熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>心得體會>讀后感>《幾何原本》讀后感

《幾何原本》讀后感

時間:2024-02-24 16:50:27 賽賽 讀后感 我要投稿

《幾何原本》讀后感(精選16篇)

  當品味完一本著作后,你有什么總結(jié)呢?記錄下來很重要哦,一起來寫一篇讀后感吧。那么你真的會寫讀后感嗎?下面是小編精心整理的《幾何原本》讀后感,僅供參考,希望能夠幫助到大家。

《幾何原本》讀后感(精選16篇)

  《幾何原本》讀后感 1

  《幾何原本》是古希臘數(shù)學家歐幾里得的一部不朽之作,集整個古希臘數(shù)學的成果和精神于一身。既是數(shù)學巨著,也是哲學巨著,并且第一次完成了人類對空間的認識。該書自問世之日起,在長達兩千多年的時間里,歷經(jīng)多次翻譯和修訂,自1482年第一個印刷本出版,至今已有一千多種不同版本。

  除《圣經(jīng)》以外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠和《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學家徐光啟于1607年合作完成的,但他們只譯出了前六卷。證實這個殘本斷定了中國現(xiàn)代數(shù)學的基本術語,諸如三角形、角、直角等。日本、印度等東方國家皆使用中國譯法,沿用至今。近百年來,雖然大陸的中學課本必提及這一偉大著作,但對中國讀者來說,卻無緣一睹它的全貌,納入家庭藏書更是妄想。

  徐光啟在譯此作時,對該書有極高的評價,他說:“能精此書者,無一事不可精;好學此書者,無一事不科學!爆F(xiàn)代科學的'奠基者愛因斯坦更是認為:如果歐幾里得未能激發(fā)起你少年時代的科學熱情,那你肯定不會是一個天才的科學家。由此可見,《幾何原本》對人們理性推演能力的影響,即對人的科學思想的影響是何等巨大。

  《幾何原本》讀后感 2

  今天我讀了一本書,叫《幾何原本》。它是古希臘數(shù)學家、哲學家歐幾里德的一本不朽之作,集合希臘數(shù)學家的成果和精神于一書。

  《幾何原本》收錄了原著13卷全部內(nèi)容,包含了5條公理、5條公設、23個定義和467個命題,即先提出公理、公設和定義,再由簡到繁予以證明,并在此基礎上形成歐氏幾何學體系。歐幾里德認為,數(shù)學是一個高貴的世界,即使身為世俗的君主,在這里也毫無特權(quán)。與時間中速朽的物質(zhì)相比,數(shù)學所揭示的世界才是永恒的!稁缀卧尽芳仁菙(shù)學著作,又極富哲學精神,并第一次完成了人類對空間的認識。古希臘數(shù)學脫胎于哲學,它使用各種可能的描述,解析了我們的宇宙,使它不在混沌、分離,它完全有別于起源并應用于世俗的中國和古埃及數(shù)學。它建立起物質(zhì)與精神世界的確定體系,致使渺小如人類也能從中獲得些許自信。

  本書命題1便提出了如何作等邊三角形,由此產(chǎn)生了三角形全等定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,并進一步提出了等腰三角形――等邊即等角;等角即等邊。就這樣歐幾里德分別從點、線、面、角四個部分,由淺入深,提出了自己的幾何理論。前面的命題為后面的'鋪墊;后面的命題由前面的推導,環(huán)環(huán)相扣,十分嚴謹。

  這本書博大精深,我只能看懂十分之一左右,非常震撼,歐幾里德不愧為幾何之父!他就是數(shù)學史上最亮的一顆星。我要向他學習,沿著自己的目標堅定的走下去。

  《幾何原本》讀后感 3

  今天看了一本叫《幾何原本》的書。它是古希臘數(shù)學家、哲學家歐幾里得的一部不朽之作,將希臘數(shù)學家的成就和精神集于一冊。

  《幾何原本》收錄了原著13卷的全部內(nèi)容,包括5個公理、5個公設、23個定義和467個命題,即先提出公理、公設和定義,再從中證明從簡單到復雜,這里基于歐幾里德幾何系統(tǒng)。歐幾里德認為,數(shù)學是一個貴族的世界,即使你是世俗的君主,在這里也沒有特權(quán)。與時間易逝的物質(zhì)相比,數(shù)學揭示的世界是永恒的。 《幾何原本》不僅是一部數(shù)學著作,而且充滿哲學精神,首次完成了人類對空間的認識。古希臘數(shù)學是從哲學中誕生的。它用各種可能的描述來分析我們的宇宙,使它不再混亂和分離。它與世俗的中國和古埃及數(shù)學的起源和應用完全不同。它建立了一定的物質(zhì)世界和精神世界體系,讓渺小的人類從中獲得一些自信。

