子,第 層鋼管數(shù) 與第 層鋼管數(shù) 的關(guān)系是 ,再給定 ,便可依次求出各項、再如數(shù)列 中, ,這個數(shù)列就是 、
像這樣,如果已知數(shù)列的第1項(或前幾項),且任一項與它的前一項(或前幾項)間的關(guān)系用一個公式來表示,這個公式叫做這個數(shù)列的遞推公式、遞推公式是數(shù)列所特有的表示法,它包含兩個部分,一是遞推關(guān)系,一是初始條件,二者缺一不可、
可由學(xué)生舉例,以檢驗學(xué)生是否理解、
三、小結(jié)
1、數(shù)列的概念
2、數(shù)列的四種表示
四、作業(yè)? 略
五、 板書 設(shè)計
數(shù)列
。ㄒ唬⿺(shù)列的概念 涉及的數(shù)列及表示
1、數(shù)列的定義
2、數(shù)列與函數(shù)的關(guān)系
3、數(shù)列的表示法
。1)列舉法
。2)圖示法
。3)通項公式法
。4)遞推公式法
探究活動
將邊長為 厘米的正方形分成 個邊長為1厘米的正方形,數(shù)出其中所有正方形的個數(shù)、
解:當(dāng) 時,共有正方形 個;當(dāng) 時,共有正方形 個;當(dāng) 時,共有正方形 個;當(dāng) 時,共有正方形 個;當(dāng) 時,共有正方形 個;歸納猜想邊長為 厘米的正方形中的正方形共有 個、
高一數(shù)學(xué)教案9
教學(xué)目標(biāo):①掌握對數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)
合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學(xué)重點與難點:對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計:
⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
、查_始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的.解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0
調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當(dāng)0
∵5.1<5.9 loga5.1="">loga5.9
、)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
高一數(shù)學(xué)教案10
一:【課前預(yù)習(xí)】
(一):【知識梳理】
1.直角三角形的邊角關(guān)系(如圖)
(1)邊的關(guān)系(勾股定理):AC2+BC2=AB2;
(2)角的關(guān)系:B=
(3)邊角關(guān)系:
、伲
、冢轰J角三角函數(shù):
A的正弦= ;
A的余弦= ,
A的正切=
注:三角函數(shù)值是一個比值.
2.特殊角的三角函數(shù)值.
3.三角函數(shù)的關(guān)系
(1) 互為余角的三角函數(shù)關(guān)系.
sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA
(2) 同角的三角函數(shù)關(guān)系.
平方關(guān)系:sin2 A+cos2A=l
4.三角函數(shù)的大小比較
①正弦、正切是增函數(shù).三角函數(shù)值隨角的增大而增大,隨角的減小而減小.
、谟嘞沂菧p函數(shù).三角函數(shù)值隨角的增大而減小,隨角的減小而增大。
(二):【課前練習(xí)】
1.等腰直角三角形一個銳角的余弦為( )
A. D.l
2.點M(tan60,-cos60)關(guān)于x軸的對稱點M的坐標(biāo)是( )
3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( )
4.已知A為銳角,且cosA0.5,那么( )
A.060 B.6090 C.030 D.3090
二:【經(jīng)典考題剖析】
1.如圖,在Rt△ABC中,C=90,A=45,點D在AC上,BDC=60,AD=l,求BD、DC的長.
2.先化簡,再求其值, 其中x=tan45-cos30
3. 計算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○
4.比較大小(在空格處填寫或或=)
若=45○,則sin________cos
若45○,則sin cos
若45,則 sin cos.
5.⑴如圖①、②銳角的.正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律;
、聘鶕(jù)你探索到的規(guī)律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小.
三:【課后訓(xùn)練】
1. 2sin60-cos30tan45的結(jié)果為( )
A. D.0
2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( )
A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形
3.如圖,在平面直角坐標(biāo)系中,已知A(3,0)點B(0,-4),則cosOAB等于__________
4.cos2+sin242○ =1,則銳角=______.
