熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-08-22 21:20:39 八年級數(shù)學教案 我要投稿

有關八年級數(shù)學教案范文錦集七篇

  作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們科學、合理地支配課堂時間。教案要怎么寫呢?以下是小編精心整理的八年級數(shù)學教案7篇,僅供參考,希望能夠幫助到大家。

有關八年級數(shù)學教案范文錦集七篇

八年級數(shù)學教案 篇1

  教學目標

  1、知識與技能目標

  學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念.

  2、過程與方法

  (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力.

  (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.

  3、情感態(tài)度與價值觀

  (1)通過有趣的問題提高學習數(shù)學的興趣.

  (2)在解決實際問題的過程中,體驗數(shù)學學習的實用性.

  教學重點:

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

  教學難點:

利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

  教學準備:

多媒體

  教學過程:

  第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)

  情景:

  如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的`螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

  第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)

  學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構圖,計算.

  學生匯總了四種方案:

  (1) (2) (3)(4)

  學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

  學生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點之間線段最短可判斷(4)最短.

  如圖:

  (1)中A→B的路線長為:AA’+d;

 。ǎ玻┲蠥→B的路線長為:AA’+A’B>AB;

 。ǎ常┲蠥→B的路線長為:AO+OB>AB;

 。ǎ矗┲蠥→B的路線長為:AB.

  得出結論:利用展開圖中兩點之間,線段最短解決問題.在這個環(huán)節(jié)中,可讓學生沿母線剪開圓柱體,具體觀察.接下來后提問:怎樣計算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

  第三環(huán)節(jié):做一做(7分鐘,學生合作探究)

  教材23頁

  李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

  (1)你能替他想辦法完成任務嗎?

  (2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

 。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)

  1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?

  2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離.

  3.有一個高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?

  第五環(huán)節(jié) 課堂小結(3分鐘,師生問答)

  內(nèi)容:

  1、如何利用勾股定理及逆定理解決最短路程問題?

  第六 環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)

  內(nèi)容:

  作業(yè):1.課本習題1.5第1,2,3題.

  要求:A組(學優(yōu)生):1、2、3

  B組(中等生):1、2

  C組(后三分之一生):1

  板書設計:

  教學反思:

八年級數(shù)學教案 篇2

  一、回顧交流,合作學習

  【活動方略】

  活動設計:教師先將學生分成四人小組,交流各自的小結,并結合課本P87的小結進行反思,教師巡視,并且不斷引導學生進入復習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.

  【問題探究1】(投影顯示)

  飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

  思路點撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的`路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來計算出BC的長.(3000千米)

  【活動方略】

  教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.

  學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

  【問題探究2】(投影顯示)

  一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

  思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

  【活動方略】

  教師活動:操作投影儀,關注學生的思維,請兩位學生上講臺演示之后再評講.

  學生活動:思考后,完成“問題探究2”,小結方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD為直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此這個零件符合要求.

  【問題探究3】

  甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?

  思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

  【活動方略】

  教師活動:操作投影儀,巡視、關注學生訓練,并請兩位學生上講臺“板演”.

  學生活動:課堂練習,與同伴交流或舉手爭取上臺演示

八年級數(shù)學教案 篇3

  教學任務分析

  教學目標

  知識技能

  一、類比同分母分數(shù)的加減,熟練掌握同分母分式的加減運算.

  二、類比異分母分數(shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

  數(shù)學思考

  在分式的加減運算中,體驗知識的化歸聯(lián)系和思維靈活性,培養(yǎng)學生整體思考的分析問題能力.

  解決問題

  一、會進行同分母和異分母分式的加減運算.

  二、會解決與分式的加減有關的簡單實際問題.

  三、能進行分式的加、剪、乘、除、乘方的混合運算.

  情感態(tài)度

  通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來,使學生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對立統(tǒng)一的辯證觀點.

  重點

  分式的加減法.

  難點

  異分母分式的加減法及簡單的分式混合運算.

  教學流程安排

  活動流程圖

  活動內(nèi)容和目的

  活動1:問題引入

  活動2:學習同分母分式的加減

  活動3:探究異分母分式的加減

  活動4:發(fā)現(xiàn)分式加減運算法則

  活動5:鞏固練習、總結、作業(yè)

  向?qū)W生提出兩個實際問題,使學生體會學習分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學生的學習熱情.

  類比同分母分數(shù)的加減,讓學生歸納同分母分式的加減的方法并進行簡單運算.

  回憶異分母分數(shù)的加減,使學生歸納異分母分式的加減的方法.

  通過以上探究過程,讓學生發(fā)現(xiàn)分式加減運算的法則,通過分式在物理學的應用及簡單混合運算,使學生深化對分式加減運算法則的理解.