  本書的命題1提出了如何構(gòu)造等邊三角形,由此產(chǎn)生了三角形同余定理。即角、邊、角或邊、角、邊或邊、邊、邊相等,進一步提出等腰三角形——等邊等于角;相等的角等于相等的.邊。就這樣,歐幾里得從點、線、面、角四個部分,由淺入深,提出了自己的幾何理論。先前的命題為未來鋪路;后面的命題是從前面的命題推導出來的,前后聯(lián)系緊密,非常嚴謹。

  《幾何原本》讀后感 4

  古希臘大數(shù)學家歐幾里德是和他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學著作,也是歐幾里德最有價值的一部著作。在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動人民和學者們在實踐和思考中獲得的幾何知識,歐幾里德把人們公認的一些事實列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學論證方法,形成了一個嚴密的邏輯體系——幾何學。而這本書,也就成了歐式幾何的奠基之作。

  兩千多年來,《幾何原本》一直是學習幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學者都曾學習過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。

  從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學技術日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴密的邏輯演繹方法相結(jié)合的特點,在長期的實踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學家從學習幾何中得到益處,從而作出了偉大的貢獻。

  少年時代的牛頓在劍橋大學附近的夜店里買了一本《幾何原本》,開始他認為這本書的內(nèi)容沒有超出常識范圍,因而并沒有認真地去讀它,而對笛卡兒的“坐標幾何”很感興趣而專心攻讀。后來,牛頓于1664年4月在參加特列臺獎學金考試的時候遭到落選,當時的考官巴羅博士對他說:“因為你的幾何基礎知識太貧乏,無論怎樣用功也是不行的!

  這席談話對牛頓的震動很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復進行了深入鉆研,為以后的科學工作打下了堅實的數(shù)學基礎。

  但是,在人類認識的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學的`“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對直線的定義實際上是用一個未知的定義來解釋另一個未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個概念。

  《幾何原本》讀后感 5

  在文藝復興以后的歐洲,代數(shù)學由于受到阿拉伯的影響而迅速發(fā)展。另一方面,17世紀以后,數(shù)學分析的發(fā)展非常顯著。因此,幾何學也擺脫了和代數(shù)學相隔離的狀態(tài)。正如在其名著《幾何學》中所說的一樣,數(shù)與圖形之間存在著密切的關系,在空間設立坐標,而且以數(shù)與數(shù)之間關系來表示圖形;反過來,可把圖形表示成為數(shù)與數(shù)之間的關系。這樣,按照坐標把圖形改成數(shù)與數(shù)之間的關系問題而對之進行處理,這個方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評價了笛卡兒的工作,他指出:“數(shù)學中的轉(zhuǎn)折點是笛卡兒的變數(shù),有了變數(shù),運動進入了數(shù)學,有了變數(shù),辯證法進入了數(shù)學,有了變數(shù),微分和積分也就成為必要的。了……”

  事實上,笛卡兒的思想為17世紀數(shù)學分析的發(fā)展提供了有力的基礎。到了18世紀,解析幾何由于L。歐拉等人的開拓得到迅速的發(fā)展,連希臘時代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數(shù)地整理。另外,18世紀中發(fā)展起來的數(shù)學分析反過來又被應用到幾何學中去,在該世紀末期,G。蒙日首創(chuàng)了數(shù)學分析對于幾何的應用,而成為微分幾何的先驅(qū)者。如上所述,用解析幾何的方法可以討論許多幾何問題。但是不能說,這對于所有問題都是最適用的。同解析幾何方法相對立的,有綜合幾何或純粹幾何方法,它是不用坐標而直接考察圖形的方法,數(shù)學家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導下的產(chǎn)物。

  早在文藝復興時期的意大利盛行而且發(fā)展了造型美術,與它隨伴而來的`有所謂透視圖法的研究,當時有過許多人包括達·芬奇在內(nèi)把這個透視圖法作為實用幾何進行了研究。從17世紀起,G。德扎格、B。帕斯卡把這個透視圖法加以推廣和發(fā)展,從而奠定了射影幾何。分別以他們命名的兩個定理,成了射影幾何的基礎。其一是德扎格定理:如果平面上兩個三角形的對應頂點的連線相會于一點,那么它們的對應邊的交點在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個六角形的頂點在同一圓錐曲線上,那么它的三對對邊的交點在同一直線上;而且反過來也成立。18世紀以后,J。—V。彭賽列、Z。N。M。嘉諾、J。施泰納等完成了這門幾何學。

