熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

初一數(shù)學(xué)教案

時(shí)間:2023-02-16 16:10:08 七年級(jí)數(shù)學(xué)教案 我要投稿

初一數(shù)學(xué)教案(通用15篇)

  作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,總不可避免地需要編寫教案,借助教案可以更好地組織教學(xué)活動(dòng)。那么教案應(yīng)該怎么寫才合適呢?以下是小編為大家收集的初一數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

初一數(shù)學(xué)教案(通用15篇)

初一數(shù)學(xué)教案1

  相交線

  課型:新授課 備課人:徐新齊 審核人:霍紅超

  學(xué)習(xí)目標(biāo)

  1.通過動(dòng)手觀察、操作、推斷、交流等數(shù)學(xué)活動(dòng),進(jìn)一步發(fā)展空間觀念毛

  2.在具體情境中了解鄰補(bǔ)角、對(duì)頂角, 能找出圖形中的一個(gè)角的鄰補(bǔ)角和對(duì)頂角

  重點(diǎn)、難點(diǎn)

  重點(diǎn):鄰補(bǔ)角、對(duì)頂角的概念,對(duì)頂角性質(zhì)與應(yīng)用.

  難點(diǎn):理解對(duì)頂角相等的性質(zhì)的探索.

  教學(xué)過程

  一、復(fù)習(xí)導(dǎo)入

  教師在輕松歡快的音樂中演示第五章章首圖片為主體的課件.

  學(xué)生欣賞圖片,閱讀其中的文字.

  師生共同總結(jié):我們生活的世界中,蘊(yùn)涵著大量的相交線和平行線. 本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì), 研究平行線的性質(zhì)和平行的判定以及圖形的平移問題.

  二、自學(xué)指導(dǎo)

  觀察剪刀剪布的過程,引入兩條相交直線所成的角

  握緊把手時(shí),隨著兩個(gè)把手之間的角逐漸變小,剪刀刃之間的角邊相應(yīng)變小. 如果改變用力方向,隨著兩個(gè)把手之間的角逐漸變大,剪刀刃之間的角也相應(yīng)變大.

  三、 問題導(dǎo)學(xué)

  認(rèn)識(shí)鄰補(bǔ)角和對(duì)頂角,探索對(duì)頂角性質(zhì)

 。1).學(xué)生畫直線AB、CD相交于點(diǎn)O,并說(shuō)出圖中4個(gè)角,兩兩相配共能組成幾對(duì)角? 各對(duì)角的位置關(guān)系如何?根據(jù)不同的位置怎么將它們分類?

  學(xué)生思考并在小組內(nèi)交流,全班交流.

  ∠AOC和∠BOC有一條公共邊OC,它們的另一邊互為反向延長(zhǎng)線.

  ∠AOC和∠BOD有公共的頂點(diǎn)O,而是∠AOC的兩邊分別是∠BOD兩邊的.反向延長(zhǎng)線.

 。 2).學(xué)生用量角器分別量一量各個(gè)角的度數(shù),以發(fā)現(xiàn)各類角的度數(shù)有什么關(guān)系,學(xué)生得出有"相鄰"關(guān)系的兩角互補(bǔ),"對(duì)頂"關(guān)系的兩角相等.

 。3).概括形成鄰補(bǔ)角、對(duì)頂角概念.

  有一條公共邊,而且另一邊互為反向延長(zhǎng)線的兩個(gè)角叫做鄰補(bǔ)角.

  如果兩個(gè)角有一個(gè)公共頂點(diǎn), 而且一個(gè)角的兩邊分別是另一角兩邊的反向延長(zhǎng)線,那么這兩個(gè)角叫對(duì)頂角.

  四、典題訓(xùn)練

  1.例:如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).

  2.:判斷下列圖中是否存在對(duì)頂角.

  小結(jié)

初一數(shù)學(xué)教案2

  一、教學(xué)目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.了解;方程算術(shù)解法與代數(shù)解法的區(qū)別。

  2.掌握:代數(shù)解法解簡(jiǎn)易方程。

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.通過代數(shù)解法解簡(jiǎn)易方程的學(xué)習(xí)使學(xué)生認(rèn)識(shí)問題頭腦不僵化,培養(yǎng)其創(chuàng)造性思維的能力。

  2.通過代數(shù)法解簡(jiǎn)易方程進(jìn)一步培養(yǎng)學(xué)生運(yùn)算能力和邏輯思維能力。

  (三)德育滲透點(diǎn)

  1.培養(yǎng)學(xué)生實(shí)事求是的科學(xué)態(tài)度,用發(fā)展的眼光看問題的辯證唯物主義思想。

  2.滲透化“未知”為“已知”的化歸思想。

 。ㄋ模┟烙凉B透點(diǎn)

  通過用新的方法解簡(jiǎn)易方程,使學(xué)生初步領(lǐng)略數(shù)學(xué)中的方法美。

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法。注意教學(xué)中民主意識(shí)和學(xué)生的主體作用的體現(xiàn)。

  2.學(xué)生學(xué)法:識(shí)記→練習(xí)反饋

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.重點(diǎn):代數(shù)解法解簡(jiǎn)易方程。

  2.難點(diǎn):解方程時(shí)準(zhǔn)確把握兩邊都加上(或減去)、乘以(或除以)同一適當(dāng)?shù)臄?shù)。

  3.疑點(diǎn):代數(shù)解法解簡(jiǎn)易方程的依據(jù)。

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  投影儀或電腦、自制膠片。

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師創(chuàng)設(shè)情境,學(xué)生解決問題。教師介紹新的方法,學(xué)生反復(fù)練習(xí)。

  七、教學(xué)步驟

 。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

 。ǔ鍪就队1)

  引例:班上有37名同學(xué),分成人數(shù)相等的兩隊(duì)進(jìn)行拔河比賽,恰好余3人當(dāng)裁判員,每個(gè)隊(duì)有多少人?

  師:該問題如何解決呢?請(qǐng)同學(xué)們考慮好后寫在練習(xí)本上.

  學(xué)生活動(dòng):解答問題,一個(gè)學(xué)生板演.

  師生共同訂正,對(duì)照板演學(xué)生的做法,師問:有無(wú)不同解法?

  學(xué)生活動(dòng):回答問題,一個(gè)學(xué)生板演,其他學(xué)生比較兩種解法.

  問;這兩種解法有什么不同呢?

  學(xué)生活動(dòng):積極思索,回答問題.(一是列算式的解法,二是列方程的解法).

  師:很好.為了敘述問題方便,我們分別把這兩種解法叫做算術(shù)解法和代數(shù)解法.小學(xué)學(xué)過的應(yīng)用題可用算術(shù)方法也可用代數(shù)方法解.有時(shí)算術(shù)方法簡(jiǎn)便,有時(shí)代數(shù)方法簡(jiǎn)便,但是隨著學(xué)習(xí)的逐步展開,遇到的問題越來(lái)越復(fù)雜,使用代數(shù)解法的優(yōu)越性將會(huì)體現(xiàn)的越來(lái)越充分,因此,在初中代數(shù)課上,將把方程的知識(shí)作為一個(gè)重要的內(nèi)容來(lái)學(xué)習(xí).當(dāng)然,在開始學(xué)習(xí)方程時(shí),還是要從簡(jiǎn)單的方程入手,即簡(jiǎn)易方程.引出課題.

  [板書]1.5簡(jiǎn)易方程

 。ǘ┨剿餍轮,講授新課

  師:談到方程,同學(xué)們并不陌生,你能說(shuō)明什么叫方程嗎?

  學(xué)生活動(dòng):踴躍舉手,回答問題。

  [板書] 含有未知數(shù)的`等式叫方程

  接問:你還知道關(guān)于方程的其他概念嗎?

