熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>九年級數(shù)學(xué)教案>數(shù)學(xué)教案-圓和圓的位置關(guān)系

數(shù)學(xué)教案-圓和圓的位置關(guān)系

時間:2022-08-17 01:56:20 九年級數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案-圓和圓的位置關(guān)系

1、教材分析

  (1)知識結(jié)構(gòu)

數(shù)學(xué)教案-圓和圓的位置關(guān)系

 

  (2)重點(diǎn)、難點(diǎn)分析

  重點(diǎn):兩圓的位置關(guān)系和兩圓相交、相切的性質(zhì).它們是本節(jié)的主要內(nèi)容,是圓的重要概念性知識,也是今后研究圓與圓問題的基礎(chǔ)知識.

  難點(diǎn):兩圓位置關(guān)系的判定與相交兩圓的連心線垂直平分兩圓的公共弦的性質(zhì)的運(yùn)用.由于兩圓位置關(guān)系有5種類型,特別是相離有外離和內(nèi)含,相切有外切和內(nèi)切,學(xué)生容易遺漏;而在相交圓的性質(zhì)應(yīng)用中,學(xué)生容易把“相交兩圓的公共弦垂直平分兩圓的連心線.”看成是真命題.

  2、教法建議

  本節(jié)內(nèi)容需要兩個課時.第一課時主要研究圓和圓的位置關(guān)系;第二課時相交兩圓的性質(zhì).

 。1)把課堂活動設(shè)計(jì)的重點(diǎn)放在如何調(diào)動學(xué)生的主體,讓學(xué)生觀察、分析、歸納概括,主動獲得知識;

  (2)要重視圓的對稱美的教學(xué),組織學(xué)生欣賞,在激發(fā)學(xué)生的學(xué)習(xí)興趣中,獲得知識,提高能力;

 。3)在教學(xué)中,以分類思想為指導(dǎo),以數(shù)形結(jié)合為方法,貫串整個教學(xué)過程(325224.com)

第一課時 圓和圓的位置關(guān)系

 教學(xué)目標(biāo)

  1.掌握圓與圓的五種位置關(guān)系的定義、性質(zhì)及判定方法;兩圓連心線的性質(zhì);

  2.通過兩圓的位置關(guān)系,培養(yǎng)學(xué)生的分類能力和數(shù)形結(jié)合能力;

  3.通過演示兩圓的位置關(guān)系,培養(yǎng)學(xué)生用運(yùn)動變化的觀點(diǎn)來分析和發(fā)現(xiàn)問題的能力.

 教學(xué)重點(diǎn)

  兩圓的五種位置與兩圓的半徑、圓心距的數(shù)量之間的關(guān)系.

 教學(xué)難點(diǎn)

  兩圓位置關(guān)系及判定.

 。一)復(fù)習(xí)、引出問題

  1.復(fù)習(xí):直線和圓有幾種位置關(guān)系?各是怎樣定義的?

 。ń處熤鲗(dǎo),學(xué)生回憶、回答)直線和圓有三種位置關(guān)系,即直線和圓相離、相切、相交.各種位置關(guān)系是通過直線與圓的公共點(diǎn)的個數(shù)來定義的

  2.引出問題:平面內(nèi)兩個圓,它們作相對運(yùn)動,將會產(chǎn)生什么樣的位置關(guān)系呢?

  (二)觀察、分類,得出概念

  1、讓學(xué)生觀察、分析、比較,分別得出兩圓:外離、外切、相交、內(nèi)切、內(nèi)含(包括同心圓)這五種位置關(guān)系,準(zhǔn)確給出描述性定義:

  (1)外離:兩個圓沒有公共點(diǎn),并且每個圓上的點(diǎn)都在另一個圓的外部時,叫做這兩個圓外離.(圖(1))

  (2)外切:兩個圓有唯一的公共點(diǎn),并且除了這個公共點(diǎn)以外,每個圓上的點(diǎn)都在另一個圓的外部時,叫做這兩個圓外切.這個唯一的公共點(diǎn)叫做切點(diǎn).(圖(2))

   

   

  (3)相交:兩個圓有兩個公共點(diǎn),此時叫做這兩個圓相交.(圖(3))

  (4)內(nèi)切:兩個圓有唯一的公共點(diǎn),并且除了這個公共點(diǎn)以外,一個圓上的點(diǎn)都在另一個圓的內(nèi)部時,叫做這兩個圓內(nèi)切.這個唯一的公共點(diǎn)叫做切點(diǎn).(圖(4))

  (5)內(nèi)含:兩個圓沒有公共點(diǎn),并且一個圓上的點(diǎn)都在另一個圓的內(nèi)部時,叫做這兩個圓內(nèi)含(圖(5)).兩圓同心是兩圓內(nèi)含的一個特例.  (圖(6))

  2、歸納:

  (1)兩圓外離與內(nèi)含時,兩圓都無公共點(diǎn).