  《幾何原本》讀后感 6

  《幾何原本》是古希臘數(shù)學家歐幾里得的一部不朽之作,大約成書于公元前300年左右,是一部劃時代的著作,是最早用公理法建立起演繹數(shù)學體系的典范。它從少數(shù)幾個原始假定出發(fā),通過嚴密的邏輯推理,得到一系列的命題,從而保證了結(jié)論的準確可靠!稁缀卧尽返脑13卷,共包含有23個定義、5個公設、5個公理、286個命題。是當時整個希臘數(shù)學成果、方法、思想和精神的結(jié)晶,其內(nèi)容和形式對幾何學本身和數(shù)學邏輯的發(fā)展有著巨大的影響。自它問世之日起,在長達二千多年的時間里一直盛行不衰。它歷經(jīng)多次翻譯和修訂,自1482年第一個印刷本出版后,至今已有一千多種不同的版本。除了《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識方面的影響,卻是《圣經(jīng)》所無法比擬的。

  《幾何原本》的希臘原始抄本已經(jīng)流失了,它的所有現(xiàn)代版本都是以希臘評注家泰奧恩(Theon,約比歐幾里得晚七百年)編寫的修訂本為依據(jù)的。

  《幾何原本》的泰奧恩修訂本分13卷,總共有465個命題,其內(nèi)容是闡述平面幾何、立體幾何及算術理論的系統(tǒng)化知識。第一卷首先給出了一些必要的基本定義、解釋、公設和公理,還包括一些關于全等形、平行線和直線形的熟知的定理。該卷的最后兩個命題是畢達哥拉斯定理及其逆定理。這里我們想到了關于英國哲學家T.霍布斯的一個小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達哥拉斯定理,感到十分驚訝,他說:“上帝!這是不可能的!彼珊笙蚯白屑氶喿x第一章的每個命題的證明,直到公理和公設,他終于完全信服了。第二卷篇幅不大,主要討論畢達哥拉斯學派的.幾何代數(shù)學。

  第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現(xiàn)在的中學數(shù)學課本中找到。第四卷則討論了給定圓的某些內(nèi)接和外切正多邊形的尺規(guī)作圖問題。第五卷對歐多克斯的比例理論作了精彩的解釋,被認為是最重要的數(shù)學杰作之一。據(jù)說,捷克斯洛伐克的一位并不出名的數(shù)學家和牧師波爾查諾(Bolzano,1781-1848),在布拉格度假時,恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內(nèi)容。他說,這種高明的方法使他興奮無比,以致于從病痛中完全解脫出來。此后,每當他朋友生病時,他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數(shù)論,給出了求兩個或多個整數(shù)的最大公因子的“歐幾里得算法”,討論了比例、幾何級數(shù),還給出了許多關于數(shù)論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最后三卷,即第十一、十二和十三卷,論述立體幾何。目前中學幾何課本中的內(nèi)容,絕大多數(shù)都可以在《幾何原本》中找到。

  《幾何原本》讀后感 7

  《幾何原本》按照公理化結(jié)構(gòu),運用了亞里士多德的邏輯方法,建立了第一個完整的關于幾何學的演繹知識體系。所謂公理化結(jié)構(gòu)就是:選取少量的原始概念和不需證明的命題,作為定義、公設和公理,使它們成為整個體系的出發(fā)點和邏輯依據(jù),然后運用邏輯推理證明其他命題!稁缀卧尽烦蔀榱藘汕Ф嗄陙磉\用公理化方法的一個絕好典范。

  誠然,正如一些現(xiàn)代數(shù)學家所指出的那樣,《幾何原本》存在著一些結(jié)構(gòu)上的缺陷,但這絲毫無損于這部著作的崇高價值。它的影響之深遠.使得“歐幾里得”與“幾何學”幾乎成了同義語。它集中體現(xiàn)了希臘數(shù)學所奠定的數(shù)學思想、數(shù)學精神,是人類文化遺產(chǎn)中的一塊瑰寶。

  也許這算不上是個謎。稍具文化修養(yǎng)的人都會告訴你,歐幾里德《幾何原本》是明末傳入的,它的譯者是徐光啟與利瑪竇。但究竟何時傳入,在中外科技史界卻一直是一個懸案。

