熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>九年級數(shù)學(xué)教案>數(shù)學(xué)教案-一元二次方程的根的判別式一

數(shù)學(xué)教案-一元二次方程的根的判別式一

時間:2022-08-17 01:48:47 九年級數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案-一元二次方程的根的判別式(一)

1. 知識結(jié)構(gòu):

數(shù)學(xué)教案-一元二次方程的根的判別式(一)

  2. 重點、難點分析

 。1)本節(jié)的重點是會用判別式判定根的情況.一元二次方程的根的判別式是比較重要的,用它可以判斷一元二次方程根的情況,有助于我們順利地解一元二次方程,也可以利用它進一步學(xué)習(xí)函數(shù)的有關(guān)內(nèi)容,所以,它是本節(jié)課的重點.

 。2)本節(jié)的難點是一元二次方程根的三種情況的推導(dǎo).教科書首先將一元二次方程用配方法變形為 .因為,所以方程右邊的符號就由來確定,而方程左邊的不可能是一個負(fù)數(shù),因此,把分三種情況來討論方程根的情況.推導(dǎo)過程中利用了分類的思想方法,對于分類討論學(xué)生感覺到較難,老師應(yīng)該講明分類的基本思想。

  3. 教法建議:

 。1)引入要自然、合理

  新課引入前,作一個鋪墊:前面我們講了一元二次方程的解法,我們掌握了開平方法、公式法和因式分解法后,就可以解任何一個一元二次方程,但是,存在這樣一個問題,并不是所有的一元二次方程都有解,我們可以通過把解求出來,來解方程,也可以通過判定方程無解,來解方程,這樣我們就面臨著一個問題,什么時候方程有解?什么時候方程無解?我們不解方程能不能判定根的情況?那就是我們本節(jié)所要研究的問題.讓學(xué)生首先感覺到所要學(xué)習(xí)的知識并不突然,也顯露了本節(jié)課的重點.

 。2)利用多媒體進行教學(xué)

  本節(jié)是根的判別式結(jié)論的推導(dǎo),比較抽象,為了便于學(xué)生理解,使用所提供的動畫,有助于學(xué)生對所講內(nèi)容的理解,調(diào)動學(xué)生主動思維的積極性,活躍課堂氣氛,提高學(xué)習(xí)效率.

 。3)本節(jié)在推導(dǎo)根的判別式的結(jié)論時,利用了分類的思想,對于學(xué)生這是一個難點,一定給學(xué)生講清楚分類的依據(jù),分類的基本思想,使學(xué)生對所得結(jié)論深信不疑.

一、教學(xué)目標(biāo)

  1. 理解一元二次方程的根的判別式,并能用判別式判定根的情況;

  2. 通過根的判別式的學(xué)習(xí),培養(yǎng)學(xué)生從具體到抽象的觀察、分析、歸納的能力;

  3.通過根的情況的研究過程,讓學(xué)生深刻體會轉(zhuǎn)化和分類的思想方法.

  二、重點·難點及解決辦法

  1.教學(xué)重點:會用判別式判定根的情況。

  2.教學(xué)難點:一元二次方程根的三種情況的推導(dǎo).

  3.解決辦法:(1)求判別式時,應(yīng)先將方程化為一般形式,確定a、b、c。(2)利用判別式可以判定一元二次方程的存在性情況(共四種);方程有兩個實數(shù)根,方程有兩個不相等的實數(shù)根,方程有兩個相等的實數(shù)根,方程沒有實數(shù)根。

  三、教學(xué)步驟

 。ㄒ唬教學(xué)過程(325224.com)

  1.復(fù)習(xí)提問

 。1)平方根的性質(zhì)是什么?

 。2)解下列方程:① ;② ;③ 。

  問題(1)為本節(jié)課結(jié)論的得出起到了一個很好的鋪墊作用。問題(2)通過自己親身感受的根的情況,對本節(jié)課的結(jié)論的得出起到了一個推波助瀾的作用。

  2.任何一個一元二次方程 用配方法將其變形為 ,因此對于被開方數(shù) 來說,只需研究 為如下幾種情況的方程的根。

 。1)當(dāng) 時,方程有兩個不相等的實數(shù)根。

  即

 。2)當(dāng) 時,方程有兩個相等的實數(shù)根,即 。

 。3)當(dāng) 時,方程沒有實數(shù)根。

  教師通過引導(dǎo)之后,提問:究竟誰決定了一元二次方程根的情況?