  學(xué)生活動(dòng):積極思考并回答。

  [板書] 方程的解;解方程

  追問:能再具體些嗎?即什么叫方程的解?什么叫解方程?并舉例說(shuō)明.學(xué)生活動(dòng):互相討論后回答.(使方程左右兩邊相等的未知數(shù)的值叫做方程的解;求方程的解的過程叫解方程,

  師:好!這是小學(xué)學(xué)的解方程的方法。在初中代數(shù)課上,我們要從另一角度來(lái)解,還以上邊這個(gè)方程為例。

  [板書]

  學(xué)生活動(dòng):相互討論達(dá)成共識(shí)(合理。因把x=5 代入方程3x+9=24 ,左邊=右邊,所以x=5是方程的解)

  【教法說(shuō)明】先復(fù)習(xí)小學(xué)有關(guān)方程的幾個(gè)概念和解法,再提代數(shù)解法,形成對(duì)比,使學(xué)生認(rèn)識(shí)到同一問題可從不同角度去考慮,即培養(yǎng)了發(fā)散思維。正是因?yàn)檎J(rèn)識(shí)問題的不同側(cè)面,導(dǎo)致學(xué)生感到疑惑,這時(shí)讓學(xué)生自己去檢驗(yàn)新方法的合理性,不但可消除疑慮,而且還有助于發(fā)展學(xué)生的創(chuàng)造能力。

  師:以前的方法只能解很簡(jiǎn)單的方程,而后者則可以解較復(fù)雜的方程,因此更為重要。為了更好的理解和熟悉這種解法,我們共同做例1。

  (三)嘗試反饋,鞏固練習(xí)

  例1 解方程(x/2)-5=11

  問:你認(rèn)為第一步方程兩邊應(yīng)加上(或減去)什么數(shù)最合適?為什么?

  學(xué)生活動(dòng):思考并回答.(師板書)

  問:你認(rèn)為第二步方程兩邊應(yīng)乘以(或除以)什么數(shù)最合適?為什么?

  學(xué)生活動(dòng):思考并回答(師板書)

  解:方程兩邊都加上5,得

  (x/2)-5+5=11+5

  x/2=16

  (x/2)*2=16*2

  x=32

  問:這個(gè)結(jié)果正確嗎?請(qǐng)同學(xué)們自己檢驗(yàn).

  學(xué)生活動(dòng):練習(xí)本上檢驗(yàn)并回答問題.(正確)

  師:這種新方法解方程時(shí),第一步目的是什么?第二步目的是什么?從而確定出該加上(或減去)怎樣的數(shù),該乘以(或除以)怎樣的數(shù)更合適.

  學(xué)生活動(dòng):回答這兩個(gè)問題.

初一數(shù)學(xué)教案3

  教學(xué)目標(biāo)

  1,通過對(duì)數(shù)“零”的意義的探討,進(jìn)一步理解正數(shù)和負(fù)數(shù)的概念;

  2,利用正負(fù)數(shù)正確表示相反意義的量(規(guī)定了指定方向變化的量)

  3,進(jìn)一步體驗(yàn)正負(fù)數(shù)在生產(chǎn)生活實(shí)際中的廣泛應(yīng)用,提高解決實(shí)際問題的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)難點(diǎn):深化對(duì)正負(fù)數(shù)概念的理解

  知識(shí)重點(diǎn):正確理解和表示向指定方向變化的量

  教學(xué)過程:(師生活動(dòng))設(shè)計(jì)理念

  知識(shí)回顧與深化回顧:上一節(jié)課我們知道了在實(shí)際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數(shù)表示其中一種意義的量,那么另一種意義的量就用負(fù)數(shù)來(lái)表示.這就是說(shuō):數(shù)的范圍擴(kuò)大了(數(shù)有正數(shù)和負(fù)數(shù)之分).那么,有沒有一種既不是正數(shù)又不是負(fù)數(shù)的數(shù)呢?

  問題1:有沒有一種既不是正數(shù)又不是負(fù)數(shù)的數(shù)呢?

  學(xué)生思考并討論

 。〝(shù)0既不是正數(shù)又不是負(fù)數(shù),是正數(shù)和負(fù)數(shù)的分

  界,是基準(zhǔn).這個(gè)道理學(xué)生并不容易理解,可視學(xué)生的討論情況作些啟發(fā)和引導(dǎo),下面的例子供參考)

  例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數(shù)來(lái)表示,零下溫度用負(fù)數(shù)來(lái)表示。那么某一天某地的最高溫度是零上7℃,最低溫度是零下5℃時(shí),就應(yīng)該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數(shù)和負(fù)數(shù) .

  那么當(dāng)溫度是零度時(shí),我們應(yīng)該怎樣表示呢?(表示為0℃),它是正數(shù)還是負(fù)數(shù)呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數(shù)也不是負(fù)數(shù)

  問題2:引入負(fù)數(shù)后,數(shù)按照“兩種相反意義的量”來(lái)分,可以分成幾類?“數(shù)0耽不是正數(shù),也不是負(fù)數(shù)”也應(yīng)看作是負(fù)數(shù)定義的一部分.在引入

  負(fù)數(shù)后,0除了表示一個(gè)也沒有以外,還是正數(shù)和負(fù)數(shù)的分界.了解。的這一層意義,也有助于對(duì)正負(fù)數(shù)的理解;且對(duì)數(shù)的順利擴(kuò)張和有理毅概念的建立都有幫助。

  所舉的例子,要考慮學(xué)生的可接受性.“數(shù)0既不是正數(shù),也不是負(fù)數(shù)”應(yīng)從相反意義的1這個(gè)角度來(lái)說(shuō)明.這個(gè)問題只要初步認(rèn)識(shí)即可,不必深究.

  分析問題

  解決問題問題3:教科書第6頁(yè)例題

  說(shuō)明:這是一個(gè)用正負(fù)數(shù)描述向指定方向變化情況的例子, 通常向指定方向變化用正數(shù)表示;向指定方向的相反方向變化用負(fù)數(shù)表示。這種描述在實(shí)際生活中有廣泛的應(yīng)用,應(yīng)予以重視。教學(xué)中,應(yīng)讓學(xué)生體驗(yàn)“增長(zhǎng)”和“減少”是兩種相反意義的量,要求寫出“體重的增長(zhǎng)值”和“進(jìn)出口額的增長(zhǎng)率”,就暗示著用正數(shù)來(lái)表示增長(zhǎng)的量。

  歸納:在同一個(gè)問題中,分別用正數(shù)和負(fù)數(shù)表示的.量具有相反的意義(教科書第6頁(yè)).

  類似的例子很多,如:

  水位上升-3m,實(shí)際表示什么意思呢?

  收人增加-10%,實(shí)際表示什么意思呢?

  可視教學(xué)中的實(shí)際情況進(jìn)行補(bǔ)充.

  這種用正負(fù)數(shù)描述向指定方向變化情況的例子,在實(shí)際生活中有廣泛的應(yīng)用,按題意找準(zhǔn)哪種意義的量應(yīng)該用正數(shù)表示是解題的關(guān)。@種描述具有相反數(shù)的影子,例如第(1)題中小明的體重可說(shuō)成是減少-2kg,但現(xiàn)在不必向?qū)W生提出.

  鞏固練習(xí)教科書第6頁(yè)練習(xí)

  閱讀思考

  教科書第8頁(yè)閱讀與思考是正負(fù)數(shù)應(yīng)用的很好例子,要花時(shí)間讓學(xué)生討論交流

  小結(jié)與作業(yè)

  課堂小結(jié)以問題的形式,要求學(xué)生思考交流:

  1,引人負(fù)數(shù)后,你是怎樣認(rèn)識(shí)數(shù)0的,數(shù)0的意義有哪些變化?

  2,怎樣用正負(fù)數(shù)表示具有相反意義的量?

 。ㄓ谜龜(shù)表示其中一種意義的量,另一種量用負(fù)數(shù)表示;特別地,在用正負(fù)數(shù)表示向指定方向變化的量時(shí),通常把向指定方向變化的量規(guī)定為正數(shù),而把向指定方向的相反方向變化的量規(guī)定為負(fù)數(shù).)

  本課作業(yè)

  1,必做題:教科書第7頁(yè)習(xí)題1.1第3,6,7,8題

  2,選做題:教師自行安排

  本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  1,本課主要目的是加深對(duì)正負(fù)數(shù)概念的理解和用正負(fù)數(shù)表示實(shí)際生產(chǎn)生活中的向指定方向變化的量。

  2,“數(shù)0既不是正數(shù),也不是負(fù)數(shù),’(要從0不屬于兩種相反意義的量中的任何一種上來(lái)理解)也應(yīng)看作是負(fù)數(shù)定義的一部分.在引人負(fù)數(shù)后,除了表示一個(gè)也沒有以外,還是正數(shù)和負(fù)數(shù)的分界。了解0的這一層意義,也有助于對(duì)正負(fù)數(shù)的理解,且對(duì)數(shù)的順利擴(kuò)張和有理數(shù)概念的建立都有幫助.由于上節(jié)課的重點(diǎn)是建立兩種相反意義量的概念,考慮到學(xué)生的可接受性,所以作為知識(shí)的回顧和深化而放到本課.