5.在下列不等式中,錯誤的是( )
A.sin45○sin30○;B.cos60○tan30○;D.cot30○
6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是()
7.如圖所示,在菱形ABCD中,AEBC于 E點,EC=1,B=30,求菱形ABCD的周長.
8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值
9.如圖 ,某風(fēng)景區(qū)的湖心島有一涼亭A,其正東方向有一棵大樹B,小明想測量A/B之間的距離,他從湖邊的C處測得A在北偏西45方向上,測得B在北偏東32方向上,且量得B、C之間的距離為100米,根據(jù)上述測量結(jié)果,請你幫小明計算A山之間的距離是多少?(結(jié)果精確至1米.參考數(shù)據(jù):sin32○0.5299,cos32○0.8480)
10.某住宅小區(qū)修了一個塔形建筑物AB,如圖所示,在與建筑物底部同一水平線的C處,測得點A的仰角為45,然后向塔方向前進(jìn)8米到達(dá)D處,在D處測得點A的仰角為60,求建筑物的高度.(精確0.1米)
高一數(shù)學(xué)教案11
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點的坐標(biāo)、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標(biāo)法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
(二)過程與方法目標(biāo)
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點
(一)重點
用解析法研究直線與圓的位置關(guān)系。
(二)難點
體會用解析法解決問題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。
六、教學(xué)過程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。
設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認(rèn)識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的`解題思路。
當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來判斷:
當(dāng)方程組有兩組實數(shù)解時,直線l與圓C相交;
當(dāng)方程組有一組實數(shù)解時,直線l與圓C相切;
當(dāng)方程組沒有實數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?
設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進(jìn)行主動建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報。
七、板書設(shè)計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。
高一數(shù)學(xué)教案12
【教學(xué)目標(biāo)】
【知識與技能】
、倭私鈨山遣畹挠嘞夜降耐茖(dǎo);
、谡莆諆山遣畹挠嘞夜讲⒛軐竭M(jìn)行初步的應(yīng)用。
【過程與方法】
、俳(jīng)歷大膽猜想———初步驗證———理論證明———應(yīng)用與拓展的數(shù)學(xué)化的過程讓學(xué)生感受到知識的產(chǎn)生和發(fā)展;
②利用信息技術(shù)揭示單角的三角函數(shù)值與兩角差的余弦值之間的關(guān)系,激發(fā)學(xué)生探究數(shù)學(xué)的積極性;
、叟囵B(yǎng)學(xué)生獲取數(shù)學(xué)知識、數(shù)學(xué)交流的能力;
【情感態(tài)度價值觀】
、偈箤W(xué)生體會聯(lián)想轉(zhuǎn)化、數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想;
②培養(yǎng)學(xué)生大膽猜想、敢于探索、勇于置疑、嚴(yán)謹(jǐn)、求實的科學(xué)態(tài)度。
【教學(xué)重點、難點】
重點:兩角差余弦公式的探索和初步應(yīng)用。
難點:探索過程的組織和引導(dǎo)。
【教學(xué)手段】用幾何畫板和powerpoint演示。
【教學(xué)流程】
創(chuàng)設(shè)問題情景,揭示課題
感知猜想
利用幾何畫板驗證猜想
組織和引導(dǎo)學(xué)生共同合作探索公式
通過例題、練習(xí),加強對公式的理解
回顧與反思
布置作業(yè),引發(fā)其他公式的探究
【教學(xué)設(shè)計】
(一)創(chuàng)設(shè)問題情境,揭示課題
先讓學(xué)生口答的正弦余弦值,再提出
問題
1、有什么關(guān)系?()
問題
2、對于a、b、c
。ㄗ寣W(xué)生討論,老師歸納其討論結(jié)果,并指出不成立。因為)
問題
3、對于任意角α、β,(設(shè)計意圖:由特殊問題引發(fā)一般問題,喚起學(xué)生解決問題的意識,拋出新知識引起學(xué)生的疑惑,在興趣和疑惑中,激發(fā)學(xué)生的求知欲,引導(dǎo)學(xué)習(xí)方向。)
。ǘ└行哉J(rèn)知,提出猜想
問題:如何用任意角α和β的.正弦、余弦值來表示cos(α-β)?
