八年級數(shù)學(xué)教案集錦七篇
作為一名老師,往往需要進(jìn)行教案編寫工作,教案是教學(xué)活動的依據(jù),有著重要的地位。教案要怎么寫呢?以下是小編精心整理的八年級數(shù)學(xué)教案7篇,僅供參考,大家一起來看看吧。
八年級數(shù)學(xué)教案 篇1
教學(xué)目標(biāo)
知識與技能
用二元一次方程組解決有趣場景中的數(shù)字問 題和行程問題,歸納用方程(組)解決實(shí)際問題的一般步驟.
過程與方法
1.通過設(shè)置問題串,讓學(xué)生體會分析復(fù)雜問題的思考方法.
2.讓學(xué)生進(jìn)一步經(jīng)歷和體驗(yàn)列方程組解決實(shí)際問題的過程,體會方程組是刻畫現(xiàn)實(shí)世界 的有效數(shù)學(xué)模型.
情感態(tài)度與價值觀
在學(xué)習(xí)過程中讓學(xué)生體驗(yàn)把復(fù)雜問題化為簡單問題的策略,體驗(yàn)成功感,同時培養(yǎng)學(xué)生克服困難的意志和勇氣, 樹立自信心,并鼓勵學(xué)生合作 交流,培養(yǎng)學(xué)生的`團(tuán)隊(duì)精神.
教學(xué)重點(diǎn)
1.初步體會列方程組解決實(shí)際問題的步驟.
2.學(xué)會用圖表 分析較復(fù)雜的數(shù)量關(guān)系問題。
教學(xué)難點(diǎn)
將實(shí)際問題轉(zhuǎn)化 成二元一次方程組的數(shù)學(xué)模型;會用圖表分析數(shù) 量關(guān)系。
教學(xué)準(zhǔn)備:
教具:教材,課件,電腦(視頻播放器)
學(xué)具:教材,練習(xí)本
教學(xué)過程
第一環(huán)節(jié):復(fù)習(xí)提問(5分鐘,學(xué)生口答)
內(nèi)容:填空:
(1)一個兩位數(shù),個位數(shù)字是 ,十位數(shù)字是 ,則這個兩位數(shù)用代數(shù)式表示為 ;若交換個位和十位上的數(shù)字得到一個新的兩位數(shù),用代數(shù)式表示為 .
(2)一個兩位數(shù),個位上的數(shù)為 ,十位上的數(shù)為 ,如果在它們之間添上一個0,就得到一個三位數(shù),這個三位數(shù)用代數(shù)式可以表示為 .
(3)有兩個兩位數(shù) 和 ,如果將 放在 的左邊,就得到一個四位數(shù),那么這個四位數(shù)用代數(shù)式表示為 ;如果將 放在 的右邊,將得到一個新的四位數(shù),那么這個四位數(shù)用代數(shù)式可表示為 .
第二環(huán)節(jié):情境引入(10分鐘,學(xué)生動腦思考,全班交流)
內(nèi)容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況.你能 確定小明在12:00時看到的里程碑上的數(shù)嗎?
第三環(huán)節(jié):合作學(xué)習(xí)(10分鐘,小組討論,找等量關(guān)系,解決 問題)
內(nèi)容:例1
兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大2178,求這兩個兩位數(shù).
學(xué)生先獨(dú)立思考例1,在此基礎(chǔ)上,教師根據(jù)學(xué)生思考情況組織交流與討論.
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生嘗試獨(dú)立解決問題,全班交流)
內(nèi)容:練習(xí)
1.一個兩位數(shù),減去它的各位數(shù)字之和的3倍,結(jié)果是23;這個兩位數(shù)除以它的各位數(shù)字 之和,商是5,余數(shù)是1.這個兩位數(shù)是多少?
2.一個兩位數(shù)是另一個兩位數(shù)的3倍,如果把這個兩位數(shù)放在另一個兩位數(shù)的左 邊與放在右邊所得的數(shù)之和為8484.求這個兩位數(shù).
第五環(huán)節(jié):課堂小結(jié)(5分鐘,教師引導(dǎo)學(xué)生總結(jié)一般步驟)
內(nèi)容:
1.教師提問:本節(jié)課我們學(xué)習(xí)了那些內(nèi)容,對這些內(nèi)容你有什么體會和想法?請與同伴交流.
2.師生互相交流總結(jié)出列方程(組)解決實(shí)際問題的一般步驟.
第 六環(huán)節(jié):布置作業(yè)
內(nèi)容:習(xí)題7.6
A組(優(yōu)等生) 2,3,4
B組(中等生)2、3
C組(后三分之一生)2
八年級數(shù)學(xué)教案 篇2
一、學(xué)生起點(diǎn)分析
通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.