  (2)兩圓外切和內(nèi)切統(tǒng)稱兩圓相切,即外切和內(nèi)切的共性是公共點(diǎn)的個數(shù)唯一

  (3)兩圓位置關(guān)系的五種情況也可歸納為三類:相離(外離和內(nèi)含);相交;相切(外切和內(nèi)切).

  教師組織學(xué)生歸納,并進(jìn)一步考慮:從兩圓的公共點(diǎn)的個數(shù)考慮,無公共點(diǎn)則相離;有一個公共點(diǎn)則相切;有兩個公共點(diǎn)則相交.除以上關(guān)系外,還有其它關(guān)系嗎?可能不可能有三個公共點(diǎn)?

  結(jié)論:在同一平面內(nèi)任意兩圓只存在以上五種位置關(guān)系.

  (三)分析、研究

  1、相切兩圓的性質(zhì).

  讓學(xué)生觀察連心線與切點(diǎn)的關(guān)系,分析、研究,得到相切兩圓的連心線的性質(zhì):

  如果兩個圓相切,那么切點(diǎn)一定在連心線上.

  這個性質(zhì)由圓的軸對稱性得到,有興趣的同學(xué)課下可以考慮如何對這一性質(zhì)進(jìn)行證明

  2、兩圓位置關(guān)系的數(shù)量特征.

  設(shè)兩圓半徑分別為R和r.圓心距為d,組織學(xué)生研究兩圓的五種位置關(guān)系,r和d之間有何數(shù)量關(guān)系.(圖形略)

  兩圓外切 d=R+r;

  兩圓內(nèi)切 d=R-r (R>r);

  兩圓外離 d>R+r;

  兩圓內(nèi)含 d<R-r(R>r);

  兩圓相交 R-r<d<R+r.

  說明:注重“數(shù)形結(jié)合”思想的教學(xué).

  (四)應(yīng)用、練習(xí)

  例1  如圖,⊙O的半徑為5厘米,點(diǎn)P是⊙O外一點(diǎn),OP=8厘米

  求:(1)以P為圓心作⊙P與⊙O外切,小圓⊙P的半徑是多少?

  (2)以P為圓心作⊙P與⊙O內(nèi)切,大圓⊙P的半徑是多少?

   解:(1)設(shè)⊙P與⊙O外切與點(diǎn)A,則

  PA=PO-OA

  ∴PA=3cm.

 。2)設(shè)⊙P與⊙O內(nèi)切與點(diǎn)B,則

  PB=PO+OB

  ∴PB=1 3cm.

  例2:已知:如圖,△ABC中,∠C=90°,AC=12,BC=8,以AC為直徑作⊙O,以B為圓心,4為半徑作.

  求證:⊙O與⊙B相外切.

  證明:連結(jié)BO,∵AC為⊙O的直徑,AC=12,

  ∴⊙O的半徑 ,且O是AC的中點(diǎn)

   ∴ ,∵∠C=90°且BC=8,

  ∴ ,

  ∵⊙O的半徑 ,⊙B的半徑 ,

  ∴BO= ,∴⊙O與⊙B相外切.

   練習(xí)(P138)

  (五)小結(jié)

  知識:①兩圓的五種位置關(guān)系:外離、外切、相交、內(nèi)切、內(nèi)含;

 、谝约斑@五種位置關(guān)系下圓心距和兩圓半徑的數(shù)量關(guān)系;

 、蹆蓤A相切時切點(diǎn)在連心線上的性質(zhì).

  能力:觀察、分析、分類、數(shù)形結(jié)合等能力.

  思想方法:分類思想、數(shù)形結(jié)合思想.