  3,教科書的例子是用正負(fù)數(shù)表示(向指定方向變化的)量的實(shí)際應(yīng)用,用這種方式描述的例子很多,要盡量使學(xué)生理解.

  4,本設(shè)計(jì)體現(xiàn)了學(xué)生自主學(xué)習(xí)、交流討論的教學(xué)理念,教學(xué)中要讓學(xué)生體驗(yàn)數(shù)學(xué)知識(shí)在實(shí)際中的合理應(yīng)用,在體驗(yàn)中感悟和深化知識(shí).通過實(shí)際例子的學(xué)習(xí)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

初一數(shù)學(xué)教案4

  教學(xué)目標(biāo):了解總體、個(gè)體、樣本及樣本容的概念以及抽樣調(diào)查的意義,明確在什么情況下采用抽樣調(diào)查或全面調(diào)查,進(jìn)一步熟悉對(duì)數(shù)據(jù)的收集、整理、描述和分析。

  教學(xué)重點(diǎn):對(duì)概念的理解及對(duì)數(shù)據(jù)收集整理。

  教學(xué)難點(diǎn):總體概念的理解和隨機(jī)抽樣的合理性。

  教學(xué)過程:

  一、情景創(chuàng)設(shè),引入新課

  上節(jié)課我們對(duì)全班同學(xué)對(duì)自己所喜愛的學(xué)科進(jìn)行了調(diào)查,那么如果要對(duì)某校20xx名學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,怎樣進(jìn)行調(diào)查?

  二、新課

  1.抽樣調(diào)查的意義

  在上述問題中,由于學(xué)生人數(shù)比較多,全面調(diào)查花費(fèi)的時(shí)間長(zhǎng),消耗的人力、物力大,因此需要尋求既省時(shí)又省力又能解決問題的方法,這就是抽樣調(diào)查。

  抽樣調(diào)查:抽取一部分對(duì)象進(jìn)行調(diào)查的方法,叫抽樣調(diào)查。

  2.總體、個(gè)體、樣本、樣本容量的.意義

  總體:所要考察對(duì)象的全體。

  個(gè)體:總體的每一個(gè)考察對(duì)象叫個(gè)體。

  樣本:抽取的部分個(gè)體叫做一個(gè)樣本。

  樣本容量:樣本中個(gè)體的數(shù)目。

  3.抽樣的注意事項(xiàng)

 、俪闃诱{(diào)查要具有廣泛性和代表性,即樣本容量要恰當(dāng).樣本容量過少,那么不能很好地反映總體的情況,比如要調(diào)查20xx名學(xué)生對(duì)電視節(jié)目的喜愛情況,若抽取的樣本容量為幾名學(xué)生就不能反映20xx名學(xué)生的喜愛情況;如果抽取的學(xué)生人數(shù)過多,必然花費(fèi)大量的時(shí)間、精力,達(dá)不到省時(shí)省力的目的.再如要調(diào)查60歲以上的老人的生病情況,在醫(yī)院去抽取一些60歲以上的住院病人,它又不具有代表性,則應(yīng)從60歲以上的老人冊(cè)中任意抽取部分老人的生病情況來(lái)反映總體的60歲老人的生病情況,才能達(dá)到目的.

 、诔槿〉臉颖疽须S機(jī)性.為了使樣本能較好地反映總體的情況,除了有合適的樣本容量外,抽取時(shí)還要盡量使每一個(gè)個(gè)體都有相等的機(jī)會(huì)被抽到,所謂隨機(jī)就是機(jī)會(huì)相等.例如在20xx名學(xué)生的注冊(cè)學(xué)號(hào)中,隨意抽取100個(gè)學(xué)號(hào),調(diào)查這些學(xué)號(hào)對(duì)應(yīng)的100名學(xué)生.當(dāng)然還可以在上學(xué)或放學(xué)時(shí),在學(xué)校門口隨機(jī)進(jìn)行調(diào)查;或則每隔10個(gè)人調(diào)查一個(gè),直到調(diào)查滿確定的樣本容量.

  總體說(shuō)來(lái)抽樣調(diào)查最大的優(yōu)點(diǎn)就是在抽樣過程中避免了人為的干擾和偏差,因此隨機(jī)抽樣是最科學(xué)、應(yīng)用最廣泛的抽樣方法,一般情況下,樣本容量越大,估計(jì)精確度就越高.

  下面是某同學(xué)抽取樣本數(shù)量為100的調(diào)查節(jié)目統(tǒng)計(jì)表:

  表中的數(shù)據(jù)信息也可以用條形統(tǒng)計(jì)圖或扇形統(tǒng)計(jì)圖來(lái)描述。

初一數(shù)學(xué)教案5

  教學(xué)目標(biāo)

  1,整理前兩個(gè)學(xué)段學(xué)過的整數(shù)、分?jǐn)?shù)(包括小數(shù))的知識(shí),掌握正數(shù)和負(fù)數(shù)的概念;

  2,能區(qū)分兩種不同意義的量,會(huì)用符號(hào)表示正數(shù)和負(fù)數(shù);

  3,體驗(yàn)數(shù)學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)難點(diǎn):正確區(qū)分兩種不同意義的量。

  知識(shí)重點(diǎn):兩種相反意義的量

  教學(xué)過程:(師生活動(dòng))設(shè)計(jì)理念

  設(shè)置情境

  引入課題上課開始時(shí),教師應(yīng)通過具體的例子,簡(jiǎn)要說(shuō)明在前兩個(gè)學(xué)段我們已經(jīng)學(xué)過的數(shù),并由此請(qǐng)學(xué)生思考:生

  活中僅有這些“以前學(xué)過的數(shù)”夠用了嗎?下面的例子僅供參考.

  師:今天我們已經(jīng)是七年級(jí)的學(xué)生了,我是你們的數(shù)學(xué)老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級(jí)是七(13)班,有60個(gè)同學(xué),其中男同學(xué)有22個(gè),占全班總?cè)藬?shù)的37%…

  問題1:老師剛才的介紹中出現(xiàn)了幾個(gè)數(shù)?分別是什么?你能將這些數(shù)按以前學(xué)過的數(shù)的分類方法進(jìn)行分類嗎?

  學(xué)生活動(dòng):思考,交流

  師:以前學(xué)過的數(shù),實(shí)際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù)).

  問題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?

  請(qǐng)同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負(fù)數(shù)的必要性)并思考討論,然后進(jìn)行交流。

 。ㄒ部梢猿鍪練庀箢A(yù)報(bào)中的`氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁(yè)面等)

  學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時(shí)候需要一種前面帶有“-”的新數(shù)。先回顧小學(xué)里學(xué)過的數(shù)的類型,歸納出我們已經(jīng)學(xué)了整數(shù)和分?jǐn)?shù),然后,舉一些實(shí)際生活有相反意義的量,說(shuō)明為了表示相反意義的量,我們需要引入負(fù)數(shù),這樣做強(qiáng)調(diào)了數(shù)學(xué)的嚴(yán)密性,但對(duì)于學(xué)生來(lái)說(shuō),更多

  地感到了數(shù)學(xué)的枯燥乏味為了既復(fù)習(xí)小學(xué)里學(xué)過的數(shù),又能激發(fā)學(xué)生的學(xué)習(xí)興

  趣,所以創(chuàng)設(shè)如下的問題情境,以盡量貼近學(xué)生的實(shí)際.

  這個(gè)問題能激發(fā)學(xué)生探究的欲望,學(xué)生自己看書學(xué)習(xí)是培養(yǎng)學(xué)生自主學(xué)習(xí)的重要途徑,都應(yīng)予以重視。

  以上的情境和實(shí)例使學(xué)生體會(huì)生活中處處有數(shù)學(xué),通過實(shí)例,使學(xué)生獲取大量的感性材料,為正確建立相反意義的量奠定基礎(chǔ)。

  分析問題

  探究新知問題3:前面帶有“一”號(hào)的新數(shù)我們應(yīng)怎樣命名它呢?為什么要引人負(fù)數(shù)呢?通常在日常生活中我們用正數(shù)和負(fù)數(shù)分別表示怎樣的量呢?