  著名的科技史家李約瑟在《中國科學技術史》中指出:“有理由認為,歐幾里德幾何學大約在公元1275年通過阿拉伯人第一次傳到中國,但沒有多少學者對它感興趣,即使有過一個譯本,不久也就失傳了。”這并非離奇之談,元代一位老穆斯林技術人員曾為蒙古人服務,一位受過高等教育的敘利亞景教徒愛薩曾是翰林院學士和大臣。波斯天文學家札馬魯丁曾為忽必烈設計過《萬年歷》。歐幾里德的幾何學就是通過這方面的交往帶到中國的。14世紀中期成書的《元秘書監(jiān)志》卷七曾有記載:當時官方天文學家曾研究某些西方著作,其中包括兀忽烈的的《四季算法段數(shù)》15冊,這部書于1273年收入皇家書庫!柏:隽业摹笨赡苁恰皻W幾里德”的另一種音譯,“四擘”

  是阿拉伯語“原本”的音譯。著名的數(shù)學史家嚴敦杰認為傳播者是納西爾。丁。土西,一位波斯著名的天文學家的。

  有的外國學者認為歐幾里德《幾何原本》的任何一種阿拉伯譯本都沒有多于13冊,因為一直到文藝復興時才增輯了最后兩冊,因此對元代時就有15冊的`歐幾里德的幾何學之說似難首肯。

  有的史家提出原文可能仍是阿拉伯文,而中國人只譯出了書名。也有的認為演繹幾何學知識在中國傳播得這樣遲緩,以后若干世紀都看不到這種影響,說明元代顯然不存在有《幾何原本》中譯本的可能性。也有的學者提出假設:皇家天文臺搞了一個譯本,可能由于它與2000年的中國數(shù)學傳統(tǒng)背道而馳而引不起廣泛的興趣的。

  真正在中國發(fā)生影響的譯本是徐光啟和利瑪竇合譯的克拉維斯的注解本。但有的同志認為這算不上是完整意義上的歐幾里德的幾何學。因為利瑪竇老師的這個底本共十五卷,利瑪竇只譯出了前六卷,認為已達到他們用數(shù)學來籠絡人心的目的,于是沒有答應徐光啟希望全部譯完的要求。200多年后,后九卷才由著名數(shù)學家李善蘭與美國傳教士偉烈亞力合譯完成,也就是說,直到1857年這部古希臘的數(shù)學名著才有了完整意義上的中譯本。那么,這能否說:《幾何原本》的完整意義上的傳入中國是在近代呢?

  《幾何原本》讀后感 8

  數(shù)學中最古老的一門分科。據(jù)說是起源于古埃及尼羅河泛濫后為整修土地而產(chǎn)生的測量法,它的外國語名稱geometry就是由geo(土地)與metry(測量)組成的。泰勒斯曾經(jīng)利用兩三角形的等同性質(zhì),做了間接的測量工作;

  畢達哥拉斯學派則以勾股定理等著名。

  在中國古代早有勾股測量,漢朝人撰寫的《周髀算經(jīng)》的第一章敘述了西周開國時期(約公元前1000)周公姬旦同商高的問答,討論用矩測量的方法,得出了著名的勾股定律,并舉出了“勾三、股四、弦五”的例子。在埃及產(chǎn)生的幾何學傳到希臘,然后逐步發(fā)展起來而變?yōu)槔碚摰臄?shù)學。

  哲學家柏拉圖(公元前429~前348)對幾何學作了深奧的探討,確立起今天幾何學中的定義、公設、公理、定理等概念,而且樹立了哲學與數(shù)學中的分析法與綜合法的概念。此外,梅內(nèi)克繆斯(約公元前340)已經(jīng)有了圓錐曲線的概念。

  希臘文化以柏拉圖學派的時代為頂峰,以后逐漸衰落,而埃及的亞歷山大學派則漸漸繁榮起來,它長時間成了文化的中心。歐幾里得把至希臘時代為止所得到的數(shù)學知識集其大成,編成十三卷的《幾何原本》,這就是直到今天仍廣泛地作為幾何學的'教科書使用下來的歐幾里得幾何學(簡稱歐氏幾何)。

  徐光啟于1606年翻譯了《幾何原本》前六卷,至1847年李善蘭才把其余七卷譯完。“幾何”與其說是geo的音譯,毋寧解釋為“大小”較為妥當。

  誠然,現(xiàn)代幾何學是有關圖形的一門數(shù)學分科,但是在希臘時代則代表了數(shù)學的全部。歐幾里得在《幾何原本》中首先敘述了一些定義,然后提出五個公設和五個公理。其中第五公設尤為著名:如果兩直線和第三直線相交而且在同一側(cè)所構(gòu)成的兩個同側(cè)內(nèi)角之和小于二直角,那么這兩直線向這一側(cè)適當延長后一定相交!稁缀卧尽分械墓硐到y(tǒng)雖然不能說是那么完備,但它恰恰成了現(xiàn)代幾何學基礎論的先驅(qū)。

