- 相關(guān)推薦
上學(xué)期 3.1數(shù)列
教學(xué)目標(biāo)
1.通過教學(xué)使學(xué)生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項(xiàng)公式寫出數(shù)列的項(xiàng).
2.通過數(shù)列定義的歸納概括,初步培養(yǎng)學(xué)生的觀察、抽象概括能力;滲透函數(shù)思想.
3.通過有關(guān)數(shù)列實(shí)際應(yīng)用的介紹,激發(fā)學(xué)生學(xué)習(xí)研究數(shù)列的積極性.
教學(xué)重點(diǎn),難點(diǎn)
教學(xué)重點(diǎn)是數(shù)列的定義的歸納與認(rèn)識(shí);教學(xué)難點(diǎn)是數(shù)列與函數(shù)的聯(lián)系與區(qū)別.
教學(xué)用具:電腦,課件(媒體資料),投影儀,幻燈片
教學(xué)方法:講授法為主
教學(xué)過程
一.揭示課題
今天開始我們研究一個(gè)新課題.
先舉一個(gè)生活中的例子:場(chǎng)地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律.實(shí)際上我們要研究的是這樣的一列數(shù)
(板書) 象這樣排好隊(duì)的數(shù)就是我們的研究對(duì)象——數(shù)列.
(板書)第三章 數(shù)列
(一)數(shù)列的概念
二.講解新課
要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學(xué)概括出數(shù)列的定義,再給出幾列數(shù):
(幻燈片) ①
自然數(shù)排成一列數(shù):
②
3個(gè)1排成一列:
、
無數(shù)個(gè)1排成一列:
、
的不足近似值,分別近似到 排列起來:
⑤
正整數(shù) 的倒數(shù)排成一列數(shù):
⑥
函數(shù) 當(dāng) 依次取 時(shí)得到一列數(shù):
⑦
函數(shù) 當(dāng) 依次取 時(shí)得到一列數(shù):
⑧
請(qǐng)學(xué)生觀察8列數(shù),說明每列數(shù)就是一個(gè)數(shù)列,數(shù)列中的每個(gè)數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù).
(板書)1.?dāng)?shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列.
為表述方便給出幾個(gè)名稱:項(xiàng),項(xiàng)數(shù),首項(xiàng)(以幻燈片的形式給出).以上述八個(gè)數(shù)列為例,讓學(xué)生練習(xí)指出某一個(gè)數(shù)列的首項(xiàng)是多少,第二項(xiàng)是多少,指出某一個(gè)數(shù)列的一些項(xiàng)的項(xiàng)數(shù).
由此可以看出,給定一個(gè)數(shù)列,應(yīng)能夠指明第一項(xiàng)是多少,第二項(xiàng)是多少,……,每一項(xiàng)都是確定的,即指明項(xiàng)數(shù),對(duì)應(yīng)的項(xiàng)就確定.所以數(shù)列中的每一項(xiàng)與其項(xiàng)數(shù)有著對(duì)應(yīng)關(guān)系,這與我們學(xué)過的函數(shù)有密切關(guān)系.
(板書)2.?dāng)?shù)列與函數(shù)的關(guān)系
數(shù)列可以看作特殊的函數(shù),項(xiàng)數(shù)是其自變量,項(xiàng)是項(xiàng)數(shù)所對(duì)應(yīng)的函數(shù)值,數(shù)列的定義域是正整數(shù)集 ,或是正整數(shù)集 的有限子集 .
于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點(diǎn)看待數(shù)列.
遇到數(shù)學(xué)概念不單要下定義,還要給其數(shù)學(xué)表示,以便研究與交流,下面探討數(shù)列的表示法.
(板書)3.?dāng)?shù)列的表示法
數(shù)列可看作特殊的函數(shù),其表示也應(yīng)與函數(shù)的表示法有聯(lián)系,首先請(qǐng)學(xué)生回憶函數(shù)的表示法:列表法,圖象法,解析式法.相對(duì)于列表法表示一個(gè)函數(shù),數(shù)列有這樣的表示法:用 表示第一項(xiàng),用 表示第一項(xiàng),……,用 表示第 項(xiàng),依次寫出成為
(板書)(1)列舉法
.(如幻燈片上的例子)簡記為 .
