熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

初二數(shù)學(xué)教案

時間:2022-11-05 18:35:28 八年級數(shù)學(xué)教案 我要投稿

初二數(shù)學(xué)教案(集合15篇)

  作為一位兢兢業(yè)業(yè)的人民教師,可能需要進行教案編寫工作,教案有利于教學(xué)水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!以下是小編收集整理的初二數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

初二數(shù)學(xué)教案(集合15篇)

初二數(shù)學(xué)教案1

  一、教學(xué)目標

  1.了解分式、有理式的概念。

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。

  二、重點、難點

  1.重點:理解分式有意義的條件,分式的值為零的條件。

  2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件。

  3。認知難點與突破方法

  難點是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點的方法是利用分式與分數(shù)有許多類似之處,從分數(shù)入手,研究出分式的有關(guān)概念,同時還要講清分式與分數(shù)的聯(lián)系與區(qū)別。

  三、例、習(xí)題的意圖分析

  本章從實際問題引出分式方程=,給出分式的描述性的`定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節(jié)課里不是重點,也不要求解這個方程。

  1.本節(jié)進一步提出P4[思考]讓學(xué)生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點?它們與分數(shù)有什么相同點和不同點?

  可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是(即A÷B)的形式。分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。

  P5[歸納]順理成章地給出了分式的定義。分式與分數(shù)有許多類似之處,研究分式往往要類比分數(shù)的有關(guān)概念,所以要引導(dǎo)學(xué)生了解分式與分數(shù)的聯(lián)系與區(qū)別。

  希望老師注意:分式比分數(shù)更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數(shù)。

  2.P5[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當B≠0時,分式才有意義。

  3.P5例1填空是應(yīng)用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學(xué)生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ)。

  4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學(xué)生更全面地體驗分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。

  四、課堂引入

  1.讓學(xué)生填寫P4[思考],學(xué)生自己依次填出:

  2.學(xué)生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

  請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程。

  設(shè)江水的流速為x千米/時。

初二數(shù)學(xué)教案2

  初二上冊數(shù)學(xué)知識點總結(jié):等腰三角形

  一、等腰三角形的性質(zhì):

  1、等腰三角形兩腰相等.

  2、等腰三角形兩底角相等(等邊對等角)。

  3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

  4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

  5、等邊三角形的性質(zhì):

 、俚冗吶切稳叾枷嗟.

 、诘冗吶切稳齻內(nèi)角都相等,都等于60°

  ③等邊三角形每條邊上都存在三線合一.

 、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).

  6.基本判定:

 、诺妊切蔚腵判定:

 、儆袃蓷l邊相等的三角形是等腰三角形.

 、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).

  ⑵等邊三角形的判定:

 、偃龡l邊都相等的三角形是等邊三角形.

  ②三個角都相等的三角形是等邊三角形.

 、塾幸粋角是60°的等腰三角形是等邊三角形.

初二數(shù)學(xué)教案3

  教學(xué)設(shè)計思想:

  本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。

  教學(xué)目標

  知識與技能:

  1.總結(jié)出平行四邊形的三種判定方法;

  2.應(yīng)用平行四邊形的判定解決實際問題;

  3.應(yīng)用平行四邊形的'性質(zhì)與判定得出三角形中位線定理;

  4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。

  過程與方法:

  1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。

  2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。

  情感態(tài)度價值觀:

  1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;

  2.通過探索式證明法開拓思路,發(fā)展思維能力;

  3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。

  教學(xué)重難點

  重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。

  難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。

  教學(xué)方法

  小組討論、合作探究

  課時安排

  3課時

  教學(xué)媒體

  課件、

  教學(xué)過程

  第一課時

  (一)引入

  師:上節(jié)課我們已經(jīng)知道了平行四邊形的邊、角及對角線所具有的性質(zhì),請同學(xué)們回憶一下都有哪些?

初二數(shù)學(xué)教案4

  教學(xué)目標

  1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計量的直方圖;

  2、讓學(xué)生進一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

  教學(xué)重點

  掌握頻率分布直方圖概念及其應(yīng)用;

  教學(xué)難點

  繪制連續(xù)統(tǒng)計量的直方圖

  教學(xué)過程

 、瘢岢鰡栴},創(chuàng)設(shè)情境,引入新課:

  問題:我們班準備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個想法可以實現(xiàn)嗎?應(yīng)該選擇身高在哪個范圍的學(xué)生參加?