  通過練習、作業(yè)進一步鞏固分式的運算.

  課前準備

  教具

  學具

  補充材料

  課件

  教學過程設計

  問題與情境

  師生行為

  設計意圖

  [活動1]

  1.問題一:比較電腦與手抄的錄入時間.

  2.問題二;幫幫小明算算時間

  所需時間為,

  如何求出的值?

  3.這里用到了分式的加減,提出本節(jié)課的主題.

  教師通過課件展示問題.學生積極動腦解決問題,提出困惑:

  分式如何進行加減?

  通過實際問題中要用到分式的加減,從而提出問題,讓學生思考,可以激發(fā)學生探究的熱情.

 。刍顒樱玻

  1.提出小學數(shù)學中一道簡單的分數(shù)加法題目.

  2.用課件引導學生用類比法,歸納總結同分母分式加法法則.

  3.教師使用課件展示[例1]

  4.教師通過課件出兩個小練習.

  教師提出問題,學生回答,進一步回憶同分母分數(shù)加減的運算法則.

  學生在教師的引導下,探索同分母分式加減的運算方法.

  通過例題,讓學生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.

  由兩個學生板書自主完成練習,教師巡視指導學生練習.

  運用類比的方法,從學生熟知的.知識入手,有利于學生接受新知識.

  師生共同完成例題,使學生感受到自己很棒,自己能夠通過思考學會新知識,提高自信心.

  讓學生進一步體會同分母分式的加減運算.

 。刍顒樱常

  1.教師以練習的形式通過“自我發(fā)展的平臺”,向?qū)W生展示這樣一道題.

  2.教師提出思考題:

  異分母的分式加減法要遵守什么法則呢?

  教師展示一道異分母分式的加減題目,學生自然就想到異分母分數(shù)的加減.

  教師通過課件引導學生思考,學生會想到小學數(shù)學中,異分母分數(shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導學生歸納出異分母分式加減運算的方法思路.

  由學生主動提出解決問題的方法,從而激發(fā)了學生探究問題的興趣.

  通過學生的自我探究、歸納總結,讓學生充分參與到數(shù)學學習的過程中來,體會學習的樂趣.

  [活動4]

 。保谡Z言敘述分式加減法則的基礎上,用字母表示分式的加減法法則.

  2.教師使用課件展示[例2]

  3.教師通過課件出4個小練習.

  4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學的有關定律可知總電阻R與R1R2滿足關系式 ;

  試用含有R1的式子表示總電阻R

  5.教師使用課件展示[例4]

  教師提出要求,由學生說出分式加減法則的字母表示形式.

  通過例題,讓學生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.

  教師引導學生找出每道題的方法、如何找最簡公分母及時指出學生在通分中出現(xiàn)的問題,由學生自己完成.

  教師引導學生尋找解決問題的突破口,由師生共同完成,對比物理學中的計算,體會各學科知識之間的聯(lián)系.

  分式的混合運算,師生共同完成,教師提醒學生注意運算順序,通分要仔細.

  由此練習學生的抽象表達能力,讓學生體會數(shù)學符號語言的精練.

  讓學生體會運用的公式解決問題的過程.

  鍛煉學生運用法則解決問題的能力,既準確又有速度.

  提高學生的計算能力.

  通過分式在物理學中的應用,加強了學科之間的聯(lián)系,使學生開闊了視野,讓學生體會到學習數(shù)學的重要性,體會各學科全面發(fā)展的重要性,提高學習的興趣.

  提高學生綜合應用知識的能力.

  [活動5]

  1.教師通過課件出2個分式混合運算的小練習.

  2.總結:

  a)這節(jié)課我們學習了哪些知識?你能說一說嗎?

  b)⑴方法思路;

  c)⑵計算中的主意事項;

  d)⑶結果要化簡.

  3.作業(yè):

  a)教科書習題16.2第4、5、6題.

  學生練習、鞏固.

  教師巡視指導.

  學生完成、交流.,師生評價.

  教師引導學生回憶本節(jié)課所學內(nèi)容,學生回憶交流,師生共同補充完善.

  教師布置作業(yè).

  鍛煉學生運用法則進行運算的能力,提高準確性及速度.

  提高學生歸納總結的能力.

八年級數(shù)學教案 篇4

  一、素質(zhì)教育目標

  (一)知識教學點

  1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應用.

  2.使學生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.

  3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理.

  (二)能力訓練點

  1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力.

  2.通過教學,使學生逐步學會分別從題設或結論出發(fā)尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.

  (三)德育滲透點

  通過一題多解激發(fā)學生的'學習興趣.

  (四)美育滲透點

  通過學習,體會幾何證明的方法美.

  二、學法引導

  構造逆命題,分析探索證明,啟發(fā)講解.

