- 相關推薦
八年級數(shù)學說課稿
在教學工作者實際的教學活動中,常常要寫一份優(yōu)秀的說課稿,說課稿有助于學生理解并掌握系統(tǒng)的知識。那要怎么寫好說課稿呢?以下是小編整理的八年級數(shù)學說課稿,希望對大家有所幫助。
八年級數(shù)學說課稿 篇1
一、 教材分析:
(一)教材所處的地位
這節(jié)課是九年制義務教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上 對直角三角形有進一步的認識和理解。
。ǘ└鶕(jù)課程標準,本課的教學目標是:
1、 能說出勾股定理的內容。
2、 會初步運用勾股定理進行簡單的計算和實際運用。
3、 在探索勾股定理的過程中,讓學生經(jīng)歷"觀察—猜想—歸納—驗證"的數(shù)學思想,并體會數(shù)形結合和特殊到一般的思想方法。
4、 通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。
。ㄈ┍菊n的教學重點:探索勾股定理
本課的教學難點:以直角三角形為邊的正方形面積的計算。
二、教法與學法分析:
教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。
學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。
三、 教學過程設計:
。ㄒ唬┨岢鰡栴}:
首先創(chuàng)設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉化成數(shù)學問題,也就是"已知一直角三角形的兩邊,如何求第三邊?" 的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的`發(fā)生過程,而且解決問題的過程也是一個"數(shù)學化"的過程。
。ǘ⿲嶒灢僮鳎
1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關系,從而學生通過正方形面積之間的關系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。
2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。
3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。
1、歸納 通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關系的研究,讓學生用數(shù)學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。
2、驗證 為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向學生介紹"勾,股,弦"的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。
。ㄋ模﹩栴}解決:
讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本"想一想"進一步體會勾股定理在實際生活中的應用,數(shù)學是與實際生活緊密相連的。
。ㄎ澹┱n堂小結:
主要通過學生回憶本節(jié)課所學內容,從內容、應用、數(shù)學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。
。┎贾米鳂I(yè):
課本P6習題1.1 1,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯(lián)系。另外,補充一道開放題。
四、 設計說明
1、本節(jié)課是公式課,根據(jù)學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。
2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發(fā)展也有一定的作用。
3、關于練習的設計,除兩個實際問題和課本習題以外,我準備設計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關系。
4、本課小結從內容,應用,數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。
八年級數(shù)學說課稿 篇2
各位老師:
你們好!今天我要為大家講的課題是
首先,我對本節(jié)教材進行一些分析:
一、 教材分析(說教材):
1. 教材所處的地位和作用:
本節(jié)內容在全書和章節(jié)中的作用是:《 》是 中數(shù)學教材第 冊第 章第 節(jié)內容。在此之前學生已學習了 基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內容是在 中,占據(jù) 的地位。以及為其他學科和今后的學習打下基礎。
2. 教育教學目標:
根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:
。2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,
。3)情感目標:通過 的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。
3. 重點,難點以及確定依據(jù):
下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談:
二、 教學策略(說教法)
1. 教學手段:
如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點: 應著重采用 的教學方法。
2. 教學方法及其理論依據(jù):堅持"以學生為主體,以教師為主導"的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的`,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。
3. 學情分析:(說學法)
(1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散
。2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙,知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4. 教學程序及設想:
。1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為"猜想"繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
。2)由實例得出本課新的知識點
。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
。5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。
。6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
。7)板書
(8)布置作業(yè)。
針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分
八年級數(shù)學說課稿 篇3
各位老師:
你們好 ! 今天我要為大家講的課題是 全等三角形的判定
首先 , 我對本節(jié)教材進行一些分析 :
一、教材分析(說教材):
1. 教材所處的地位和作用 :
這一節(jié)內容是初中《數(shù)學》人教版教材,八年級上冊第十一章第二節(jié)的內容。在此之前學生已學習了全等三角形的定義、性質,對全等三角形有了一定的了解,這為過渡到本節(jié)的深入學習起著鋪墊作用。本節(jié)內容是在本章內容中,占據(jù)重要的的地位。以及為其他學科和今后的幾何學習打下基礎。
2. 教育教學目標 :
根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
( 1 )知識目標:
、 對全等、對頂角、對應邊、對應角的定義,能夠熟練掌握,并達到更深一層的理解。
、谀軌蚶贸咭(guī)畫出全等的三角形,學生具有一定的作圖能力。
、壅莆詹⒗斫馊切稳扰卸ǘɡ碇械 SSS 和 SAS .