雖然但學(xué)生自然猜想到它們之間有一定的等量關(guān)系,于是讓學(xué)生憑借直覺,發(fā)揮想象,將sinα、sinβ、cosα、cosβ隨意組合,構(gòu)造出結(jié)果的表示形式。
。ㄈ炞C猜想
借助幾何畫板,呈現(xiàn)猜想的式子,計算出cos(α-β)和各式子的值,發(fā)現(xiàn)當(dāng)隨意變換角度α和β時,總有cos(α-β)和cosαcosβ+sinαsinβ的結(jié)果相等,所以猜測公式的形式可能是:cos(α-β)=cosαcosβ+sinαsinβ
。ǖ谝唤M驗證)
。ǖ诙M驗證)
。設(shè)計意圖:使學(xué)生看到現(xiàn)代化信息技術(shù)對探討數(shù)學(xué)問題的幫助,從而引導(dǎo)學(xué)生在今后的學(xué)習(xí)和工作中能重視現(xiàn)代信息技術(shù)的應(yīng)用。)
(四)聯(lián)想轉(zhuǎn)化、探索論證
讓學(xué)生加強新舊知識的聯(lián)系,尋找已有知識點的理論支持,選定探討方法,適時提問,逐步引導(dǎo),層層推進(jìn)。
問題(1)剛才的驗證可靠嗎?為什么?
。ú豢煽,它并不能代表一般性)
問題(2)對于任意的α和β,你如何證明上式恒成立呢?你聯(lián)想到哪些相關(guān)知識?
1、根據(jù)學(xué)生的回答,先利用向量來證明。
問題(3)你是如何聯(lián)想到向量?用向量證明得先做哪些準(zhǔn)備?
問題(4)在圖中選擇哪些向量,它們?nèi)绾伪硎荆?/p>
問題(5)如何利用向量的運算構(gòu)造出等式的左右兩邊?
問題(6)證明是否嚴(yán)密?若有,請你補充。
。設(shè)計意圖:讓學(xué)生經(jīng)歷利用向量知識解決一個數(shù)學(xué)問題的過程,體會向量方法解決數(shù)學(xué)問題的簡潔性。)
2、利用學(xué)生對舊知識的聯(lián)想提出利用三角函數(shù)線來證明。
讓學(xué)生研讀教材,并提出相應(yīng)的問題,拓寬學(xué)生的思維。
問題(1)如何構(gòu)造三角函數(shù)線來證明公式?