一個(gè)函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個(gè)數(shù)列,把它稱作圖示法.
(板書)(2)圖示法
啟發(fā)學(xué)生仿照函數(shù)圖象的畫法畫數(shù)列的圖形.具體方法是以項(xiàng)數(shù) 為橫坐標(biāo),相應(yīng)的項(xiàng) 為縱坐標(biāo),即以 為坐標(biāo)在平面直角坐標(biāo)系中做出點(diǎn)(以前面提到的數(shù)列 為例,做出一個(gè)數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點(diǎn),因?yàn)闄M坐標(biāo)為正整數(shù),所以這些點(diǎn)都在 軸的右側(cè),而點(diǎn)的個(gè)數(shù)取決于數(shù)列的項(xiàng)數(shù).從圖象中可以直觀地看到數(shù)列的項(xiàng)隨項(xiàng)數(shù)由小到大變化而變化的趨勢(shì).
有些函數(shù)可以用解析式來表示,解析式反映了一個(gè)函數(shù)的函數(shù)值與自變量之間的數(shù)量關(guān)系,類似地有一些數(shù)列的項(xiàng)能用其項(xiàng)數(shù)的函數(shù)式表示出來,即 ,這個(gè)函數(shù)式叫做數(shù)列的通項(xiàng)公式.
(板書)(3)通項(xiàng)公式法
如數(shù)列 的通項(xiàng)公式為 ;
的通項(xiàng)公式為 ;
的通項(xiàng)公式為 ;
數(shù)列的通項(xiàng)公式具有雙重身份,它表示了數(shù)列的第 項(xiàng),又是這個(gè)數(shù)列中所有各項(xiàng)的一般表示.通項(xiàng)公式反映了一個(gè)數(shù)列項(xiàng)與項(xiàng)數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項(xiàng)公式,這個(gè)數(shù)列便確定了,代入項(xiàng)數(shù)就可求出數(shù)列的每一項(xiàng).
例如,數(shù)列 的通項(xiàng)公式 ,則 .
值得注意的是,正如一個(gè)函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項(xiàng)公式,即便有通項(xiàng)公式,通項(xiàng)公式也未必唯一.
除了以上三種表示法,某些數(shù)列相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,這個(gè)關(guān)系用一個(gè)公式來表示,叫做遞推公式.
(板書)(4)遞推公式法
如前面所舉的鋼管的例子,第 層鋼管數(shù) 與第 層鋼管數(shù) 的關(guān)系是 ,再給定 ,便可依次求出各項(xiàng).再如數(shù)列 中, ,這個(gè)數(shù)列就是 .
像這樣,如果已知數(shù)列的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)與它的前一項(xiàng)(或前幾項(xiàng))間的關(guān)系用一個(gè)公式來表示,這個(gè)公式叫做這個(gè)數(shù)列的遞推公式.遞推公式是數(shù)列所特有的表示法,它包含兩個(gè)部分,一是遞推關(guān)系,一是初始條件,二者缺一不可.
可由學(xué)生舉例,以檢驗(yàn)學(xué)生是否理解.
三.小結(jié)
1.?dāng)?shù)列的概念
2.?dāng)?shù)列的四種表示
四.作業(yè) 略
五.板書設(shè)計(jì)
數(shù)列
(一)數(shù)列的概念 涉及的數(shù)列及表示
1.?dāng)?shù)列的定義
2.?dāng)?shù)列與函數(shù)的關(guān)系
3.?dāng)?shù)列的表示法
(1)列舉法
(2)圖示法
(3)通項(xiàng)公式法
(4)遞推公式法
【上學(xué)期 3.1數(shù)列】相關(guān)文章:
數(shù)列教學(xué)反思08-25
淺析數(shù)列求和法08-25
數(shù)列的求和教學(xué)反思11-25
數(shù)列求和教學(xué)反思04-14
學(xué)期散學(xué)典禮上的講話08-21
等差數(shù)列教學(xué)反思08-24
數(shù)列求和教學(xué)反思6篇04-14
等差數(shù)列教學(xué)反思04-14