  (六)作業(yè)

  教材P151中習(xí)題A組2,3,4題.
第二課時 相交兩圓的性質(zhì)

 教學(xué)目標(biāo)

  1、掌握相交兩圓的性質(zhì)定理;

  2、掌握相交兩圓問題中常添的輔助線的作法;

  3、通過例題的分析,培養(yǎng)學(xué)生分析問題、解決問題的能力;

  4、結(jié)合相交兩圓連心線性質(zhì)教學(xué)向?qū)W生滲透幾何圖形的對稱美.

 教學(xué)重點(diǎn)

  相交兩圓的性質(zhì)及應(yīng)用.

 教學(xué)難點(diǎn)

  應(yīng)用軸對稱來證明相交兩圓連心線的性質(zhì)和準(zhǔn)確添加輔助線.

 教學(xué)活動設(shè)計(jì)

  (一)圖形的對稱美

   

  相切兩圓是以連心線為對稱軸的對稱圖形.相交兩圓具有什么性質(zhì)呢?

   (二)觀察、猜想、證明

  1、觀察:同樣相交兩圓,也構(gòu)成對稱圖形,它是以連心線為對稱軸的軸對稱圖形.

  2、猜想:“相交兩圓的連心線垂直平分公共弦”.

  3、證明:

  對A層學(xué)生讓學(xué)生寫出已知、求證、證明,教師組織;對B、C層在教師引導(dǎo)下完成.

  已知:⊙O1和⊙O2相交于A,B.

  求證:Q1O2是AB的垂直平分線.

  分析:要證明O1O2是AB的垂直平分線,只要證明O1O2上的點(diǎn)和線段AB兩個端點(diǎn)的距離相等,于是想到連結(jié)O1A、O2A、O1B、O2B. 

  證明:連結(jié)O1A、O1B、 O2A、O2B,∵O1A=O1B,

  ∴O1點(diǎn)在AB的垂直平分線上.

  又∵O2A=O2B,∴點(diǎn)O2在AB的垂直平分線上.

  因此O1O2是AB的垂直平分線.

  也可考慮利用圓的軸對稱性加以證明:

  ∵⊙Ol和⊙O2,是軸對稱圖形,∴直線O1O2是⊙Ol和⊙O2的對稱軸.

  ∴⊙Ol和⊙O2的公共點(diǎn)A關(guān)于直線O1O2的對稱點(diǎn)即在⊙Ol上又在⊙O2上.

  ∴A點(diǎn)關(guān)于直線O1O2的對稱點(diǎn)只能是B點(diǎn),

  ∴連心線O1O2是AB的垂直平分線.

  定理:相交兩圓的連心線垂直平分公共弦

  注意:相交兩圓連心線垂直平分兩圓的公共弦,而不是相交兩圓的公共弦垂直平分兩圓的連心線.

 。三)應(yīng)用、反思

  例1、已知兩個等圓⊙Ol和⊙O2相交于A,B兩點(diǎn),⊙Ol經(jīng)O2。

  求∠OlAB的度數(shù).

  分析:由所學(xué)定理可知,O1O2是AB的垂直平分線,

   又⊙O1與⊙O2是兩個等圓,因此連結(jié)O1O2和AO2,AO1,△O1AO2構(gòu)成等邊三角形,同時可以推證⊙O l和⊙O2構(gòu)成的圖形不僅是以O(shè)1O2為對稱軸的軸對稱圖形,同時還是以AB為對稱軸的軸對稱圖形.從而可由

  ∠OlAO2=60°,推得∠OlAB=30°.

  解:⊙O1經(jīng)過O2,⊙O1與⊙O2是兩個等圓

  ∴OlA= O1O2= AO2

  ∴∠O1A O2=60°,

  又AB⊥O1O2

  ∴∠OlAB =30°

   例2、已知,如圖,A是⊙O l、⊙O2的一個交點(diǎn),點(diǎn)P是O1O2的中點(diǎn)。過點(diǎn)A的直線MN垂直于PA,交⊙O l、⊙O2于M、N。

  求證:AM=AN.

  證明:過點(diǎn)Ol、O2分別作OlC⊥MN、O2D⊥MN,垂足為C、D,則OlC∥PA∥O2D,且AC= AM,AD= AN.

  ∵OlP= O2P ,∴AD=AM,∴AM=AN.