  三、重點·難點·疑點及解決辦法

  1.教學重點:平行四邊形的判定定理1、2、3的應用.

  2.教學難點:綜合應用判定定理和性質(zhì)定理.

  3.疑點及解決辦法:在綜合應用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理

  (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理).

八年級數(shù)學教案 篇5

  1、教材分析

  (1)知識結構

  (2)重點、難點分析

  本節(jié)內(nèi)容的重點是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).

  本節(jié)內(nèi)容的難點是定理及逆定理的關系. 垂直平分線定理和其逆定理,題設與結論正好相反. 學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.

  2、 教法建議

  本節(jié)課教學模式主要采用“學生主體性學習”的教學模式. 提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納. 教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人. 具體說明如下:

  (1)參與探索發(fā)現(xiàn),領略知識形成過程

  學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點P,它到線段兩端的距離有何關系?學生會很容易得出“相等”. 然后學生完成證明,找一名學生的證明過程,進行投影總結. 最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理. 這樣讓學生親自動手實踐,積極參與發(fā)現(xiàn),激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產(chǎn)生過程,真正做到心領神會.

  (2)采用“類比”的學習方法,獲取逆定理

  線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的'難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯(lián)系.

  (3) 通過問題的解決,讓學生學會從不同角度分析問題、解決問題;讓學生學會引申、變更問題,以培養(yǎng)學生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力.

八年級數(shù)學教案 篇6

  知識目標:理解函數(shù)的概念,能準確識別出函數(shù)關系中的自變量和函數(shù)

  能力目標:會用變化的量描述事物

  情感目標:回用運動的觀點觀察事物,分析事物

  重點:函數(shù)的概念

  難點:函數(shù)的概念

  教學媒體:多媒體電腦,計算器

  教學說明:注意區(qū)分函數(shù)與非函數(shù)的關系,學會確定自變量的取值范圍

  教學設計:

  引入:

  信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

 、 這張圖告訴我們哪些信息?

 、 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

  (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數(shù):

  ① 這表告訴我們哪些信息?

 、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?

  一般的.,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數(shù)。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關系:

  (5) 長方形的寬一定時,其長與面積;

  (6) 等腰三角形的底邊長與面積;

  (7) 某人的年齡與身高;

  活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數(shù)關系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時,油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動2:練習教材9頁練習

  小結:(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁:2,3,4題

八年級數(shù)學教案 篇7

  學習目標

  1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關系并能找出變化規(guī)律。

  2、由坐標的變化探索新舊圖形之間的變化。

  重點

  1、 作某一圖形關于對稱軸的對稱圖形,并能寫出所得圖形相應各點的坐標。

  2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。

  難點

  體會極坐標和直角坐標思想,并能解決一些簡單的問題

  學習過程(導入、探究新知、即時練習、小結、達標檢測、作業(yè))

  第一課時

  學習過程:

  一、舊知回顧:

  1、平面直角坐標系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標系。

  2、坐標平面內(nèi)點的坐標的表示方法____________。

  3、各象限點的坐標的特征:

  二、新知檢索:

  1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),

  (3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形

  三、典例分析

  例1、

  (1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?

  (2)將魚的頂點的.橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?

  例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  (2)將魚的頂點的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

  四、題組訓練

  1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。

  (1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

  (2)縱、橫分別加3呢?

  (3)縱、橫分別變成原來的2倍呢?

  歸納:圖形坐標變化規(guī)律

  1、 平移規(guī)律:2、圖形伸長與壓縮:

  第二課時

  一、舊知回顧:

  1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。

  中心對稱圖形定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形

  二、新知檢索:

  1、如圖,左邊的魚與右邊的魚關于y軸對稱。

  1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

  2、各個對應頂點的坐標有怎樣的關系?

  3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關于y軸對稱,那么左邊的魚各個頂點的坐標將發(fā)生怎樣的變化?

  三、典例分析,如圖所示,

  1、右圖的魚是通過什么樣的變換得到 左圖的魚的。

  2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關系。

  3、如果將右邊的魚的縱、橫坐標都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關系

  四、題組練習

  1、將坐標作如下變化時,圖形將怎樣變化?

 、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

 、 (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

  2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。

  3、 如圖,作字母M關于y軸的軸對稱圖形,并寫出所得圖形相應各端點的坐標。

  4、 描出下圖中楓葉圖案關于x軸的軸對稱圖形的簡圖。

  學習筆記

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

初中八年級數(shù)學教案11-03

八年級的數(shù)學教案15篇12-14

【熱門】八年級數(shù)學教案11-29

八年級數(shù)學教案【熱】11-29

八年級數(shù)學教案【薦】12-06

【熱】八年級數(shù)學教案12-07

八年級上冊數(shù)學教案11-09

人教版八年級數(shù)學教案11-04