  直到19世紀末,D.希爾伯特才建立了嚴密的歐氏幾何公理體系。

  第五公設和其余公設相比較,內(nèi)容顯得復雜,于是引起后來人們的注意,但用其余公設來推導它的企圖,都失敗了。這個公設等價于下述的公設:在平面上,過一直線外的一點可引一條而且只有一條和這直線不相交的直線。

  Η.И.羅巴切夫斯基和J.波爾約獨立地創(chuàng)建了一種新幾何學,其中揚棄了第五公設而代之以另一公設:在平面上,過一直線外的一點可引無限條和這直線不相交的直線。這樣創(chuàng)建起來的無矛盾的幾何學稱為雙曲的非歐幾里得幾何。

  (G.F.)B.黎曼則把第五公設換作“在平面上,過一直線外的一點所引的任何直線一定和這直線相交”,這樣創(chuàng)建的無矛盾的幾何學稱橢圓的非歐幾里得幾何。

  《幾何原本》讀后感 9

  徐光啟(公元1562—1633年)字子先,號玄扈,吳淞(今屬上海)人。他從萬歷末年起,經(jīng)過天啟、崇禎各朝,曾作到文淵閣大學士的官職(相當于宰相)。他精通天文歷法,是明末改歷的主要主持人。他對農(nóng)學也頗有研究,曾根據(jù)前人所著各種農(nóng)書,附以自己的見解,編寫了著名的《農(nóng)政全書》,全書有六十余卷,共六十多萬字。明朝末年,滿族的統(tǒng)治階級從東北關外屢次發(fā)動戰(zhàn)爭,徐光啟曾屢次上書論軍事,并在通州練新兵,主張采用西方火炮。他是一位熱愛祖國的科學家。

  他沒有入京做官之前,曾在上海、廣東、廣西等地教書。在此期間,他曾博覽群書,在廣東還接觸到一些傳教士,對他們傳入的`西方文化開始有所接觸。公元1600年,他在南京和利瑪竇相識,以后兩人又長期同住在北京,經(jīng)常來往。他和利瑪竇兩人共同譯《幾何原本》一書,1607年譯完前六卷。當時徐光啟很想全部譯完,利瑪竇卻不愿這樣做。直到晚清時代,《幾何原本》后九卷的翻譯工作才由李善蘭(公元1811—1882年)完成。

  《幾何原本》是我國最早第一部自拉丁文譯來的數(shù)學著作。在翻譯時絕無對照的詞表可循,許多譯名都從無到有,當時創(chuàng)造的。毫無疑問,這是需要精細研究煞費苦心的。這個譯本中的許多譯名都十分恰當,不但在我國一直沿用至今,并且還影響了日本、朝鮮各國。如點、線、直線、曲線、平行線、角、直角、銳角、鈍角、三角形、四邊形……這許多名詞都是由這個譯本首先定下來的。其中只有極少的幾個經(jīng)后人改定,如“等邊三角形”,徐光啟當時記作“平邊三角形”;“比”,當時譯為“比例”;而“比例”則譯為“有理的比例”等等。

  《幾何原本》有嚴整的邏輯體系,其敘述方式和中國傳統(tǒng)的《九章算術》完全不同。徐光啟對《幾何原本》區(qū)別于中國傳統(tǒng)數(shù)學的這種特點,有著比較清楚的認識。他還充分認識到幾何學的重要意義,他說“竊百年之后,必人人習之”。

  清康熙帝時,編輯數(shù)學百科全書《數(shù)理精蘊》(公元1723年),其中收有《幾何原本》一書,但這是根據(jù)公元十八世紀法國幾何學教科書翻譯的,和歐幾里得的《幾何原本》差別很大。

  到清朝末年廢科舉、興學堂之后,幾何學方成為學校中必修科目之一。到這時才出現(xiàn)了徐光啟所預料的“必人人而習之”的情況。

  《幾何原本》讀后感 10

  讀《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因為古希臘的數(shù)學中,所包含的不僅僅是數(shù)學,還有著難得的邏輯,更有著耐人尋味的哲學。

  《幾何原本》這本數(shù)學著作,以幾個顯而易見、眾所周知的定義、公設和公理,互相搭橋,展開了一系列的命題:由簡單到復雜,相輔而成。其邏輯的'嚴密,不能不令我們佩服。

  就我目前拜訪的幾個命題來看,歐幾里得證明關于線段“一樣長”的題,最常用、也是最基本的,便是畫圓:因為,一個圓的所有半徑都相等。一般的數(shù)學思想,都是很復雜的,這邊剛講一點,就又跑到那邊去了;

  而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復運用一種思想、使讀者不斷接受的緣故吧。

  不過,我要著重講的,是他的哲學。

  書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補角亦相等”,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等”。

  這些命題,我在讀時,內(nèi)心一直承受著幾何外的震撼。

  我們七年級已經(jīng)學了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因為它是一個等腰三角形,所以兩底角相等”——我們總是習慣性的認為,等腰三角形的兩個底角就是相等的;

  而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等”。

  想想看吧,一個思想習以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?