二、教學(xué)任務(wù)分析
《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個課時完成,第1課時讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學(xué)生將在具體的實(shí)例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).
本節(jié)課的教學(xué)目標(biāo)是:
、偻ㄟ^拼圖活動,讓學(xué)生感受客觀世界中無理數(shù)的存在;
、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù);
③學(xué)生親自動手做拼圖活動,培養(yǎng)學(xué)生的動手能力和探索精神;
、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;
三、教學(xué)過程設(shè)計
本節(jié)課設(shè)計了6個教學(xué)環(huán)節(jié):
第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):質(zhì)疑
內(nèi)容:【想一想】
、乓粋整數(shù)的平方一定是整數(shù)嗎?
、埔粋分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?
目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.
效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用
第二環(huán)節(jié):課題引入
內(nèi)容:1.【算一算】
已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分?jǐn)?shù))嗎?
2.【剪剪拼拼】
把邊長為1的兩個小正方形通過剪、拼,設(shè)法拼成一個大正方形,你會嗎?
目的:選取客觀存在的“無理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”.
效果:巧設(shè)問題背景,順利引入本節(jié)課題.
第三環(huán)節(jié):獲取新知
內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】
【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?
【釋一釋】:釋1.滿足 的. 為什么不是整數(shù)?
釋2.滿足 的 為什么不是分?jǐn)?shù)?
【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)
【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段
目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣
效果:學(xué)生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.
第四環(huán)節(jié):應(yīng)用與鞏固
內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】
【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:
1.長度是有理數(shù)的線段
2.長度不是有理數(shù)的線段
【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個三角形 (右1)
2.三邊長都是有理數(shù)
2.只有兩邊長是有理數(shù)
3.只有一邊長是有理數(shù)
4.三邊長都不是有理數(shù)
【仿一仿】:例:在數(shù)軸上表示滿足 的
解: (右2)
仿:在數(shù)軸上表示滿足 的
【賽一賽】:右3是由五個單位正方形組成的紙片,請你把
它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)
目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上
效果:加深了對“新知”的理解,鞏固了本課所學(xué)知識.
第五環(huán)節(jié):課堂小結(jié)
內(nèi)容:
1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?
2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?
3.除了本課所認(rèn)識的非有理數(shù)的數(shù)以外,你還能找到嗎?
目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點(diǎn)及數(shù)學(xué)方法,使知識系統(tǒng)化.
效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會進(jìn)行概括總結(jié).
第六環(huán)節(jié):布置作業(yè)
習(xí)題2.1
六、教學(xué)設(shè)計反思
(一)生活是數(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動力
大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時間,讓學(xué)生能夠充分的思考與操作.
。ǘ┗橄鬄榫唧w
常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.
。ㄈ⿵(qiáng)化知識間聯(lián)系,注意糾錯
既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.
八年級數(shù)學(xué)教案 篇3
學(xué)習(xí)目標(biāo)
1、能說出約分的意義和步驟。
2、能說出最簡分式的意義。
3、能說出分式的乘、除和乘方法則,并能用式子表示。
4、能熟練地進(jìn)行分式的乘除和乘方運(yùn)算。
5、會歸納總結(jié)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。
6、能熟練地運(yùn)用冪的運(yùn)算性質(zhì)進(jìn)行計算。
主體知識歸納
1、約分根據(jù)分式的基本性質(zhì),把一個分式的分子與分母的公因式約去,叫做分式的約分。
2、約分的步驟把分式的分子與分母分解因式,然后約去分子與分母的公因式。
3、最簡分式一個分式的分子與分母沒有公因式時,叫做最簡分式。
4、分式的乘法法則分式乘以分式,用分子的積做積的分子,分母的積做積的分母。
5、分式的除法法則分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