  答: 。

  3.①定義:把 叫做一元二次方程 的根的判別式,通常用符號“ ”表示。

 、谝辉畏匠 。

  當(dāng) 時,有兩個不相等的實數(shù)根;

  當(dāng) 時,有兩個相等的實數(shù)根;

  當(dāng) 時,沒有實數(shù)根。

  反之亦然。

  注意以下幾個問題:

  (1) 這一重要條件在這里起了“承上啟下”的作用,即對上式開平方,隨后有下面三種情況。正確得出三種情況的結(jié)論,需對平方根的概念有一個深刻的、正確的理解,所以,在課前進行了鋪墊。在這里應(yīng)向?qū)W生滲透轉(zhuǎn)化和分類的思想方法。

  (2)當(dāng) ,說“方程 沒有實數(shù)根”比較好。有時,也說“方程無解”。這里的前提是“在實數(shù)范圍內(nèi)無解”,也就是方程無實數(shù)根的意思。

  4.例題講解

  例1  不解方程,判別下列方程的根的情況:

  (1) ;(2) ;(3) 。

  解:(1)

  ∴原方程有兩個不相等的實數(shù)根。

 。2)原方程可變形為

   。

   ,

  ∴原方程有兩個相等的實數(shù)根。
(3)原方程可變形為

   。

  

  ∴原方程沒有實數(shù)根。

  學(xué)生口答,教師板書,引導(dǎo)學(xué)生總結(jié)步驟,(1)化方程為一般形式,確定a、b、c的(2)計算 的值;(3)判別根的情況。

  強調(diào)兩點:(1)只要能判別 值的符號就行,具體數(shù)值不必計算出。(2)判別根據(jù)的情況,不必求出方程的根。

  練習(xí):不解方程,判別下列方程的情況:

 。1) ;(2) ;

 。3) ;(4) ;

 。5) ;(6)

  學(xué)生板演、筆答、評價。

  (4)題可去括號,化一般式進行判別,也可設(shè) ,判別方程 根的情況,由此判別原方程根的情況。

  例2  不解方程,判別方程 的根的情況。

  解: 。

  又  ∵  不論k取何實數(shù), ,

  ∴  原方程有兩個實數(shù)根。

  教師板書,引導(dǎo)學(xué)生回答。此題是含有字母系數(shù)的一元二次方程。注意字母的取值范圍,從而確定 的取值。

  練習(xí):不解方程,判別下列方程根的情況。

  (1) ;

  (2) ;

 。3) 。

  學(xué)生板演、筆答、評價。教師滲透、點撥。

  (3)解:

            

  ∵  不論m取何值, ,即 。

  ∴  方程無實數(shù)解。

  由數(shù)字系數(shù),過渡到字母系數(shù),使學(xué)生體會到由具體到抽象,并且注意字母的取值。

 。ǘ┛偨Y(jié)、擴展

  1.判別式的意義及一元二次方程根的情況。

  (1)定義:把 叫做一元二次方程 的根的判別式,通常用符號“ ”表示。

 。2)一元二次方程 。

  當(dāng) 時,有兩個不相等的實數(shù)根;

  當(dāng) 時,有兩個相等的實數(shù)根;

  當(dāng) 時,沒有實數(shù)根。反之亦然。

  2.通過根的情況的研究過程,深刻體會轉(zhuǎn)化的思想方法及分類的思想方法。

  四、布置作業(yè)

  教材P27A1~4。

  5.不解方程,判斷下x的方程的根的情況

 。1)

 。2)

  五、板書設(shè)計


【數(shù)學(xué)教案-一元二次方程的根的判別式一】相關(guān)文章:

《一元二次方程》數(shù)學(xué)教案02-12

初中數(shù)學(xué)一元二次方程根與系數(shù)關(guān)系教案12-29

《一元二次方程》教學(xué)反思08-22

一元二次方程教學(xué)反思04-04

《一元二次方程》教學(xué)反思11-10

《一元二次方程》數(shù)學(xué)教學(xué)反思06-07

解一元二次方程教學(xué)反思04-01

一元二次方程的解法教學(xué)反思04-04

一元二次方程的概念教學(xué)反思04-07

九年級數(shù)學(xué)教案《實際問題與一元二次方程》08-22