  大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。

  比如說,許多人會問“宇航員在空中為什么會飄起來”,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來”;

  許多人會問“吃什么東西能減肥”,但也許不會問“羊為什么吃草而不吃肉”。

  我們對身邊的事物太習以為常了,以致不會對許多“平!钡氖挛锔信d趣,進而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。

  如果僅把《幾何原本》當做數(shù)學書看,那可就大錯特錯了:因為古希臘的數(shù)學滲透著哲學,學數(shù)學,就是學哲學。

  哲學第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!

  《幾何原本》讀后感 11

  《幾何原本》作為數(shù)學的圣經(jīng),第一部系統(tǒng)的數(shù)學著作,牛頓,愛因斯坦,就是以這種形式寫的《自然哲學的數(shù)學原理》和《相對論》,斯賓諾莎寫出哲學著作《倫理學》,倫理學可以作為哲學與社會科學以及心理學的接口,都是推理性很強。

  幾何原本總共13卷,研究前六卷就可以了,因為后邊的都是應用前邊的理論,應用到具體的領域,無理數(shù),立體幾何等領域,幾何原本我認為最精髓的就是合理的假設,對點線面的抽象,這樣才得以使得后面的定理成立,其中第五個公設后來還被推翻了,以點線面作為基礎,以歐幾里得工具作為工具,進行了各種幾何現(xiàn)象的嚴密推理,我認為這些定理成立的`條件必須是在,對幾條哲學原則默許了之后,才能成立。主要是最簡單的幾何形狀,從怎么畫出來,畫出來也是有根據(jù)的,再就是各種形狀的性質(zhì),以及各種形狀之間關系的定理,都是一步一步推理出來的。

  在幾何原本后續(xù)的有阿波羅尼奧斯的《圓錐截線論》,牛頓的《自然哲學的數(shù)學原理》,算是比較系統(tǒng)的數(shù)學著作,也都是用歐幾里得工具進行證明的,后來的微積分工具的出現(xiàn),我認為是圓周率的求解過程,無限接近的思想,才使得微積分工具產(chǎn)生,現(xiàn)代數(shù)學看似陣容豪華,可是并沒有新的工具的出現(xiàn),只是對微積分工具在各個形狀上進行應用,數(shù)學主要是在空間上做文章,現(xiàn)在數(shù)學能干的活看似挺多,但是也要得益于物理學的發(fā)展,數(shù)學一方面往一般性方面發(fā)展,都忘了,細想數(shù)學思想是比較沒什么,只是腦力勞作比較大,特別是只是純數(shù)學研究,不做思想的人,很累也做不出有意義的工作。

  看完二十世紀數(shù)學史,發(fā)現(xiàn)里面的人的著作,我一本也不想看,太虛。

  《幾何原本》讀后感 12

  有這樣一本書,它的思想影響過無數(shù)科學家,它的邏輯至今還被世界推崇,它的作者因它而成為數(shù)學鼻祖。它就是古希臘著名數(shù)學家歐幾里得所撰寫的《幾何原本》。

  《幾何原本》這本書以幾個看似簡單的公理和公設出發(fā),推導了大量復雜且不可錯的數(shù)學定理,影響后世近千年,甚至成為了世界所有國家的教科書。它的內(nèi)容通俗易懂,不需要我們有太多的數(shù)學基礎,只要認真研讀,必定大有裨益。