6、分式的乘方(n為正整數(shù))、就是說:分式的乘方是把分子、分母各自乘方。
7、整數(shù)指數(shù)冪的運(yùn)算性質(zhì)可歸納如下
。1)am·an=am+n(m、n都是整數(shù));
。2)(am)n=amn(m、n都是整數(shù));
。3)(ab)n=anbn(n是整數(shù))、
基礎(chǔ)知識精講
1、正確理解分式約分的意義
。1)約分的根據(jù)是分式的'基本性質(zhì),約分的實(shí)質(zhì)是一個分式化成最簡分式,約分的關(guān)鍵是將一個分式的分子與分母的公因式約去。
。2)進(jìn)行約分的前提條件:分子、分母必須都為積的形式且有公因式。
2、分式約分的步驟是:把分式的分子與分母分解因式,然后約去分子、分母和公因式、約分時應(yīng)注意以下兩點(diǎn):
。1)若分子、分母都是幾個因式乘積的形式,應(yīng)約去分子、分母中相同因式的最低次冪、當(dāng)分子、分母的系數(shù)是整數(shù)時,還應(yīng)約去它們的最大公約數(shù)。、
(2)若分式的分子、分母是多項(xiàng)時,要先將分子、分母按同一字母降冪排列、首項(xiàng)為負(fù),提取負(fù)號放到整個分式的前面,將分子、分母分解因式,然后再約分。、
3、進(jìn)行分式的乘除運(yùn)算時,應(yīng)注意以下幾點(diǎn):
。1)分式的乘除運(yùn)算,實(shí)際上是分式的乘法運(yùn)算,根據(jù)法則應(yīng)先把分子、分母相乘,化成一個分式后再進(jìn)行約分,化為最簡分式、但實(shí)際運(yùn)算時,常常先約分再相乘,這樣做既簡單易行,又不易出錯、
。2)如果分式的分子、分母是多項(xiàng)式時,一般應(yīng)先因式分解,再約分。
。3)分式運(yùn)算的結(jié)果必須化成最簡分式,特別地,若分子(或分母)是公因式,約去公因式后,分子(或分母)是1而不是0。
。4)要注意運(yùn)算順序,對于分式乘除法來說,它只含有同級乘除運(yùn)算,所以只要沒有附加條件(如括號等),就必須按照從左至右的順序進(jìn)行計算。
八年級數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo)
1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;
2.使學(xué)生能夠求出分式有意義的條件;
3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;
4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識.
二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.
2.疑點(diǎn)及解決辦法 通過類比分?jǐn)?shù)的意義,加強(qiáng)對分式意義的理解.
三、教學(xué)過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的.問題,但若有如下問題:某同學(xué)分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)
【新課】
1.分式的定義
(1)由學(xué)生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:
用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學(xué)生舉幾個分式的例子.
(3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.
①分母中含有字母.
②如同分?jǐn)?shù)一樣,分式的分母不能為零.
(4)問:何時分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]
2.有理式的分類
請學(xué)生類比有理數(shù)的分類為有理式分類:
例1 當(dāng)取何值時,下列分式有意義?
(1);
解:由分母得.
∴當(dāng)時,原分式有意義.
(2);
解:由分母得.
∴當(dāng)時,原分式有意義.
(3);
解:∵恒成立,
∴取一切實(shí)數(shù)時,原分式都有意義.
(4).
解:由分母得.
∴當(dāng)且時,原分式有意義.
思考:若把題目要求改為:“當(dāng)取何值時下列分式無意義?”該怎樣做?
例2 當(dāng)取何值時,下列分式的值為零?
(1);
解:由分子得.
而當(dāng)時,分母.
∴當(dāng)時,原分式值為零.
小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當(dāng)時,分母,分式無意義.
當(dāng)時,分母.
∴當(dāng)時,原分式值為零.
(3);
解:由分子得.
而當(dāng)時,分母.
當(dāng)時,分母.
∴當(dāng)或時,原分式值都為零.
(4).
解:由分子得.
而當(dāng)時,,分式無意義.
∴沒有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結(jié)、擴(kuò)展
1.分式與分?jǐn)?shù)的區(qū)別.
2.分式何時有意義?
3.分式何時值為零?
(五)隨堂練習(xí)
1.填空題:
(1)當(dāng)時,分式的值為零
(2)當(dāng)時,分式的值為零
(3)當(dāng)時,分式的值為零
2.教材P55中1、2、3.
八、布置作業(yè)
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書設(shè)計
課題 例1
1.定義例2
2.有理式分類
八年級數(shù)學(xué)教案 篇5
一、教材分析
1.教材的地位與作用
平行四邊形是最基本的幾何圖形,也是 “空間與圖形”領(lǐng)域中研究的主要對象之一.它在生活中有著十分廣泛的應(yīng)用,這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包括其性質(zhì)在生產(chǎn)、生活各領(lǐng)域的實(shí)際應(yīng)用.
本節(jié)課既是平行線的性質(zhì)、全等三角形等知識的延續(xù)和深化,也是后續(xù)學(xué)習(xí)矩形、菱形、正方形等知識的堅實(shí)基礎(chǔ),在教材中起著承上啟下的作用.平行四邊形的性質(zhì)還為證明兩條線段相等、兩角相等、兩直線平行提供了新的方法和依據(jù),拓寬了學(xué)生的解題思路.
另外本節(jié)課是在學(xué)生掌握了平移、旋轉(zhuǎn)知識的基礎(chǔ)上探究平行四邊形的性質(zhì),能使學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動,對于培養(yǎng)學(xué)生的合情推理能力、發(fā)散思維能力以及探索、體驗(yàn)數(shù)學(xué)思維規(guī)律等方面起著重要的作用.