  這些問題都必須要求學(xué)生理解.

  教師可以用多媒體出示這些問題,讓學(xué)生帶著這些問題看書自學(xué),然后師生交流.

  這階段主要是讓學(xué)生學(xué)會(huì)正數(shù)和負(fù)數(shù)的表示.

  強(qiáng)調(diào):用正,負(fù)數(shù)表示實(shí)際問題中具有相反意義的量,而相反意義的量包含兩個(gè)要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量.這些問題是這節(jié)課的主要知識(shí),教師要清楚地向?qū)W生說(shuō)明,并且要注意語(yǔ)言的準(zhǔn)確與規(guī)范,要舍得花時(shí)間讓學(xué)充分發(fā)表想法。

  舉一反三思維拓展經(jīng)過上面的討論交流,學(xué)生對(duì)為什么要引人負(fù)數(shù),對(duì)怎樣用正數(shù)和負(fù)數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學(xué)生舉出實(shí)際生活中類似的例子,以加深對(duì)正數(shù)和負(fù)數(shù)概念的理解,并開拓思維.

  問題4:請(qǐng)同學(xué)們舉出用正數(shù)和負(fù)數(shù)表示的例子.

  問題5:你是怎樣理解“正整數(shù)”“負(fù)整數(shù),,’’正分?jǐn)?shù)”和“負(fù)分?jǐn)?shù)”的呢?請(qǐng)舉例說(shuō)明.

  能否舉出例子是學(xué)生對(duì)知識(shí)掌握程度的體現(xiàn),也能進(jìn)一步幫助學(xué)生理解引負(fù)數(shù)的必要性

  課堂練習(xí)教科書第5頁(yè)練習(xí)

  小結(jié)與作業(yè)

  課堂小結(jié)圍繞下面兩點(diǎn),以師生共同交流的方式進(jìn)行:

  1, 0由于實(shí)際問題中存在著相反意義的量,所以要引人負(fù)數(shù),這樣數(shù)的范圍就擴(kuò)大了;

  2,正數(shù)就是以前學(xué)過的0以外的數(shù)(或在其前面加“+”),負(fù)數(shù)就是在以前學(xué)過的0以外的數(shù)前面加“-”。

  本課作業(yè)教科書第7頁(yè)習(xí)題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。

  作業(yè)可設(shè)必做題和選 做題,體現(xiàn)要求的層次性,以滿足不同學(xué)生的需要

  本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  密切聯(lián)系生活實(shí)際,創(chuàng)設(shè)學(xué)習(xí)情境.本課是有理數(shù)的第一節(jié)課時(shí).引人負(fù)數(shù)是數(shù)的范圍的一次重要擴(kuò)充,學(xué)生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實(shí)是一次知識(shí)的順應(yīng)過程),而負(fù)數(shù)相對(duì)于以前的數(shù),對(duì)學(xué)生來(lái)說(shuō)顯得更抽象,因此,這個(gè)概念并不是一下就能建立的.為了接受這個(gè)新的數(shù),就必須對(duì)原有的數(shù)的結(jié)構(gòu)進(jìn)行整理,引人幣的舉例就是這個(gè)目的.

  負(fù)數(shù)的產(chǎn)生主要是因?yàn)樵械臄?shù)不夠用了(不能正確簡(jiǎn)潔地表示數(shù)量),書本的例子或圖片中出現(xiàn)的負(fù)數(shù)就是讓學(xué)生去感受和體驗(yàn)這一點(diǎn).使學(xué)生接受生活生產(chǎn)實(shí)際中確實(shí)存在著兩種相反意義的量是本課的教學(xué)難點(diǎn),所以在教學(xué)中可以多舉幾個(gè)這方面的例子,并且所舉的例子又應(yīng)該符合學(xué)生的年齡和思維特點(diǎn)。當(dāng)學(xué)生接受了這個(gè)事實(shí)后,引入負(fù)數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.

  這個(gè)教學(xué)設(shè)計(jì)突出了數(shù)學(xué)與實(shí)際生活的緊密聯(lián)系,使學(xué)生體會(huì)到數(shù)學(xué)的應(yīng)用價(jià)值,

  體現(xiàn)了學(xué)生自主學(xué)習(xí)、合作交流的教學(xué)理念,書本中的圖片和例子都是生活生產(chǎn)中常見的事實(shí),學(xué)生容易接受,所以應(yīng)該讓學(xué)生自己看書、學(xué)習(xí),并且鼓勵(lì)學(xué)生討論交流,教師作適當(dāng)引導(dǎo)就可以了。

初一數(shù)學(xué)教案6

  一、 學(xué)情分析:

  在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗(yàn),多數(shù)學(xué)生能在教師指導(dǎo)下探索問題。由于學(xué)生已了解利用數(shù)軸表示加法運(yùn)算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運(yùn)算過程。

  二、 課前準(zhǔn)備

  把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個(gè)小組,以便組內(nèi)合作學(xué)習(xí)、組間競(jìng)爭(zhēng)學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。

  三、 教學(xué)目標(biāo)

  1、 知識(shí)與技能目標(biāo)

  掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。

  2、 能力與過程目標(biāo)

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。

  3、 情感與態(tài)度目標(biāo)

  通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  四、 教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。

  難點(diǎn):有理數(shù)乘法法則的探索過程,符號(hào)法則及對(duì)法則的理解。

  五、 教學(xué)過程

  1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫(kù)水深多少米?

  學(xué)生:26米。

  教師:能寫出算式嗎?

  學(xué)生:……

  教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問題(教師板書課題)

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學(xué)生以組為單位探索。

  以原點(diǎn)為起點(diǎn),規(guī)定向東的.方向?yàn)檎较,向西的方向(yàn)樨?fù)方向。

  a. 2 ×3

  2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

  2 ×3=

  b. -2 ×3

  -2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

  -2 ×3=

  c. 2 ×(-3)

  2看作向東運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

  2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向西運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。

  結(jié)果:向 運(yùn)動(dòng) 米

 。-2) ×(-3)=

  e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。

 。2)學(xué)生歸納法則

  a.符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?

  (+)×(+)= 同號(hào)得

 。-)×(+)= 異號(hào)得

  (+)×(-)= 異號(hào)得

 。-)×(-)= 同號(hào)得

  b.積的絕對(duì)值等于 。

  c.任何數(shù)與零相乘,積仍為 。

 。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

  3、 運(yùn)用法則計(jì)算,鞏固法則。

 。1)教師按課本P75 例1板書,要求學(xué)生述說(shuō)每一步理由。

  (2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為 。

  (3)學(xué)生做 P76 練習(xí)1(1)(3),教師評(píng)析。

 。4)教師引導(dǎo)學(xué)生做P75 例2,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。多個(gè)因數(shù)相乘,積的符號(hào)由 決定,當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ; 當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ;只要有一個(gè)因數(shù)為零,積就為 。

  4、 討論對(duì)比,使學(xué)生知識(shí)系統(tǒng)化。


有理數(shù)乘法有理數(shù)加法
同號(hào)得正取相同的符號(hào)
把絕對(duì)值相乘
(-2)×(-3)=6
把絕對(duì)值相加
(-2)+(-3)=-5
異號(hào)得負(fù)取絕對(duì)值大的加數(shù)的符號(hào)
把絕對(duì)值相乘
(-2)×3= -6
(-2)+3=1
用較大的絕對(duì)值減小的絕對(duì)值
任何數(shù)與零得零得任何數(shù)

  5、 分層作業(yè),鞏固提高。

初一數(shù)學(xué)教案7

  初一上冊(cè)數(shù)學(xué)教案,歡迎各位老師和學(xué)生參考!