  首先,《幾何原本》帶給我們的便是數(shù)學思維,從七年級開始我們就學習了幾何。如果你沒有掌握幾何推導的過程,那書中一步一步的邏輯推導就能夠大大訓練我們的反應力和觀察力。其中讓我映象深刻的還是書中第5章的一個命題,眾所周知最大公因數(shù)是指公因數(shù)中最大的,但如何求最大公因數(shù)呢?是一個數(shù)一個數(shù)的嘗試,那也成了瞎子過河——摸不著邊了吧,書中就給出了辦法就是兩數(shù)相減,差又和減數(shù)相減,直到差為0,則他們的最大公因數(shù)便是上個式子的差,這就是著名的輾轉(zhuǎn)相除法。那么里面的思想便可見一斑。當你成功做出了一個命題的時候,你獲得的除了知識本身以外,你的成就感必定難以言表。它還可以帶給你許多的知識,有數(shù)學方面的,著名的還要數(shù)第一章的一個命題,它講到等腰三角形兩底角相等,這個結(jié)論我們似乎早已習以為常,但為什么呢?這本書就可以帶給你答案。生活中無數(shù)的人就對周邊的一切麻木了,就像一個機器人一般,提不起興趣,實則不然,不是沒有,而是你沒有善于發(fā)現(xiàn)。但《幾何原本》便能激發(fā)你對周圍事物的好奇心,對一個問題產(chǎn)生刨根問底的精神,更有對結(jié)論進行闡述的能力。除了數(shù)學方面,尤為重要的還是它訓練你的頭腦,打開新世界的大門。世界數(shù)學大師丘成桐就說過:歐幾里得的定理不見得對社會有直接貢獻,可它的推理方式確是最有效的邏輯訓練。將來你無論是做科學家,政治家,還是一個成功的商人,都需要有系統(tǒng)的訓練?梢姟稁缀卧尽愤@一本書對所有的`青少年來說都是最甘甜的養(yǎng)料,給予給我們的比你想象的要更多。你讀它可以是喜愛數(shù)學,從中汲取數(shù)學的養(yǎng)分,可以是體會里面的邏輯思維,幫助你學會思考問題,也可以是無聊時間里的一本趣味小說,同兩千年前的歐幾里得探討世界的奧秘。

  不管怎么樣,如果你缺少信心和勇氣,如果你需要異于常人的智慧,如果你沒有生活的目標,那一定要讀讀這本名著,他就像我們的人生導師,手把手,耐心的教導我們,給我們通往成功的鑰匙,激發(fā)我們對科學的熱愛。如今我們的中國已經(jīng)站在了世界的前面,但某些方面還是缺少一些人才。所以,我有理由有信心相信只要我們一絲不茍的讀一讀《幾何原本》,體會其中的思想,養(yǎng)成對事物的好奇心與興趣。我們以后不管從事什么行業(yè),都一定對你自己有更好的思考能力,對社會有更大的作用,對祖國的未來有更好的貢獻。科教興國的大旗就抗我們青少年的肩上,讓我們以《幾何原本》為舟,在科學與真理的大海中暢游,成就自己向往的未來吧!

  《幾何原本》讀后感 13

  最近買了一本書,列出了古今中外有名的三十部科普作品,《幾何原本》名列第一(最早),似乎不妥!稁缀卧尽吩谖鞣降陌l(fā)行量僅次于《圣經(jīng)》,可見其影響,但一般認為他是哲學書,譯成中文是套用古文“幾何”二字,我們的思維又將“幾何”與“算術”并列固定在了數(shù)學方面,就有了誤解,《幾何原本》稱為《原本》較為合適,“本”不是“版本”的`意思。本,本質(zhì)也!

  當然,目前為止我還沒有看出“哲學”二字來,但其實回到古希臘時代,“一個平面上的兩條平行線永遠不相交”就是一個哲學命題,還有諸如:圓于圓的關系、三角形的性質(zhì)、點和線和面等等,仔細想想,都是哲學!你失戀啦,你就想想,你和她,一個平面上的兩條平行線,相交不了的!你不服,那就等吧!等到一天結(jié)婚了,簡單,你們是一個平面上的兩條不平行的線,不過要注意:結(jié)婚后必須合并為一條線,否則,你知道的!哲學吧!

  其實大家都知道,所有的科學都來自哲學,西方人用《圣經(jīng)》以“神學”解釋世界,撫慰他們有罪的心靈;用《原本》以“哲理”解釋世界,試圖說明白客觀世界的來龍去脈。自圓其說而已,不過誰也不知對不對?宇宙無限,就是無邊嘛!“無邊”之外又是什么呢?千萬別再想啦!問老師?老師告訴你:加時間的概念。暈,加混!我的大學繪圖老師說過。他去學了半年的四維空間(加時間嘛),半年之后,他感覺到生活在《超人》里關犯人的平面里,還好,他沒有瘋,不過也許他瘋了,他就會感覺到自己是生活在四維空間。愛因斯坦就是個瘋子,所以他想通了!

  不說廢話了,此書值得一讀!至少可以幫助你兒子記幾條幾何定理,說不定會成為一個哲學家。放心,你絕對不會成為瘋子,你沒有那么高的智商!

