八年級數(shù)學教案匯總五篇
作為一名無私奉獻的老師,就不得不需要編寫教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。那么你有了解過教案嗎?下面是小編整理的八年級數(shù)學教案5篇,希望能夠幫助到大家。
八年級數(shù)學教案 篇1
教學目標
1、知識與技能目標
學會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學生的空間觀念.
2、過程與方法
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力.
(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
3、情感態(tài)度與價值觀
(1)通過有趣的問題提高學習數(shù)學的興趣.
(2)在解決實際問題的過程中,體驗數(shù)學學習的實用性.
教學重點:
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.
教學難點:
利用數(shù)學中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題.
教學準備:
多媒體
教學過程:
第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)
情景:
如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?
第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構(gòu)圖,計算.
學生匯總了四種方案:
。ǎ保 (2) (3)(4)
學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的'路線比情形(2)要短.
學生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.
如圖:
。ǎ保┲蠥→B的路線長為:AA’+d;
。ǎ玻┲蠥→B的路線長為:AA’+A’B>AB;
(3)中A→B的路線長為:AO+OB>AB;
。ǎ矗┲蠥→B的路線長為:AB.
得出結(jié)論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.
第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
教材23頁
李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,
(1)你能替他想辦法完成任務嗎?
。2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?
2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.
3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?
第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)
內(nèi)容:
1、如何利用勾股定理及逆定理解決最短路程問題?
第六 環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
內(nèi)容:
作業(yè):1.課本習題1.5第1,2,3題.
要求:A組(學優(yōu)生):1、2、3
B組(中等生):1、2
C組(后三分之一生):1
板書設計:
教學反思:
八年級數(shù)學教案 篇2
數(shù)據(jù)的波動
教學目標:
1、經(jīng)歷數(shù)據(jù)離散程度的探索過程
2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數(shù)值。
教學重點:會計算某些數(shù)據(jù)的極差、標準差和方差。
教學難點:理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。
教學準備:計算器,投影片等
教學過程:
一、創(chuàng)設情境
1、投影課本P138引例。
(通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)
2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。
二、活動與探究
如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)
問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?
2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應平均數(shù)的差距。
3、在甲、丙兩廠中,你認為哪個廠雞腿質(zhì)量更符合要求?為什么?
(在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標準差和方差作鋪墊。
三、講解概念:
方差:各個數(shù)據(jù)與平均數(shù)之差的.平方的平均數(shù),記作s2
設有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為
則s2= ,
而s= 稱為該數(shù)據(jù)的標準差(既方差的算術(shù)平方根)
從上面計算公式可以看出:一組數(shù)據(jù)的極差,方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定。
四、做一做
你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標準差嗎?你認為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?
(通過對此問題的解決,使學生回顧了用計算器求平均數(shù)的步驟,并自由探索求方差的詳細步驟)
五、鞏固練習:課本第172頁隨堂練習
六、課堂小結(jié):
1、怎樣刻畫一組數(shù)據(jù)的離散程度?
2、怎樣求方差和標準差?
七、布置作業(yè):習題5.5第1、2題。
八年級數(shù)學教案 篇3
一、教學目標
1.使學生理解并掌握分式的概念,了解有理式的概念;
2.使學生能夠求出分式有意義的條件;
3.通過類比分數(shù)研究分式的教學,培養(yǎng)學生運用類比轉(zhuǎn)化的思想方法解決問題的能力;
4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認識.
二、重點、難點、疑點及解決辦法
1.教學重點和難點 明確分式的分母不為零.
2.疑點及解決辦法 通過類比分數(shù)的意義,加強對分式意義的理解.
三、教學過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數(shù)的經(jīng)驗,可猜想到分式)
【新課】
1.分式的定義
(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結(jié)論:
用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學生舉幾個分式的例子.
(3)學生小結(jié)分式的概念中應注意的問題.
、俜帜钢泻凶帜.
、谌缤謹(shù)一樣,分式的分母不能為零.