  學(xué)習(xí)目標(biāo):1、理解有理數(shù)的絕對(duì)值和相反數(shù)的意義。

  2、會(huì)求已知數(shù)的相反數(shù)和絕對(duì)值。

  3、會(huì)用絕對(duì)值比較兩個(gè)負(fù)數(shù)的大小。

  4、經(jīng)歷將實(shí)際問題數(shù)學(xué)化的過程,感受數(shù)學(xué)與生活的聯(lián)系。

  學(xué)習(xí)重點(diǎn):1.會(huì)用絕對(duì)值比較兩個(gè)負(fù)數(shù)的大小。

  2.會(huì)求已知數(shù)的相反數(shù)和絕對(duì)值。

  學(xué)習(xí)難點(diǎn):理解有理數(shù)的絕對(duì)值和相反數(shù)的意義。

  學(xué)習(xí)過程:

  一、創(chuàng)設(shè)情境

  根據(jù)絕對(duì)值與相反數(shù)的意義填空:

  1、

  2、

  -5的相反數(shù)是______,-10.5的相反數(shù)是______, 的相反數(shù)是______;

  3、|0|=______,0的相反數(shù)是______。

  二、探索感悟

  1、議一議

  (1)任意說(shuō)出一個(gè)數(shù),說(shuō)出它的絕對(duì)值、它的相反數(shù)。

  (2)一個(gè)數(shù)的絕對(duì)值與這個(gè)數(shù)本身或它的.相反數(shù)有什么關(guān)系?

  2、想一想

  (1)2與3哪個(gè)大?這兩個(gè)數(shù)的絕對(duì)值哪個(gè)大?

  (2)-1與-4哪個(gè)大?這兩個(gè)數(shù)的絕對(duì)值哪個(gè)大?

  (3)任意寫出兩個(gè)負(fù)數(shù),并說(shuō)出這兩個(gè)負(fù)數(shù)哪個(gè)大?他們的絕對(duì)值哪個(gè)大?

  (4)兩個(gè)有理數(shù)的大小與這兩個(gè)數(shù)的絕對(duì)值的大小有什么關(guān)系?

  三.例題精講

  例1. 求下列各數(shù)的絕對(duì)值:

  +9,-16,-0.2,0.

  求一個(gè)數(shù)的絕對(duì)值,首先要分清這個(gè)數(shù)是正數(shù)、負(fù)數(shù)還是0,然后才能正確地寫出它的絕對(duì)值。

  議一議:(1)兩個(gè)數(shù)比較大小,絕對(duì)值大的那個(gè)數(shù)一定大嗎?

  (2)數(shù)軸上的點(diǎn)的大小是如何排列的?

  例2比較-10.12與-5.2的大小。

  例3.求6、-6、14 、-14 的絕對(duì)值。

  小節(jié)與思考:

  這節(jié)課你有何收獲?

  四.練習(xí)

  1. 填空:

 、 的符號(hào)是 ,絕對(duì)值是 ;

 、10.5的符號(hào)是 ,絕對(duì)值是

 、欠(hào)是+號(hào),絕對(duì)值是 的數(shù)是

  ⑷符號(hào)是-號(hào),絕對(duì)值是9的數(shù)是 ;

 、煞(hào)是-號(hào),絕對(duì)值是0.37的數(shù)是 .

  2. 正式足球比賽時(shí)所用足球的質(zhì)量有嚴(yán)格的規(guī)定,下表是6個(gè)足球的質(zhì)量檢測(cè)結(jié)果(用正數(shù)記超過規(guī)定質(zhì)量的克數(shù),用負(fù)數(shù)記不足規(guī)定質(zhì)量的克數(shù)).

  請(qǐng)指出哪個(gè)足球質(zhì)量最好,為什么?

  第1個(gè)第2個(gè)第3個(gè)第4個(gè)第5個(gè)第6個(gè)

  -25-10+20+30+15-40

  3.比較下面有理數(shù)的大小

  (1)-0.7與-1.7 (2) (3) (4)-5與0

  五、布置作業(yè):

  P25 習(xí)題2.3 5

  家庭作業(yè):《評(píng)價(jià)手冊(cè)》 《補(bǔ)充習(xí)題》

  六、學(xué)后記/教后記

  這篇初一上冊(cè)數(shù)學(xué)教案就為大家分享到這里了。希望對(duì)大家有所幫助!

初一數(shù)學(xué)教案8

  7.3.1多邊形

  [教學(xué)目標(biāo)]

  1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念.

  2.區(qū)別凸多邊形與凹多邊形.

  [教學(xué)重點(diǎn)、難點(diǎn)]

  1.重點(diǎn):

 。1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.

 。2)區(qū)別凸多邊形和凹多邊形.

  2.難點(diǎn):

  多邊形定義的準(zhǔn)確理解.

  [教學(xué)過程]

  一、新課講授

  投影:圖形見課本P84圖7.3一l.

  你能從投影里找出幾個(gè)由一些線段圍成的圖形嗎?

  上面三圖中讓同學(xué)邊看、邊議.

  在同學(xué)議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?

 。1)它們?cè)谕黄矫鎯?nèi).

  (2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.

  這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?

  提問:三角形的定義.

  你能仿照三角形的定義給多邊形定義嗎?

  1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形.

  如果一個(gè)多邊形由n條線段組成,那么這個(gè)多邊形叫做n邊形.(一個(gè)多邊形由幾條線段組成,就叫做幾邊形.)

  2.多邊形的邊、頂點(diǎn)、內(nèi)角和外角.

  多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角.

  3.多邊形的對(duì)角線

  連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.

  讓學(xué)生畫出五邊形的所有對(duì)角線.

  4.凸多邊形與凹多邊形

  看投影:圖形見課本P85.7.3—6.

  在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的`多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們?cè)诹?xí)題、練習(xí)中提到的多邊形都是凸多邊形.

  5.正多邊形

  由正方形的特征出發(fā),得出正多邊形的概念.

  各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.

  二、課堂練習(xí)

  課本P86練習(xí)1.2.

  三、課堂小結(jié)

  引導(dǎo)學(xué)生總結(jié)本節(jié)課的相關(guān)概念.

  四、課后作業(yè)

  課本P90第1題.

  備用題:

  一、判斷題.

  1.由四條線段首尾順次相接組成的圖形叫四邊形.()

  2.由不在一直線上四條線段首尾次順次相接組成的圖形叫四邊形.()

  3.由不在一直線上四條線段首尾順次接組成的圖形,且其中任何一條線段所在的直線、使整個(gè)圖形都在這直線的同一側(cè),叫做四邊形.()

  4.在同一平面內(nèi),四條線段首尾順次連接組成的圖形叫四邊形.()

  二、填空題.

  1.連接多邊形的線段,叫做多邊形的對(duì)角線.

  2.多邊形的任何整個(gè)多邊形都在這條直線的,這樣的多邊形叫凸多邊形.

  3.各個(gè)角,各條邊的多邊形,叫正多邊形.

  三、解答題.

  1.畫出圖(1)中的六邊形ABCDEF的所有對(duì)角線.

  2.如圖(2),O為四邊形ABCD內(nèi)一點(diǎn),連接OA、OB、OC、OD可以得幾個(gè)三角形?它與邊數(shù)有何關(guān)系?

  3.如圖(3),O在五邊形ABCDE的AB上,連接OC、OD、OE,可以得到幾個(gè)三角形?它與邊數(shù)有何關(guān)系?

  4.如圖(4),過A作六邊形ABCDEF的對(duì)角線,可以得到幾個(gè)三角形?它與邊數(shù)有何關(guān)系?