  《幾何原本》讀后感 14

  當我翻開這本被譽為數(shù)學經(jīng)典之作的《幾何原本》時,我仿佛進入了一個全新的世界。這本書不僅是古希臘數(shù)學家歐幾里德的杰作,更是人類智慧的結(jié)晶。

  書中的內(nèi)容嚴謹而深邃,從點、線、面的原始概念出發(fā),通過公理和公設,逐步推導出各種幾何定理。每一個命題都是那么精確、那么完美,仿佛每一個字、每一個符號都在向我訴說著幾何學的魅力。

  讀這本書,讓我對幾何學有了更深刻的'認識。我了解到,幾何學不僅僅是一門研究形狀、大小、空間等概念的學科,更是一種思維方式、一種邏輯推理的方法。它教會了我如何用嚴謹?shù)膽B(tài)度去面對問題,如何用邏輯的力量去解決問題。

  同時,我也被歐幾里德那種追求真理、不斷探索的精神所感動。他用自己的智慧和才華,將前人的幾何知識和研究成果總結(jié)起來,形成了這部不朽之作。他的精神激勵著我,讓我更加堅定了追求知識和真理的信念。

  總之,《幾何原本》是一本值得一讀的好書。它不僅讓我對幾何學有了更深入的了解,更讓我學會了如何用嚴謹?shù)膽B(tài)度和邏輯的力量去面對問題和解決問題。我相信,這本書將會一直伴隨著我,成為我人生道路上的一盞明燈。

  《幾何原本》讀后感 15

  當我深入閱讀《幾何原本》這部古希臘數(shù)學家歐幾里德的杰作時,我深感其獨特的魅力與深遠的影響。這部作品不僅總結(jié)了前人的幾何知識和研究成果,更用公理法建立起了演繹的數(shù)學體系的最早典范。

  從第1卷開始,歐幾里德就通過23個定義,提出了點、線、面、圓和平行線的原始概念,進一步探討了三角形全等的條件、三角形邊和角的大小關系等核心問題。這種從基礎概念出發(fā),逐步推導的.方法,使得每一個結(jié)論都有堅實的基石。

  隨著閱讀的深入,我被其嚴密的邏輯和完整的體系所震撼。從第2卷開始,每一卷都圍繞著特定的主題展開,如多邊形的等積問題、圓的性質(zhì)、量的比例、相似多邊形等,都展現(xiàn)了幾何學的深度和廣度。

  尤其是當我讀到第10卷時,線段的加、減、乘以及開方運算的深入討論,使我對幾何學有了更為深刻的理解。這些不僅僅是數(shù)學運算,更是對空間、形狀和結(jié)構(gòu)的深入探索。

  然而,盡管這部作品具有極高的學術價值,但在閱讀過程中,我也發(fā)現(xiàn)其受時代限制的部分證明存在遺漏和錯誤,基礎部分也不夠嚴密。但這并不妨礙它成為數(shù)學史上的經(jīng)典之作。

  總的來說,《幾何原本》是一部值得每一位數(shù)學愛好者深入研究的作品。它不僅為我們提供了豐富的幾何知識,更展示了一種從基礎出發(fā),逐步推導的研究方法,對后世的數(shù)學發(fā)展產(chǎn)生了深遠的影響。

  《幾何原本》讀后感 16

  閱讀完《幾何原本》后,我被其深度和廣度深深地震撼。這部作品不僅僅是古希臘數(shù)學家歐幾里得的智慧結(jié)晶,更是人類數(shù)學史上的里程碑。

  這本書的每一章節(jié)都充滿了嚴密的邏輯和深邃的思考。從基本的點、線、面到復雜的多邊形、圓以及立體幾何,每一個定義、每一個公理都是那么地精準和經(jīng)得起推敲。我特別喜歡它如何從一個簡單的前提出發(fā),逐步推導出各種復雜的幾何性質(zhì)。這種從簡單到復雜、從基礎到高級的演繹方法,不僅在數(shù)學中,也在其他領域有著廣泛的應用。

  同時,我也意識到,盡管《幾何原本》是如此的'完美和經(jīng)典,但它也受到了歷史和時代的限制。有些證明可能存在遺漏或錯誤,有些基礎部分可能不夠嚴密。但這并不影響它在我心中的地位,反而讓我更加敬佩那些在前人基礎上不斷探索、不斷完善的數(shù)學家們。

  總的來說,《幾何原本》不僅教會了我數(shù)學知識,更教會了我如何思考、如何探索未知。它是一本值得每一個熱愛數(shù)學的人深入閱讀和研究的經(jīng)典之作。

【《幾何原本》讀后感】相關文章:

使用最久的數(shù)學教科書——《幾何原本》08-16

《幾何原本》讀后感07-21

《幾何原本》讀后感08-17

幸福原本很平凡作文04-16

《幾何畫板》在平面幾何教學中的應用08-24

對酒當歌、人生幾何08-21

原本不想寫愛情(1)08-15

曾幾何時08-06

夢想原本就很純粹作文05-10