高一數(shù)學(xué)教案13
教學(xué)內(nèi)容:
義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書小學(xué)數(shù)學(xué)三年級上冊《數(shù)學(xué)廣角——集合》的內(nèi)容之一。
教學(xué)目標(biāo):
1.知識技能目標(biāo):在具體的情境中使學(xué)生感受集合的思想,感知集合圖的產(chǎn)生過程。
2.數(shù)學(xué)思考目標(biāo):
能借助直觀圖理解題意,同時使學(xué)生在解決問題的過程中進(jìn)一步體會集合的思想,進(jìn)而形成策略。
3.問題解決目標(biāo):
(1).能借助直觀圖,利用集合的思想方法解決簡單的實際問題。
(2).滲透多種方法解決重疊問題的意識。
4.情感態(tài)度目標(biāo):
(1)培養(yǎng)學(xué)生善于觀察、善于思考的能力。
(2)手腦結(jié)合、學(xué)中激趣,體驗合作樂趣,養(yǎng)成良好習(xí)慣。
教學(xué)重難點:
1.重點:體會集合思想,利用集合的思想方法解決簡單的重疊問題,并且能用數(shù)學(xué)語言進(jìn)行描述。
2.難點:對重疊部分的理解;學(xué)會用集合圖來表示事物之間的關(guān)系。
教學(xué)方法:觀察法、分析法、討論法、操作法、直觀演示法、嘗試法。
學(xué)法指導(dǎo):
1.借圖觀察、分析、討論、交流、操作。
2.大膽嘗試用集合圖來表示事物之間的關(guān)系,敢于發(fā)表自己的見解。
教具準(zhǔn)備:多媒體課件、微視頻、切換筆、可以活動的姓名卡片、直尺、磁鐵、雙面膠、5朵紅花和5個五角星。一張大白紙。
師:上課之前,我們一起來欣賞一段視頻,希望同學(xué)們認(rèn)真仔細(xì)的觀看,隨后,要回答老師的提問。請看大屏幕……(課件出示奉獻(xiàn)愛心、從小做起的微視頻)
師:看完這段精彩而又讓人感動的畫面后,你有什么想說的嗎?在今后的生活中,如果遇到需要幫助的人或事,你應(yīng)該怎么做呢?(各抒己見)
師:同學(xué)們說的真好!那么,我們荔東小學(xué)的同學(xué)們也是一方有難、八方支援,非常有愛心。請看大屏幕:這是我校三一班其中一個小組同學(xué)向災(zāi)區(qū)“獻(xiàn)愛心”的情況。請同學(xué)們認(rèn)真仔細(xì)地觀察這幅表格,你從中都發(fā)現(xiàn)了哪些數(shù)學(xué)信息?
設(shè)計意圖:激發(fā)學(xué)生學(xué)習(xí)興趣的同時,滲透奉獻(xiàn)愛心、從小做起,一方有難、八方支援的愛心教育。
生1:我發(fā)現(xiàn)在這次“獻(xiàn)愛心”活動中,有捐款的,還有捐物的。
師:這么一個簡單的問題怎么會有這么多不同的答案呢?
看來這張表格不能讓我們很清楚的看出一共有多少人?那你們能不能想想辦法,在不改變題意的前提下,將表格中的名字作以調(diào)整,讓人們很清楚的看出一共有多少人?為此,老師特意為大家準(zhǔn)備了一個可以隨意活動姓名的表格。請看黑板:(揭示黑板上的活動表格)
師:誰都贊同他們的擺法?請把最熱烈的掌聲送給這個積極探索的小組。你們組的擺法的確不錯,可老師還是覺得,有時還會將總?cè)藬?shù)看成11人,哪一組還有更好的擺法?
(課堂生成:如果學(xué)生沒有想到這個方案,可以啟發(fā):當(dāng)我們讀書的時候,眼睛從左往右看。那么,想引起人們的注意,應(yīng)該把既捐款又捐物的人名移到左邊。)
師:哇!你們的擺法很獨特,說說你們這樣擺有什么好處?
生:因為有兩個李彤和任一,我們?nèi)∠聛硪粋李彤和任一,將剩下的李彤和任一放在中間,既表示捐款的人,又表示捐物的人,這樣,很清楚的看出一共有9人。
師:你們組的擺法真的很有創(chuàng)意,他們組的擺法你滿意嗎?(生生評價)授予你們小組為“勇于創(chuàng)新小組”。同學(xué)們,掌聲鼓勵。
設(shè)計意圖:培養(yǎng)學(xué)生的觀察能力、分析能力、交流合作能力以及創(chuàng)新能力。積發(fā)學(xué)生的想象力,拓展學(xué)生的思維。
(課堂生成:如果學(xué)生沒有想到這個方案,可以啟發(fā):當(dāng)你和爸爸、媽媽上街的時候,你既想牽爸爸的手,又想牽媽媽的手,你應(yīng)該走到什么位置?那么,同樣的道理,李彤和任一這兩個同學(xué)既捐了款又捐了物,他們應(yīng)該放到什么位置?)