2.教學(xué)目標(biāo):
知識技能:理解并掌握平行四邊形的相關(guān)概念和性質(zhì),培養(yǎng)學(xué)生初步應(yīng)用這些知識解決問題的能力.
數(shù)學(xué)思考:通過觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動進(jìn)一步發(fā)展學(xué)生的演繹推理能力和發(fā)散思維能力.
解決問題:學(xué)生親自經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,體會解決問題策略的多樣性.
情感態(tài)度:培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣與合作交流的意識,激發(fā)學(xué)生探索數(shù)學(xué)的興趣,體驗(yàn)探索成功后的快樂.
3.教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):理解并掌握平行四邊形的概念及其性質(zhì).
難點(diǎn):運(yùn)用平移、旋轉(zhuǎn)的圖形變換思想探究平行四邊形的性質(zhì).
4.教材處理:
基于“創(chuàng)造性地使用教材”和“真正地以學(xué)生為本”的教學(xué)理念,我將教材內(nèi)容進(jìn)行合理內(nèi)化、整合.
首先,打破了原教材的知識結(jié)構(gòu),構(gòu)建成一個新的教學(xué)體系,分為探索平行四邊形的性質(zhì)和平行四邊形性質(zhì)的應(yīng)用這樣兩部分,本節(jié)課是探索平行四邊形的性質(zhì).這樣安排能很好地體現(xiàn)知識結(jié)構(gòu)的完整性和系統(tǒng)性.
然后,將教材中平行四邊形性質(zhì)的探究活動完全開放,給學(xué)生充分探索的時間與空間,動手實(shí)驗(yàn),動腦思考.力圖構(gòu)建學(xué)生主動探索、獲取知識的平臺,使學(xué)生真正成為實(shí)踐的探索者、知識的構(gòu)建者、愉快的收獲者.
最后,把一道命題證明的練習(xí)題改編成實(shí)驗(yàn)操作型問題.學(xué)生利用課前準(zhǔn)備好的`教具制作成模型,讓圖形動起來.這樣設(shè)計有利于學(xué)生在圖形運(yùn)動變化的過程中去發(fā)現(xiàn)其中不變的關(guān)系,從而發(fā)現(xiàn)圖形的性質(zhì).
總之,教材處理力求在深挖概念內(nèi)涵;拓展性質(zhì)外延;深化練習(xí)效用的過程中達(dá)到培養(yǎng)學(xué)生創(chuàng)新意識和實(shí)踐能力的教學(xué)目的.
二.教學(xué)方法與手段
本節(jié)課在教法上體現(xiàn)教師的“啟發(fā)引導(dǎo)”,幫助學(xué)生實(shí)現(xiàn)認(rèn)識上與態(tài)度上的跨越;在學(xué)法上突出學(xué)生的“探索發(fā)現(xiàn)”,在教學(xué)過程中立足于讓學(xué)生自己去觀察、去發(fā)現(xiàn)、去創(chuàng)造.利用多媒體、自制教具輔助教學(xué),增強(qiáng)教學(xué)的直觀性、實(shí)效性.
八年級數(shù)學(xué)教案 篇6
教學(xué)目標(biāo):
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。
教學(xué)重點(diǎn):分式通分的理解和掌握。
教學(xué)難點(diǎn):分式通分中最簡公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過程:
(一)引入
(1)如何計算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個分式的.最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據(jù)分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼剑垢鞣质降姆帜付蓟癁橥ǚ秩缦拢簒xx
通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。
例1 通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy2,
小結(jié):各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a2b2c2,
由學(xué)生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。
八年級數(shù)學(xué)教案 篇7
5 14.3.2.2 等邊三角形(二)
教學(xué)目標(biāo)
掌握等邊三角形的性質(zhì)和判定方法.
培養(yǎng)分析問題、解決問題的能力.
教學(xué)重點(diǎn)
等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn)
等邊三角形性質(zhì)的應(yīng)用
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識
1.等邊三角形是軸對稱圖形,它有三條對稱軸.
2.等邊三角形每一個角相等,都等于60°
3.三個角都相等的三角形是等邊三角形.
4.有一個角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的.判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
、僭谶匒B、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
、圻^邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
III課堂小結(jié)
1、等腰三角形和性質(zhì)
2、等腰三角形的條件
V布置作業(yè)
1.教科書第147頁練習(xí)1、2
2.選做題:
(1)教科書第150頁習(xí)題14.3第ll題.
(2)已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個?
。3)《課堂感悟與探究》
5
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
【熱】八年級數(shù)學(xué)教案12-07
【薦】八年級數(shù)學(xué)教案12-03
八年級數(shù)學(xué)教案【薦】12-06
【精】八年級數(shù)學(xué)教案12-04