(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]
2.有理式的分類
請學生類比有理數(shù)的分類為有理式分類:
例1 當取何值時,下列分式有意義?
(1);
解:由分母得.
∴當時,原分式有意義.
(2);
解:由分母得.
∴當時,原分式有意義.
(3);
解:∵恒成立,
∴取一切實數(shù)時,原分式都有意義.
(4).
解:由分母得.
∴當且時,原分式有意義.
思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?
例2 當取何值時,下列分式的'值為零?
(1);
解:由分子得.
而當時,分母.
∴當時,原分式值為零.
小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當時,分母,分式無意義.
當時,分母.
∴當時,原分式值為零.
(3);
解:由分子得.
而當時,分母.
當時,分母.
∴當或時,原分式值都為零.
(4).
解:由分子得.
而當時,,分式無意義.
∴沒有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結(jié)、擴展
1.分式與分數(shù)的區(qū)別.
2.分式何時有意義?
3.分式何時值為零?
(五)隨堂練習
1.填空題:
(1)當時,分式的值為零
(2)當時,分式的值為零
(3)當時,分式的值為零
2.教材P55中1、2、3.
八、布置作業(yè)
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書設計
課題 例1
1.定義例2
2.有理式分類
八年級數(shù)學教案 篇4
課時目標
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識別方法。
教學重點
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學難點:
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學時間:一課時。
教學用具:投影儀等。
教學過程:
一.復習提問
1.什么是整式?什么是單項式?什么是多項式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
①+m2 ②1+x+y2- ③ ④
、 ⑥ ⑦
二.新課講解:
設問:不是整工式子中,和整式有什么區(qū)別?
小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。
練習:下列各式中,哪些是分式哪些不是?
。1)、、(2)、(3)、(4)、(5)x2、(6)+4
強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。
2.小結(jié):對整式、分式的.正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習:課后練習P6練習1、2題
設問:(讓學生看課本上P5“思考”部分,然后回答問題。)
例題講解:課本P5例題1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
(板書解題過程。)
3.小結(jié):分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。
增加例題:當x取什么值時,分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當x≠±2時,分式有意義。
設問:什么時候分式的值為零呢?
例:
解:當 ① 分式的值為零
八年級數(shù)學教案 篇5
一、教學目標
1.理解一個數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓練,提高學生的邏輯思維能力;
4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學生探索數(shù)學奧秘的興趣。
二、教學重點和難點
教學重點:平方根和算術(shù)平方根的概念及求法。
教學難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學方法
講練結(jié)合
四、教學手段
幻燈片
五、教學過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應為多少?
2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?
這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學習的。下面作一個小練習:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學時應注意糾正。
由練習引出平方根的概念。
。ǘ┢椒礁拍
如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。
用數(shù)學語言表達即為:若x2=a,則x叫做a的平方根。
由練習知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學生思考后,得到結(jié)論此題無答案。反問學生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結(jié)論,負數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。
2.0有一個平方根,它是0本身。
3.負數(shù)沒有平方根。
。ㄋ模╅_平方
求一個數(shù)a的平方根的運算,叫做開平方的運算。
由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結(jié)果是兩個。
。ㄎ澹┢椒礁谋硎痉椒
一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。
練習:1.用正確的符號表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
③0。2的平方根是
④3的平方根是
、 的平方根是
由學生說出上式的`讀法。
例1。下列各數(shù)的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。
六、總結(jié)
本節(jié)課主要學習了平方根的概念、性質(zhì),以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。
七、作業(yè)
教材P。127練習1、2、3、4。
八、板書設計
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
【八年級數(shù)學教案】相關(guān)文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
八年級下冊數(shù)學教案01-01
八年級數(shù)學教案人教版01-03
人教版八年級數(shù)學教案11-04
八年級上冊數(shù)學教案11-09
八年級數(shù)學教案【熱】11-29
八年級數(shù)學教案【熱門】12-03
【薦】八年級數(shù)學教案12-03
【熱】八年級數(shù)學教案12-07