初一數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  使學(xué)生進(jìn)一步理解立方根的概念,并能熟練地進(jìn)行求一個(gè)數(shù)的立方根的運(yùn)算;

  能用有理數(shù)估計(jì)一個(gè)無(wú)理數(shù)的大致范圍,使學(xué)生形成估算的意識(shí),培養(yǎng)學(xué)生的估算能力;

  經(jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的過程,發(fā)展合情推理能力。

  教學(xué)難點(diǎn)

  用有理數(shù)估計(jì)一個(gè)無(wú)理的大致范圍。

  知識(shí)重點(diǎn)

  用有理數(shù)估計(jì)一個(gè)無(wú)理的大致范圍。

  對(duì)于計(jì)算器的使用,在教學(xué)中采用學(xué)生自己閱讀計(jì)算器的說(shuō)明書、自己操作練習(xí)來(lái)掌握用計(jì)算器進(jìn)行開立方運(yùn)算的方法,并讓學(xué)生互相交流,讓學(xué)生親身體會(huì)到利用計(jì)算器不僅能給運(yùn)算帶來(lái)很大的方便,也給探求數(shù)量間的關(guān)系與變化帶來(lái)方便。在教學(xué)過程中,教師要關(guān)注學(xué)生能否通過閱讀,掌握用計(jì)算器進(jìn)行開立方運(yùn)算的.簡(jiǎn)單操作;能否利用計(jì)算器探究數(shù)量間的關(guān)系,從而尋找出數(shù)量的變化關(guān)系。

  使用計(jì)算器進(jìn)行復(fù)雜運(yùn)算,可以使學(xué)生學(xué)習(xí)的重點(diǎn)更好地集中到理解數(shù)學(xué)的本質(zhì)上來(lái),而估算也是一種具有實(shí)際應(yīng)用價(jià)值的運(yùn)算能力,在本節(jié)課的課堂教學(xué)中綜合運(yùn)用筆算、計(jì)算器和估算等培養(yǎng)學(xué)生的運(yùn)算能力。

初一數(shù)學(xué)教案10

  學(xué)習(xí)目標(biāo):

  理解多項(xiàng)式乘法法則,會(huì)利用法則進(jìn)行簡(jiǎn)單的多項(xiàng)式乘法運(yùn)算。

  學(xué)習(xí)重點(diǎn):

  多項(xiàng)式乘法法則及其應(yīng)用。

  學(xué)習(xí)難點(diǎn):

  理解運(yùn)算法則及其探索過程。

  一、課前訓(xùn)練:

  (1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

  (3)3a2b2 ab3 = , (4) = ;

  (5)- = ,(6) = 。

  二、探索練習(xí):

  (1)如圖1大長(zhǎng)方形,其面積用四個(gè)小長(zhǎng)方形面積

  表示為: ;

  (2)大長(zhǎng)方形的長(zhǎng)為 ,寬為 ,要

  計(jì)算其面積就是 ,其中包含的

  運(yùn)算為 。

  由上面的問題可發(fā)現(xiàn):( )( )=

  多項(xiàng)式乘以多項(xiàng)式法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的 以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積 。

  三.運(yùn)用法則規(guī)范解題。

  四.鞏固練習(xí):

  3.計(jì)算:① ,

  4.計(jì)算:

  五.提高拓展練習(xí):

  5.若 求m,n的'值.

  6.已知 的結(jié)果中不含 項(xiàng)和 項(xiàng),求m,n的值.

  7.計(jì)算(a+b+c)(c+d+e),你有什么發(fā)現(xiàn)?

  六.晚間訓(xùn)練:

  (7) 2a2(-a)4 + 2a45a2 (8)

  3、(1)觀察:4×6=24

  14×16=224

  24×26=624

  34×36=1224

  你發(fā)現(xiàn)其中的規(guī)律嗎?你能用代數(shù)式表示這一規(guī)律嗎?

  (2)利用(1)中的規(guī)律計(jì)算124×126。

  4、如圖,AB= ,P是線段AB上一點(diǎn),分別以AP,BP為邊作正方形。

  (1)設(shè)AP= ,求兩個(gè)正方形的面積之和S;

  (2)當(dāng)AP分別 時(shí),比較S的大小。

初一數(shù)學(xué)教案11

  教學(xué)目標(biāo)1,掌握相反數(shù)的概念,進(jìn)一步理解數(shù)軸上的點(diǎn)與數(shù)的對(duì)應(yīng)關(guān)系;

  2,通過歸納相反數(shù)在數(shù)軸上所表示的點(diǎn)的特征,培養(yǎng)歸納能力;

  3,體驗(yàn)數(shù)形結(jié)合的思想。

  教學(xué)難點(diǎn)歸納相反數(shù)在數(shù)軸上表示的點(diǎn)的特征

  知識(shí)重點(diǎn)相反數(shù)的概念

  教學(xué)過程(師生活動(dòng))設(shè)計(jì)理念

  設(shè)置情境

  引入課題問題1:請(qǐng)將下列4個(gè)數(shù)分成兩類,并說(shuō)出為什么要這樣分類

  4,-2,-5,+2

  允許學(xué)生有不同的分法,只要能說(shuō)出道理,都要難予鼓勵(lì),但教師要做適當(dāng)?shù)囊龑?dǎo),逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。

  (引導(dǎo)學(xué)生觀察與原點(diǎn)的距離)

  思考結(jié)論:教科書第13頁(yè)的思考

  再換2個(gè)類似的數(shù)試一試。

  歸納結(jié)論:教科書第13頁(yè)的歸納。以開放的形式創(chuàng)設(shè)情境,以學(xué)生進(jìn)行討論,并培養(yǎng)分類的能力

  培養(yǎng)學(xué)生的觀察與歸納能力,滲透數(shù)形思想

  深化主題提煉定義給出相反數(shù)的定義

  問題2:你怎樣理解相反數(shù)定義中的“只有符號(hào)不同”和“互為”一詞的含義?零的相反數(shù)是什么?為什么?

  學(xué)生思考討論交流,教師歸納總結(jié)。

  規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a

  思考:數(shù)軸上表示相反數(shù)的兩個(gè)點(diǎn)和原點(diǎn)有什么關(guān)系?

  練一練:教科書第14頁(yè)第一個(gè)練習(xí)體驗(yàn)對(duì)稱的圖形的特點(diǎn),為相反數(shù)在數(shù)軸上的特征做準(zhǔn)備。

  深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。

  強(qiáng)化互為相反數(shù)的數(shù)在數(shù)軸上表示的點(diǎn)的幾何意義

  給出規(guī)律

  解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡(jiǎn)它們嗎?

  學(xué)生交流。

  分別表示+5和-5的相反數(shù)是-5和+5

  練一練:教科書第14頁(yè)第二個(gè)練習(xí)利用相反數(shù)的概念得出求一個(gè)數(shù)的相反數(shù)的方法

  小結(jié)與作業(yè)

  課堂小結(jié)1,相反數(shù)的定義

  2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點(diǎn)的特征

  3,怎樣求一個(gè)數(shù)的相反數(shù)?怎樣表示一個(gè)數(shù)的相反數(shù)?

  本課作業(yè)1,必做題教科書第18頁(yè)習(xí)題1.2第3題

  2,選做題教師自行安排

  本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  1,相反數(shù)的概念使有理數(shù)的各個(gè)運(yùn)算法則容易表述,也揭示了兩個(gè)特殊數(shù)的特征.這兩個(gè)特殊數(shù)在數(shù)量上具有相同的絕對(duì)值,它們的和為零,在數(shù)軸上表示時(shí),離開原點(diǎn)的距離相等等性質(zhì)均有廣泛的應(yīng)用.所以本教學(xué)設(shè)計(jì)圍繞數(shù)量和幾何意義展開,滲透數(shù)形結(jié)合的思想.

  2,教學(xué)引人以開放式的問題人手,培養(yǎng)學(xué)生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來(lái)并觀察它們的特征,在復(fù)習(xí)數(shù)軸知識(shí)的同時(shí),滲透了數(shù)形結(jié)合的數(shù)學(xué)方法,數(shù)與形的相互轉(zhuǎn)化也能加深對(duì)相反數(shù)概念的`理解;問題2能幫助學(xué)生準(zhǔn)確把握相反數(shù)的概念;問題3實(shí)際上給出了求一個(gè)數(shù)的相反數(shù)的方法.

  3,本教學(xué)設(shè)計(jì)體現(xiàn)了新課標(biāo)的教學(xué)理念,學(xué)生在教師的引導(dǎo)下進(jìn)行自主學(xué)習(xí),自主探究,觀察歸納,重視學(xué)生的思維過程,并給學(xué)生留有發(fā)揮的余地.

  課題:1.2.4絕對(duì)值

  教學(xué)目標(biāo)1,掌握絕對(duì)值的概念,有理數(shù)大小比較法則.

  2,學(xué)會(huì)絕對(duì)值的計(jì)算,會(huì)比較兩個(gè)或多個(gè)有理數(shù)的大小.

  3.體驗(yàn)數(shù)學(xué)的概念、法則來(lái)自于實(shí)際生活,滲透數(shù)形結(jié)合和分類思想.