2.圈一圈。
師:請同學(xué)們觀察這張調(diào)整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分別把它們?nèi)Τ鰜韱?
設(shè)計意圖:(不同顏色的粉筆圈出來更明顯)為韋恩圖的形成奠定基礎(chǔ)。
師:為了讓大家看的更清楚、更直觀,請看大屏幕:
(1)取消表格。
表示捐款和捐物的人名單我們已經(jīng)用線圈起來了,底下的表格已經(jīng)沒有用了,可以將它取消。
(2)捐款的移到左邊,捐物的移到右邊。
設(shè)計意圖:感受韋恩圖的形成過程,讓學(xué)生親身經(jīng)歷知識的.形成過程。
(4)介紹韋恩圖。
師:在很久以前,就有人給它起了個名字,叫韋恩圖。(出現(xiàn)韋恩圖三個字)你們知道為什么把它稱作韋恩圖嗎?因為這是英國著名的數(shù)學(xué)家韋恩在19世紀(jì)發(fā)明的,后來,就把這樣的圖叫韋恩圖,也叫集合圖。今天,我們就一起探究有關(guān)集合的知識《數(shù)學(xué)廣角》——集合。(板書課題)
師:同學(xué)們,我們通過自主探究、動手操作、小組討論,將一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,經(jīng)過旋轉(zhuǎn)演變后,轉(zhuǎn)化成這副既科學(xué)合理又形象直觀的韋恩圖,你們真的很了不起!師:請大家仔細(xì)觀察大屏幕,回答老師的提問。
4.列式計算。
(1)課件分別出示韋恩圖的五個部分,學(xué)生分別說出每部分所表示的含義,課件一一呈現(xiàn)數(shù)學(xué)信息。
師:同學(xué)們看懂韋恩圖了,也真正領(lǐng)悟到了每部分所表示的含義,并且,從中發(fā)現(xiàn)了這么多的數(shù)學(xué)信息,現(xiàn)在,你能計算出捐款和捐物的一共有多少人嗎?請同學(xué)們獨立解答。
(2)計算板演。
方法二:3+2+4=9(口答) 方法三:5+4=9(口答) 方法四:3+6=9(口答)
師:同學(xué)們,通過剛才的學(xué)習(xí),我們學(xué)會了許多知識和本領(lǐng),其實,利用韋恩圖可以幫我們解決生活中的許多問題,我們來看看:
三年級有10名同學(xué)參加競賽,其中,參加數(shù)學(xué)競賽的有5人,參加作文競賽的有6人。
(1)既參加數(shù)學(xué)競賽又參加作文競賽的有幾人?
(2)只參加數(shù)學(xué)競賽的有幾人?
(3)只參加作文競賽的有幾人?
設(shè)計意圖:有梯度的練習(xí)題有利于不同層次的學(xué)生均有收獲。舉一反三搶答題強調(diào)重點,內(nèi)化知識;思維訓(xùn)練題求重疊部分,培養(yǎng)學(xué)生的逆向思維,培養(yǎng)學(xué)生靈活運用知識解決問題的能力。
師:同學(xué)們,你們課堂上,善于觀察、認(rèn)真思考、踴躍發(fā)言、敢于創(chuàng)新。表現(xiàn)得非常出色!通過自主探究、小組交流學(xué)到了很多關(guān)于集合的知識,下面,有請獲得紅花和紅星獎勵的小朋友上臺。紅花站左邊、紅星站右邊。
引發(fā)沖突:兩種都有的學(xué)生應(yīng)該站哪?(中間)請觀察這一排同學(xué),回答問題:
1.獲得紅花獎勵的指哪些同學(xué)?
