精選八年級數(shù)學教案四篇
作為一名優(yōu)秀的教育工作者,時常要開展教案準備工作,編寫教案有利于我們科學、合理地支配課堂時間。我們該怎么去寫教案呢?以下是小編精心整理的八年級數(shù)學教案4篇,歡迎大家分享。
八年級數(shù)學教案 篇1
總課時:7課時 使用人:
備課時間:第八周 上課時間:第十周
第4課時:5、2平面直角坐標系(2)
教學目標
知識與技能
1.在給定的直角坐標系下,會根據(jù)坐標描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數(shù)形結(jié)合思想,培養(yǎng)學生的合作 交流能力;
2.通過由點確定坐標到根據(jù)坐標描點的轉(zhuǎn)化過程,進一步培養(yǎng)學生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學活動,發(fā)展學生的合情推理能力和豐富的情感、態(tài)度,提高學生學習數(shù)學的'興趣。
教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學生自己繪圖找點)
在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關(guān)系,坐標軸上點的坐標有什么特點。
練習:指出下列 各點以及所在象限或坐標軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學生作答)
由點找坐標是已知點在直角坐標 系中的位置,根據(jù)這點在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學生操作完畢后)
2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內(nèi)的點用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?
(出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標系畫,要求每位同學獨立完成。
(學生描點、畫圖)
(拿出一位做對的學生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標系中描出下列各點,并將各組內(nèi)的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標系中,設(shè)法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結(jié),全班交流)
本節(jié)課在復(fù)習上節(jié)課的基礎(chǔ)上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內(nèi)容。
在例題和練習中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。
第五環(huán)節(jié) 布置作業(yè)
習題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學教案 篇2
[教學分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應(yīng)用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的`和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應(yīng)用,使學生對勾股定理的作用有一定的認識。
[教學目標]
一、 知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實際問題
3學會簡單的合情推理與數(shù)學說理
二、 過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應(yīng)用知識。
三、 情感與態(tài)度目標
通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
四、 重點與難點
1、探索和證明勾股定理
2熟練運用勾股定理
[教學過程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
八年級數(shù)學教案 篇3
教學建議
知識結(jié)構(gòu)
重難點分析
本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.
本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.
教法建議
1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學生情況參考采用
2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解
教學設(shè)計示例
一、教學目標
1.掌握中位線的概念和三角形中位線定理
2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”
3.能夠應(yīng)用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學生的計算能力
4.通過定理證明及一題多解,逐步培養(yǎng)學生的分析問題和解決問題的能力
5. 通過一題多解,培養(yǎng)學生對數(shù)學的興趣
二、教學設(shè)計
畫圖測量,猜想討論,啟發(fā)引導(dǎo).
三、重點、難點
1.教學重點:三角形中位線的概論與三角形中位線性質(zhì).
2.教學難點:三角形中位線定理的證明.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、常用畫圖工具
六、教學步驟
【復(fù)習提問】
1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).
2.說明定理的證明思路.
3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?
分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.
4.什么叫三角形中線?(以上復(fù)習用投影儀打出)
【引入新課】
1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.
(結(jié)合三角形中線的定義,讓學生明確兩者區(qū)別,可做一練習,在 中,畫出中線、中位線)
2.三角形中位線性質(zhì)
了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).
如圖所示,DE是 的`一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.
三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.
應(yīng)注意的兩個問題:①為便于同學對定理能更好的掌握和應(yīng)用,可引導(dǎo)學生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.
由學生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).
(l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.
(2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.
(3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.
上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .
(證明過程略)
例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.
(由學生根據(jù)命題,說出已知、求證)
已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.
求證:四邊形EFGH是平行四邊形.‘
分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.
證明:連結(jié)AC.
∴ (三角形中位線定理).
同理,
∴GH EF
∴四邊形EFGH是平行四邊形.
【小結(jié)】
1.三角形中位線及三角形中位線與三角形中線的區(qū)別.
2.三角形中位線定理及證明思路.
七、布置作業(yè)
教材P188中1(2)、4、7
八年級數(shù)學教案 篇4
一、教學目標
1.理解一個數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓(xùn)練,提高學生的邏輯思維能力;
4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學生探索數(shù)學奧秘的興趣。
二、教學重點和難點
教學重點:平方根和算術(shù)平方根的概念及求法。
教學難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學方法
講練結(jié)合
四、教學手段
幻燈片
五、教學過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?
這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學習的。下面作一個小練習:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學時應(yīng)注意糾正。
由練習引出平方根的概念。
。ǘ┢椒礁拍
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學語言表達即為:若x2=a,則x叫做a的平方根。
由練習知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學生思考后,得到結(jié)論此題無答案。反問學生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結(jié)論,負數(shù)是沒有平方根的。下面總結(jié)一下平方根的`性質(zhì)(可由學生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負數(shù)沒有平方根。
。ㄋ模╅_平方
求一個數(shù)a的平方根的運算,叫做開平方的運算。
由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結(jié)果是兩個。
(五)平方根的表示方法
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。
練習:1.用正確的符號表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
③0。2的平方根是
、3的平方根是
、 的平方根是
由學生說出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。
六、總結(jié)
本節(jié)課主要學習了平方根的概念、性質(zhì),以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。
七、作業(yè)
教材P。127練習1、2、3、4。
八、板書設(shè)計
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
【八年級數(shù)學教案】相關(guān)文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
八年級上冊人教版數(shù)學教案02-27
八年級的數(shù)學教案15篇12-14
八年級下冊數(shù)學教案01-01
【薦】八年級數(shù)學教案12-03
【熱】八年級數(shù)學教案12-07
【精】八年級數(shù)學教案12-04
八年級數(shù)學教案【精】12-04
八年級數(shù)學教案【熱門】12-03