  教學(xué)難點(diǎn)兩個(gè)負(fù)數(shù)大小的比較

  知識(shí)重點(diǎn)絕對(duì)值的概念

  教學(xué)過程(師生活動(dòng))設(shè)計(jì)理念

  設(shè)置情境

  引入課題星期天黃老師從學(xué)校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學(xué)校、朱家尖、家在同一直線上),如果規(guī)定向東為正,①用有理數(shù)表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計(jì)算這天汽車共耗油多少升?

  學(xué)生思考后,教師作如下說(shuō)明:

  實(shí)際生活中有些問題只關(guān)注量的具體值,而與相反

  意義無(wú)關(guān),即正負(fù)性無(wú)關(guān),如汽車的耗油量我們只關(guān)心汽車行駛的距離和汽油的價(jià)格,而與行駛的方向無(wú)關(guān);

  觀察并思考:畫一條數(shù)軸,原點(diǎn)表示學(xué)校,在數(shù)軸上畫出表示朱家尖和黃老師家的點(diǎn),觀察圖形,說(shuō)出朱家尖黃老師家與學(xué)校的距離.

  學(xué)生回答后,教師說(shuō)明如下:

  數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離只與這個(gè)點(diǎn)離開原點(diǎn)的長(zhǎng)度有關(guān),而與它所表示的數(shù)的正負(fù)性無(wú)關(guān);

  一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記做|a|

  例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個(gè)例子中,第一問是相反意義的量,用正負(fù)

  數(shù)表示,后一問的解答則與符號(hào)沒有關(guān)系,說(shuō)明實(shí)際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關(guān)注它們所表示的意義.為引入絕對(duì)值概念做準(zhǔn)備.并使學(xué)生體

  驗(yàn)數(shù)學(xué)知識(shí)與生活實(shí)際的聯(lián)系.

初一數(shù)學(xué)教案12

  大家都聽說(shuō)過一句名言:“世界上不是缺少美,而是缺少發(fā)現(xiàn)美的眼睛”,大家知道這句話是誰(shuí)說(shuō)的嗎?不知道沒關(guān)系,大家記住下一句名言就好:“世界上不是缺少數(shù)學(xué),而是缺少發(fā)現(xiàn)數(shù)學(xué)的眼睛——李老師語(yǔ)錄”,那這個(gè)著名的李老師是誰(shuí)呢?遠(yuǎn)在天邊,近在眼前。不要太驚訝,想要簽名的下課來(lái)找我就行。

  好,那我們接下來(lái)就用發(fā)現(xiàn)數(shù)學(xué)的眼睛來(lái)看一看,生活中常見的幾何體都有哪些物體,分別是什么形狀?水杯,籃球,冰激凌,金字塔,黑板擦。分別對(duì)應(yīng)圓柱,球,圓錐,棱錐,棱柱。其中長(zhǎng)方體,正方體是特殊的棱柱。

  好了,幾何體我們都了解了,面對(duì)這些雜亂無(wú)章的幾何體是不是感覺很亂,接下來(lái)我們就給幾何體分分類:

  一、常見幾何體分類

  1、 按照柱、錐、球分類

  圓柱

  柱生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長(zhǎng)方體、正方體)、五棱柱。

  錐圓錐

  棱錐

  2、 按照有無(wú)頂點(diǎn)分類

  生活中的立體圖形

  3、 按照有無(wú)曲面分類

  二、棱柱(直)

  1、 基本概念

 。1) 棱:在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱。

 。2) 側(cè)棱:在棱柱中,相鄰兩個(gè)側(cè)面的'交線叫做側(cè)棱。

  2、 特征

 。1) 棱柱的所有側(cè)棱長(zhǎng)相等。

 。2) 棱柱的上下底面完全相同且都是多邊形。

 。3) 棱柱的側(cè)面都是長(zhǎng)方形。

 。4) n棱柱有兩個(gè)底面,n個(gè)側(cè)面,共(n+2)個(gè)面;3n條棱,n條側(cè)棱;2n個(gè)頂點(diǎn)。

  3、 分類

  按照底面多邊形的邊數(shù)分類,底面幾邊形就是幾棱柱。

  三、圖形的構(gòu)成元素

  點(diǎn):線與線橡膠的地方就是點(diǎn)。

  1 線:面與面相交的地方就是線。

  面:包圍著體的是面。

  2、聯(lián)系

  點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

  展開與折疊

  一、正方體的展開圖(11種)

  1-4-1型:(6種)

  2-3-1型(3種)

  2-2-2型(1種)

  3-3型(

  1種)

  二、正方體的折疊

  展開圖中不出現(xiàn)一字型、田字形、凹字形,2-4型,若有此形狀的展開圖則折不成正方體。

  三、總結(jié)規(guī)律:

  一線不過四,

  田凹應(yīng)棄之;

  相間、Z端是對(duì)面,

  間二、拐角鄰面知。

  四、常見幾何體的展開圖

  三、截一個(gè)幾何體

  一、正方體的截面

  用一個(gè)平面去截一個(gè)正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。

  可能出現(xiàn)的:銳角三角型、等邊、等腰三角形, 正方形、矩形、非矩形的平行四邊形、 非等腰梯形、 等腰梯形、五邊形、六邊形、正六邊形

  不可能出現(xiàn):鈍角三角形、直角三角形、直角梯形、正五邊形、七邊形或更多邊形

  二、常見幾何體截面

  四、從三個(gè)方向看物體的形狀

  一、三視圖

  物體的三視圖指主視圖、俯視圖、左視圖。

  主視圖:從正面看到的圖,叫做主視圖。

  左視圖:從左面看到的圖,叫做左視圖。

  俯視圖:從上面看到的圖,叫做俯視圖。

  二、聯(lián)系

  主俯長(zhǎng)對(duì)正,主左高平齊,俯左寬相等。

  三、畫法

  一看,二畫,三查(尺寸,虛實(shí))

初一數(shù)學(xué)教案13

  教學(xué)目標(biāo)

  1.使學(xué)生正確理解數(shù)軸的意義,掌握數(shù)軸的三要素;

  2.使學(xué)生學(xué)會(huì)由數(shù)軸上的已知點(diǎn)說(shuō)出它所表示的數(shù),能將有理數(shù)用數(shù)軸上的點(diǎn)表示出來(lái);

  3.使學(xué)生初步理解數(shù)形結(jié)合的思想方法.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點(diǎn)表示有理數(shù).

  難點(diǎn):正確理解有理數(shù)與數(shù)軸上點(diǎn)的對(duì)應(yīng)關(guān)系.

  課堂教學(xué)過程設(shè)計(jì)

  一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

  1.小學(xué)里曾用“射線”上的點(diǎn)來(lái)表示數(shù),你能在射線上表示出1和2嗎?

  2.用“射線”能不能表示有理數(shù)?為什么?

  3.你認(rèn)為把“射線”做怎樣的改動(dòng),才能用來(lái)表示有理數(shù)呢?

  待學(xué)生回答后,教師指出,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容——數(shù)軸.

  二、講授新課

  讓學(xué)生觀察掛圖——放大的溫度計(jì),同時(shí)教師給予語(yǔ)言指導(dǎo):利用溫度計(jì)可以測(cè)量溫度,在溫度計(jì)上有刻度,刻度上標(biāo)有讀數(shù),根據(jù)溫度計(jì)的液面的不同位置就可以讀出不同的數(shù),從而得到所測(cè)的溫度.在0上10個(gè)刻度,表示10℃;在0下5個(gè)刻度,表示-5℃.

  與溫度計(jì)類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零.具體方法如下(邊說(shuō)邊畫):

  1.畫一條水平的直線,在這條直線上任取一點(diǎn)作為原點(diǎn)(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點(diǎn)表示0(相當(dāng)于溫度計(jì)上的0℃);

  2.規(guī)定直線上從原點(diǎn)向右為正方向(箭頭所指的方向),那么從原點(diǎn)向左為負(fù)方向(相當(dāng)于溫度計(jì)上0℃以上為正,0℃以下為負(fù));

  3.選取適當(dāng)?shù)拈L(zhǎng)度作為單位長(zhǎng)度,在直線上,從原點(diǎn)向右,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為1,2,3,…從原點(diǎn)向左,每隔一個(gè)長(zhǎng)度單位取一點(diǎn),依次表示為-1,-2,-3,…

  提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個(gè)數(shù))

  在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸.