2.獲得紅星獎勵的指哪些同學(xué)?
3.既獲得紅花獎勵又獲得紅星獎勵的指哪些同學(xué)?
4.只獲得紅花獎勵的指哪些同學(xué)?
5.只獲得紅星獎勵的指哪些同學(xué)?
6.獲得紅花獎勵和紅星獎勵的一共有多少人?
設(shè)計意圖:內(nèi)化集合知識;實現(xiàn)評價方法的多元化和評價方式的多樣化;滲透養(yǎng)成良好學(xué)習(xí)習(xí)慣的思想教育。
請以講臺前獲得紅花獎勵和紅星獎勵的學(xué)生人數(shù)為題材,用今天所學(xué)到的知識,設(shè)計一個集合圖。大膽嘗試吧!只要我們能在知識的海洋里成風(fēng)破浪、歷練出一身好本領(lǐng),一定會設(shè)計并創(chuàng)造出一個屬于自己的精彩人生!
設(shè)計意圖:給學(xué)生一個開放的空間,以講臺前獲得紅花獎勵和紅星獎勵的學(xué)生人數(shù)為題材,用今天所學(xué)到的知識,讓學(xué)生自主探索,自己設(shè)計出集合圖。充分地利用韋恩圖,讓他們明白韋恩圖在平時生活中也是非常有用,同時,培養(yǎng)了學(xué)生的創(chuàng)造能力。
高一數(shù)學(xué)教案14
一、教學(xué)目標(biāo)
1、知識與技能
。1)通過實物操作,增強學(xué)生的直觀感知。
。2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2、過程與方法
。1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3、情感態(tài)度與價值觀
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀 四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2、所舉的.建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10、現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學(xué)過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本P8,習(xí)題1.1 A組第1題。
4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本P8 練習(xí)題1.1 B組第1題
課外練習(xí) 課本P8 習(xí)題1.1 B組第2題
高一數(shù)學(xué)教案15
一、教材分析
。ㄒ唬┑匚慌c作用
《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進(jìn)一步獲得比較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。
這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識的高度升華.本節(jié)內(nèi)容之后,將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.
(二)學(xué)情分析
。1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個函數(shù)的意識,已初步形成對數(shù)學(xué)問題的合作探究能力。
(2)雖然前面學(xué)生已經(jīng)學(xué)會用描點畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識。
。3)學(xué)生層次參差不齊,個體差異比較明顯。
二、目標(biāo)分析
新課標(biāo)指出“三維目標(biāo)”是一個密切聯(lián)系的有機整體。
(一)教學(xué)目標(biāo)
。1)知識與技能
①使學(xué)生理解冪函數(shù)的概念,會畫冪函數(shù)的圖象。
、谧寣W(xué)生結(jié)合這幾個冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。
。2)過程與方法
、僮寣W(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識圖能力。
②使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
(3)情感態(tài)度與價值觀
、偻ㄟ^熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。
、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。
、叟囵B(yǎng)學(xué)生從特殊歸納出一般的意識,培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識圖中獲得學(xué)習(xí)的快樂。
(二)重點難點
根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點定為:
重點:從五個具體的冪函數(shù)中認(rèn)識概念和性質(zhì)
難點:從冪函數(shù)的圖象中概括其性質(zhì)。
三、教法、學(xué)法分析
。ㄒ唬┙谭
教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。
1、引導(dǎo)發(fā)現(xiàn)比較法
因為有五個冪函數(shù),所以可先通過學(xué)生動手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的.角度和形的角度發(fā)現(xiàn)異同,并進(jìn)行比較,從而更深刻地領(lǐng)會冪函數(shù)概念以及五個冪函數(shù)的圖象與性質(zhì)。
2、借助信息技術(shù)輔助教學(xué)
由于多媒體信息技術(shù)能具有形象生動易吸引學(xué)生注意的特點,故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。
3、練習(xí)鞏固討論學(xué)習(xí)法
這樣更能突出重點,解決難點,使學(xué)生既能夠進(jìn)行深入地獨立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來學(xué)生對這五個冪函數(shù)領(lǐng)會得會更加深刻,在這個過程中學(xué)生們分析問題和解決問題的能力得到進(jìn)一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。
(二)學(xué)法
本節(jié)課主要是通過對冪函數(shù)模型的特征進(jìn)行歸納,動手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動手操作、觀察發(fā)現(xiàn)和歸納的過程。
由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進(jìn)行動態(tài)演化,以形成較完整的知識結(jié)構(gòu)。
四、教學(xué)過程分析
。ㄒ唬┙虒W(xué)過程設(shè)計
(1)創(chuàng)設(shè)情境,提出問題。新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計改變了傳統(tǒng)目的明確的設(shè)計方式,給學(xué)生的思考空間,充分體現(xiàn)學(xué)生主體地位。
問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?