、苣軌蜻\用 SSS 和 SAS 判定定理判定三角形是否全等,利用三角形全等解決一些實際問題。⑤通過教學培養(yǎng)學生分析問題,讀圖分析,解決實際問題,培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,
。 3 )情感目標:通過的師生共同摸索判斷全等三角形全等的.方法,激發(fā)學生學習興趣。
3. 重點難點:
、僬莆詹⒗斫馊切稳鹊呐卸ǘɡ
②運用定理判定三角形全等,利用全等三角形解決實際的問題和幾何題
二、教學策略(說教法)
1. 教學手段: 為了讓學生充分理解和掌握三角形判定定理,突破難點,我在教學過程中,采用兩探究引出定理,兩個運用定理的例子,來進行教學。探究中主要用尺規(guī)作全等三角形的方法中引出全等三角形的條件,進而得出定理。這樣學生就更容易理解和掌握定理。在用兩個練習鞏固知識。
2. 教學方法及其理論依據(jù):為了調動學生學習的積極性,充分體現(xiàn)課堂教學的主體性,我采用自學、議論、引導教學法,以學生為主體,老師為主導,引導學生運用觀察、分析、概括的方法學習這部分內容,在整個教學過程當中,貫穿以學生為主體的原則,充分鼓勵和表揚同學。
3. 學情分析:(說學法)
1 、八年級學生的思維已逐步從直觀的形象思維為主向抽象的邏輯思維過渡,而且具備一定的信息收集的能力。
2 、學生自主探索,思考問題,獲取知識,掌握方法,真正成為學習的主體。
3 、學生在在討論學習中體驗學習的快樂。討論交流的友好氛圍,讓學生更有機會體驗自己與他人的想法,從而掌握知識,發(fā)展技能,獲得愉快的心理體驗。
4. 教學程序:
。 1 )復習回顧上節(jié)課內容:
定義:能夠完全重合的三角形叫做全等三角形,重合的邊叫對應邊,重合的角叫對應角
性質:全等三角形對應邊和對應角相等
。 2 )探究 1 :
三角形全等的性質讓我們知道 AB=A ’ B ’ BC=B ’ C ’ AC=A ’ C ’∠ A= ∠ A ’ ∠ B= ∠ B ’ ∠ C= ∠ C ’,滿足六個條件中這一部分,能確定△ ABC ≌△ A ’ B ’ C ’,先讓學生畫出△ ABD ,再讓學生在畫△ A ’ B ’ C ’過程中明白,確定一個條件或兩個條件下不能確定兩個三角形全等,通過適當時間的引導探究得出得出,當 AB=A ’ B ’ BC=B ’ C ’ AC=A ’ C ’時,只能畫出一個 A ’ B ’ C ’滿足條件,于是得出定理:三個對應邊相等的兩個三角形全等,簡寫成 SSS .
。 3 )得出定理,我通過講解簡單的例題,讓學生懂得定理 SSS 定理的運用。
。 4 )探究 2 :
得出:定理兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成SAS
。 5 )通過解決生活實例,講解三角形全等的運用
。 6 )練習 : 在適當?shù)臅r間過后給出參考答案,并進行簡單的講解。
( 7 )小結:通過本節(jié)課的學習,你有哪些收獲?
。 8 )我的板書:我會把復習內容和這節(jié)課的定理用紅色粉筆標明在左邊,中間板書探究和例題的內容,右邊板書練習的參考答案。
( 9 )布置作業(yè): P15, 第 1 , 3 題,預習 P10-P12 的內容。