   例3、已知:如圖,⊙Ol與⊙O2相交于A、B兩點(diǎn),C為⊙Ol上一點(diǎn),AC交⊙O2于D,過B作直線EF交⊙Ol、⊙O2于E、F.

  求證:EC∥DF

  證明:連結(jié)AB

  ∵在⊙O2中∠F=∠CAB,

  在⊙Ol中∠CAB=∠E,

  ∴∠F=∠E,∴EC∥DF.

  反思:在解有關(guān)相交兩圓的問題時,常作出連心線、公共弦,或連結(jié)交點(diǎn)與圓心,從而把兩圓半徑,公共弦長的一半,圓心距集中到一個三角形中,運(yùn)用三角形有關(guān)知識來解,或者結(jié)合相交弦定理,圓周角定理綜合分析求解.

  (四)小結(jié)

  知識:相交兩圓的性質(zhì):相交兩圓的連心線垂直平分公共弦.該定理可以作為證明兩線垂直或證明線段相等的依據(jù).

  能力與方法:①在解決兩圓相交的問題中常常需要作出兩圓的公共弦作為輔助線,使兩圓中的角或線段建立聯(lián)系,為證題創(chuàng)造條件,起到了“橋梁”作用;②圓的對稱性的應(yīng)用.

  (五)作業(yè)  教材P152習(xí)題A組7、8、9題;B組1題.

探究活動

  問題1已知AB是⊙O的直徑,點(diǎn)O1、O2、…、On在線段AB上,分別以O(shè)1、O2、…、On為圓心作圓,使⊙O1與⊙O內(nèi)切,⊙O2與⊙O1外切,⊙O3與⊙O2外切,…,⊙On與⊙On-1外切且與⊙O內(nèi)切.設(shè)⊙O的周長等于C,⊙O1、⊙O2、…、⊙On的周長分別為C1、C2、…、Cn

  (1)當(dāng)n=2時,判斷Cl+C2與C的大小關(guān)系;

  (2)當(dāng)n=3時,判斷Cl+C2+ C3與C的大小關(guān)系;

  (3)當(dāng)n取大于3的任一自然數(shù)時,Cl十C2十…十Cn與C的大小關(guān)系怎樣?證明你的結(jié)論.

   提示:假設(shè)⊙O、⊙O1、⊙O2、…、⊙On的半徑分別為r、rl、r2、…、rn,通過周長計(jì)算,比較可得(1)Cl+C2=C;(2)Cl+C2+ C3=C;(3)Cl十C2十…十Cn=C.

  問題2有八個同等大小的圓形,其中七個有陰影的圓形都固定不動,第八個圓形,緊貼另外七個無滑動地滾動,當(dāng)它繞完這些固定不動的圓形一周,本身將旋轉(zhuǎn)了多少轉(zhuǎn)?

  提示:1、實(shí)驗(yàn):用硬幣作初步實(shí)驗(yàn);結(jié)果硬幣一共轉(zhuǎn)了4轉(zhuǎn).

  2、分析:當(dāng)你把動圓無滑動地沿著 圓周長的直線上滾動時,這個動圓是轉(zhuǎn) 轉(zhuǎn),但是,這個動圓是沿著弧線滾動,那么方才的說法就不正確了.在我們這個題目中,那動圓繞著相當(dāng)于它的圓周長的 的弧線旋轉(zhuǎn)的時候,一共走過的不是 轉(zhuǎn);而是 轉(zhuǎn),因此,它繞過六個這樣的弧形的時,就轉(zhuǎn)了 轉(zhuǎn)



【數(shù)學(xué)教案-圓和圓的位置關(guān)系】相關(guān)文章:

直線和圓的位置關(guān)系教學(xué)反思04-14

《直線與圓的位置關(guān)系》教學(xué)反思03-08

九年級數(shù)學(xué)上冊《圓與圓的位置關(guān)系》教學(xué)反思08-21

圓數(shù)學(xué)教案03-29

幼兒園數(shù)學(xué)教案:圓的和方的04-02

數(shù)學(xué)教案圓的周長05-31

《認(rèn)識圓》數(shù)學(xué)教案03-03

圓的周長數(shù)學(xué)教案07-11

圓的面積的數(shù)學(xué)教案01-21

數(shù)學(xué)圓的和方的教案01-05