由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1
這時學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:
都是自變量的若干次冪的形式。都是形如的函數(shù)。
揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)
。ㄒ唬┱n堂主要內(nèi)容
(1)冪函數(shù)的概念
、賰绾瘮(shù)的定義。
一般地,函數(shù)
叫做冪函數(shù),其中x是自變量,a是常數(shù)。
、趦绾瘮(shù)與指數(shù)函數(shù)之間的區(qū)別。
冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);
指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。
(2)幾個常見冪函數(shù)的圖象和性質(zhì)
由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格
根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。
以上問題的設(shè)計意圖:數(shù)形結(jié)合是一個重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計讓學(xué)生著手實際,借助行的生動來闡明冪函數(shù)的性質(zhì)。
教師講評:冪函數(shù)的性質(zhì).
①所有的冪函數(shù)在(0,+∞)上都有定義,并且圖像都過點(1,1).
②如果a>0,則冪函數(shù)的圖像通過原點,并在區(qū)間〔0,+∞)上是增函數(shù).
③如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時,圖像在x軸上方無限地趨近x軸.
④當(dāng)a為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時,冪函數(shù)為偶函數(shù)。
以問題設(shè)計為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點作圖得到五個冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因為冪函數(shù)隨著冪指數(shù)的輕微變化會出現(xiàn)較大的變化,因此,在描點作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個特殊的冪函數(shù)的性質(zhì)先進(jìn)行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會系統(tǒng)的研究方法。同時學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認(rèn)識,而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。
通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。
。3)當(dāng)堂訓(xùn)練,鞏固深化
例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點知識,并能用知識加以運用。本節(jié)課選取主要選取了兩道例題。
例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進(jìn)行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。
例2是補充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1.3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會根據(jù)解析式來畫圖像解題這一基本思路
。4)小結(jié)歸納,回顧反思。小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識、方法、經(jīng)驗等方面進(jìn)行總結(jié)。我設(shè)計了三個問題:
。1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識?
。2)通過本節(jié)課的學(xué)習(xí),你的體驗是什么?
。3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?
(二)作業(yè)設(shè)計作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識的延伸與連貫,強調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成.我設(shè)計了以下作業(yè):
。1)必做題
(2)選做題
。ㄈ┌鍟O(shè)計
板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進(jìn)程更加連貫。
五、評價分析
學(xué)生學(xué)習(xí)的結(jié)果評價當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價。我采用及時點評、延時點評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學(xué)生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個完整的集訓(xùn),并進(jìn)行及時的調(diào)整和補充。以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。
謝謝!
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案11-05
高一數(shù)學(xué)教案11-08
【熱門】高一數(shù)學(xué)教案11-26
高一數(shù)學(xué)教案【推薦】11-30
【精】高一數(shù)學(xué)教案12-01
高一數(shù)學(xué)教案【薦】12-02
高一數(shù)學(xué)教案【熱】12-03
高一數(shù)學(xué)教案模板11-08