  進(jìn)而提問學(xué)生:在數(shù)軸上,已知一點(diǎn)P表示數(shù)-5,如果數(shù)軸上的原點(diǎn)不選在原來(lái)位置,而改選在另一位置,那么P對(duì)應(yīng)的數(shù)是否還是-5?如果單位長(zhǎng)度改變呢?如果直線的正方向改變呢?

  通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點(diǎn)、正方向和單位長(zhǎng)度,缺一不可.

  三、運(yùn)用舉例變式練習(xí)

  例1畫一個(gè)數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點(diǎn):

  例2指出數(shù)軸上A,B,C,D,E各點(diǎn)分別表示什么數(shù).

  課堂練習(xí)

  示出來(lái).

  2.說(shuō)出下面數(shù)軸上A,B,C,D,O,M各點(diǎn)表示什么數(shù)?

  最后引導(dǎo)學(xué)生得出結(jié)論:正有理數(shù)可用原點(diǎn)右邊的`點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,零用原點(diǎn)表示.

  四、小結(jié)

  指導(dǎo)學(xué)生閱讀教材后指出:數(shù)軸是非常重要的數(shù)學(xué)工具,它使數(shù)和直線上的點(diǎn)建立了對(duì)應(yīng)關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.

  本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點(diǎn)來(lái)表示,但是反過來(lái)不成立,即數(shù)軸上的點(diǎn)并不是都表示有理數(shù),至于數(shù)軸上的哪些點(diǎn)不能表示有理數(shù),這個(gè)問題以后再研究.

  五、作業(yè)

  1.在下面數(shù)軸上:

  (1)分別指出表示-2,3,-4,0,1各數(shù)的點(diǎn).

  (2)A,H,D,E,O各點(diǎn)分別表示什么數(shù)?

  2.在下面數(shù)軸上,A,B,C,D各點(diǎn)分別表示什么數(shù)?

  3.下列各小題先分別畫出數(shù)軸,然后在數(shù)軸上畫出表示大括號(hào)內(nèi)的一組數(shù)的點(diǎn):

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一數(shù)學(xué)教案14

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.

  2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.

  3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo).

  (二)能力訓(xùn)練要求

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.

  2.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.

  3.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí).

  (三)情感與價(jià)值觀要求

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.

  2.具有初步的創(chuàng)新精神和實(shí)踐能力.

  教學(xué)重點(diǎn)

  1.體會(huì)方程與函數(shù)之間的聯(lián)系.

  2.理解何時(shí)方程有兩個(gè)不等的實(shí)根,兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根.

  3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))交點(diǎn)的橫坐標(biāo).

  教學(xué)難點(diǎn)

  1.探索方程與函數(shù)之間的聯(lián)系的過程.

  2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系.

  教學(xué)方法

  討論探索法.

  教具準(zhǔn)備

  投影片二張

  第一張:(記作§2.8.1A)

  第二張:(記作§2.8.1B)

  教學(xué)過程

  Ⅰ.創(chuàng)設(shè)問題情境,引入新課

  [師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系.當(dāng)一次函數(shù)中的函數(shù)值y=0時(shí),一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解.

  現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題。

  通過學(xué)生的討論,使學(xué)生更清楚以下事實(shí):

  (1)分解因式與整式的乘法是一種互逆關(guān)系;

  (2)分解因式的結(jié)果要以積的形式表示;

  (3)每個(gè)因式必須是整式,且每個(gè)因式的'次數(shù)都必須低于原來(lái)的多項(xiàng)式的次數(shù);

  (4)必須分解到每個(gè)多項(xiàng)式不能再分解為止。

  活動(dòng)5:應(yīng)用新知

  例題學(xué)習(xí):

  P166例1、例2(略)

  在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

  讓學(xué)生進(jìn)一步理解提公因式法進(jìn)行因式分解。

  活動(dòng)6:課堂練習(xí)

  1.P167練習(xí);

  2.看誰(shuí)連得準(zhǔn)

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些變形是因式分解,為什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  學(xué)生自主完成練習(xí)。

  通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)因式分解意義的理解是否到位,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏。

  活動(dòng)7:課堂小結(jié)

  從今天的課程中,你學(xué)到了哪些知識(shí)?掌握了哪些方法?明白了哪些道理?

  學(xué)生發(fā)言。

  通過學(xué)生的回顧與反思,強(qiáng)化學(xué)生對(duì)因式分解意義的理解,進(jìn)一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。

  活動(dòng)8:課后作業(yè)

  課本P170習(xí)題的第1、4大題。

  學(xué)生自主完成

  通過作業(yè)的鞏固對(duì)因式分解,特別是提公因式法理解并學(xué)會(huì)應(yīng)用。

  板書設(shè)計(jì)(需要一直留在黑板上主板書)

  15.4.1提公因式法例題

  1.因式分解的定義

  2.提公因式法

初一數(shù)學(xué)教案15

  學(xué)習(xí)目標(biāo)

  1.理解平行線的意義兩條直線的兩種位置關(guān)系;

  2.理解并掌握平行公理及其推論的內(nèi)容;

  3.會(huì)根據(jù)幾何語(yǔ)句畫圖,會(huì)用直尺和三角板畫平行線;

  學(xué)習(xí)重點(diǎn)

  探索和掌握平行公理及其推論.

  學(xué)習(xí)難點(diǎn)

  對(duì)平行線本質(zhì)屬性的理解,用幾何語(yǔ)言描述圖形的性質(zhì)

  一、學(xué)習(xí)過程:預(yù)習(xí)提問

  兩條直線相交有幾個(gè)交點(diǎn)?

  平面內(nèi)兩條直線的位置關(guān)系除相交外,還有哪些呢?

 。ㄒ唬┊嬈叫芯

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請(qǐng)你根據(jù)此方法練習(xí)畫平行線:

  已知:直線a,點(diǎn)B,點(diǎn)C.

  (1)過點(diǎn)B畫直線a的平行線,能畫幾條?

  (2)過點(diǎn)C畫直線a的平行線,它與過點(diǎn)B的平行線平行嗎?

 。ǘ┢叫泄砑巴普

  1、思考:上圖中,①過點(diǎn)B畫直線a的平行線,能畫 條;

  ②過點(diǎn)C畫直線a的平行線,能畫 條;

 、勰惝嫷闹本有什么位置關(guān)系? 。

  ②探索:如圖,P是直線AB外一點(diǎn),CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測(cè):

 。ㄒ唬┻x擇題:

  1、下列推理正確的是 ( )

  A、因?yàn)閍//d, b//c,所以c//d B、因?yàn)閍//c, b//d,所以c//d

  C、因?yàn)閍//b, a//c,所以b//c D、因?yàn)閍//b, d//c,所以a//c

  2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點(diǎn)的個(gè)數(shù)為( )

  A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)

 。ǘ┨羁疹}:

  1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點(diǎn),與已知直線L平行的'直線有且只有 條。

  2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對(duì)應(yīng)的位置關(guān)系:

 。1)L1與L2 沒有公共點(diǎn),則 L1與L2 ;

 。2)L1與L2有且只有一個(gè)公共點(diǎn),則L1與L2 ;

  (3)L1與L2有兩個(gè)公共點(diǎn),則L1與L2 。

  3、在同一平面內(nèi),一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角的大小關(guān)系是 。

  4、平面內(nèi)有a 、b、c三條直線,則它們的交點(diǎn)個(gè)數(shù)可能是 個(gè)。

  三、CD⊥AB于D,E是BC上一點(diǎn),EF⊥AB于F,∠1=∠2.試說(shuō)明∠BDG+∠B=180°.

【初一數(shù)學(xué)教案】相關(guān)文章:

初一數(shù)學(xué)教案11-04

初一數(shù)學(xué)教案11-14

【推薦】初一數(shù)學(xué)教案12-03

初一數(shù)學(xué)教案【熱門】12-01

【精】初一數(shù)學(xué)教案12-02

初一上冊(cè)的數(shù)學(xué)教案11-13

初一數(shù)學(xué)教案【精】12-14

【熱】初一數(shù)學(xué)教案12-12

初一數(shù)學(xué)教案[實(shí)用]01-22

初一數(shù)學(xué)教案上冊(cè)11-19