  63名學(xué)生的'身高數(shù)據(jù)如下:

  158158160168159159151158159

  168158154158154169158158158

  159167170153160160159159160

  149163163162172161153156162

  162163157162162161157157164

  155156165166156154166164165

  156157153165159157155164156

  解:(確定組距)最大值為172,最小值為149,他們的差為23

 。ㄉ砀選的變化范圍在23厘米,)

 。ǚ纸M劃記)頻數(shù)分布表:

  身高(x)劃記頻數(shù)(學(xué)生人數(shù))

  149≤x<1522

  152≤x<1556

  155≤x<15812

  158≤x<16119

  161≤<16410

  164≤x<1678

  167≤x<1704

  170≤x<1732

  從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學(xué)生中選隊員

 。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)

  探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個組,這樣做能否選出身高比較整齊的隊員?

  分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。

  歸納:組距和組數(shù)的確定沒有固定的標準,要憑借經(jīng)驗和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當數(shù)據(jù)在100個以內(nèi)時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。

  我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。

  首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數(shù)為0的點,在上方圖的左邊。147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數(shù)折線圖。

  頻數(shù)折線圖也可以不通過直方圖直接畫出。

  根據(jù)表12.2-2,求了各個小組兩個端點的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標,各小組對應(yīng)的頻數(shù)為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數(shù)分布折線圖如課本P73圖。

  II課堂小結(jié):

  (1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

 。2)組距和組數(shù)沒有確定標準,當數(shù)據(jù)在1000個以內(nèi)時,通常分成5~12組

 。3)如果取個長方形上邊的中點,可以得到頻數(shù)折線圖

 。4)求各小組兩個斷點的平均數(shù),這些平均數(shù)叫組中值。

初二數(shù)學(xué)教案5

  知識與技能

  1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運算。

  2.會用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實際問題。

  3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。

  4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運用這些知識進行有關(guān)的證明和計算。

  5.進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義,會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。

  過程與方法

  進一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數(shù)的變化與對應(yīng)的`思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨立思考,主動探索的習(xí)慣。

  情感、態(tài)度與價值觀

  豐富學(xué)生從事數(shù)學(xué)活動的經(jīng)驗和體驗,通過對問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對教學(xué)活動中的困難,能通過合作交流解決遇到的困難。

初二數(shù)學(xué)教案6

  教學(xué)目標:

  知識與技能

  1、掌握直角三角形的判別條件,并能進行簡單應(yīng)用;

  2、進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型、

  3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

  情感態(tài)度與價值觀

  敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識、

  教學(xué)重點

  運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

  教學(xué)難點

  會辨析哪些問題應(yīng)用哪個結(jié)論、

  課前準備

  標有單位長度的細繩、三角板、量角器、題篇

  教學(xué)過程:

  復(fù)習(xí)引入:

  請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?

  已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

  創(chuàng)設(shè)問題情景:由課前準備好的一組學(xué)生以小品的.形式演示教材第9頁古埃及造直角的方法、

  這樣做得到的是一個直角三角形嗎?

  提出課題:能得到直角三角形嗎

  講授新課:

  1、如何來判斷?(用直角三角板檢驗)

  這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

  就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

  2、繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:

  5,12,13; 6, 8, 10; 8,15,17、

  (1)這三組數(shù)都滿足a2 +b2=c2嗎?

 。2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

  3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

  滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、

  4、例1 一個零件的形狀如左圖所示,按規(guī)定這個零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

  隨堂練習(xí):

  1、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由、

 、9,12,15; ⑵15,36,39;

 、12,35,36; ⑷12,18,22、

  2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、

  3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、

  4、習(xí)題1、3

  課堂小結(jié):

  1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

  2、滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù)、

初二數(shù)學(xué)教案7

  一、學(xué)生情況分析及改進提高措施:

  學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計一些活動,引導(dǎo)學(xué)生進行獨立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗。

  在數(shù)學(xué)知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學(xué)會了辨認八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題?傊@些技能和知識點都為本學(xué)期進一步學(xué)習(xí)新知識打下了堅實的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。

  具體提高措施是:

  1.從學(xué)生的年齡特點出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。

  2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學(xué)生的生活實際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。

  3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實踐練習(xí),加強各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。

  4.加強學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時學(xué)習(xí)情況,與學(xué)生家長多溝通交流。

  二、本冊教材分析

  本冊教材充分體現(xiàn)了新《課程標準》的理念,以學(xué)生的數(shù)學(xué)活動實踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實問題的過程中獲得對數(shù)學(xué)知識的理解和體驗。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復(fù)習(xí),一個總復(fù)習(xí)。具體特點是:

  1.在數(shù)與代數(shù)的'學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。

  2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。

  3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計。

  三、總體教學(xué)目標:

  (一)、知識與技能

  1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。

  2.學(xué)平面圖形的周長,會進行周長的計算。

  (二)、實踐能力培養(yǎng)

  1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。

  2.結(jié)合生活情境,感受并認識質(zhì)量單位。

  3.經(jīng)歷對生活中某些現(xiàn)象進行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進行邏輯推理、判斷其結(jié)果。

  (三)、情感與態(tài)度

  1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。

  2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  教研專題:

  創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。

  個人專題:

  在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。

初二數(shù)學(xué)教案8

  新課指南

  1.知識與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養(yǎng)學(xué)生用字母表示數(shù)和探索數(shù)學(xué)規(guī)律的能力.

  2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學(xué)會列簡單的代數(shù)式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結(jié)合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的實際問題.

  3.情感態(tài)度與價值觀:通過對整式加減的學(xué)習(xí),深入體會代數(shù)式在實際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學(xué)知識的產(chǎn)生來源于實際生產(chǎn)和生活的需求,反之,它又服務(wù)于實際生活的方方面面.

  4.重點與難點:重點是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準確識別整式的項、系數(shù)等知識.

  教材解讀精華要義

  數(shù)學(xué)與生活

  如圖15-1所示,用同樣規(guī)格的黑、白兩色的`正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.

  思考討論由圖15-1可以看到,當n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?

  知識詳解

  知識點1代數(shù)式

  用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨的一個數(shù)或一個字母也是代數(shù)式.

  例如:5,a,(a+b),ab,a2-2ab+b2等等.

  知識點2列代數(shù)式時應(yīng)該注意的問題

  (1)數(shù)與字母、字母與字母相乘時常省略“×”號或用“·”.

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

  (2)數(shù)字通常寫在字母前面.

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

  (3)帶分數(shù)與字母相乘時要化成假分數(shù).

  如:2×ab=ab,切勿錯誤寫成“2ab”.

  (4)除法常寫成分數(shù)的形式.

  如:S÷x=.

初二數(shù)學(xué)教案9

  一、學(xué)習(xí)目標:

  1.使學(xué)生會用完全平方公式分解因式.

  2.使學(xué)生學(xué)習(xí)多步驟,多方法的分解因式

  二、重點難點:

  重點:讓學(xué)生掌握多步驟、多方法分解因式方法

  難點:讓學(xué)生學(xué)會觀察多項式特點,恰當安排步驟,恰當?shù)剡x用不同方法分解因式

  三、合作學(xué)習(xí)

  創(chuàng)設(shè)問題情境,引入新課

  完全平方公式(a±b)2=a2±2ab+b2

  講授新課

  1.推導(dǎo)用完全平方公式分解因式的公式以及公式的特點.

  將完全平方公式倒寫:

  a2+2ab+b2=(a+b)2;

  a2-2ab+b2=(a-b)2.

  凡具備這些特點的三項式,就是一個二項式的完全平方,將它寫成平方形式,便實現(xiàn)了因式分解

  用語言敘述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的'和(或差)的平方

  形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

  由分解因式與整式乘法的關(guān)系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法.

  練一練.下列各式是不是完全平方式?

  (1)a2-4a+4; (2)x2+4x+4y2;

  (3)4a2+2ab+ b2; (4)a2-ab+b2;

  四、精講精練

  例1、把下列完全平方式分解因式:

  (1)x2+14x+49; (2)(m+n)2-6(m +n)+9.

  例2、把下列各式分解因式:

  (1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.

  課堂練習(xí):教科書練習(xí)

  補充練習(xí):把下列各式分解因式:

  (1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;

  五、小結(jié):

  兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方

  形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.

  六、作業(yè):

  1、分解因式:

  X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2

  45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4

初二數(shù)學(xué)教案10

  教學(xué)目標

  知識與技能目標

  1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

  2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

  3.逐步掌握說理的基本方法。

  過程與方法目標

  1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。

  2.鼓勵學(xué)生用多種方法進行說理。

  情感與態(tài)度目標

  1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

  2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。

  教材分析

  教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的`常用判別方法。如有條件可要求學(xué)生自己準備,由學(xué)生自我操作。也可由教師演示。

  教學(xué)重點:平行四邊形的判別方法。

  教學(xué)難點:利用平行四邊形的判別方法進行正確的說理。

  學(xué)情分析

  初二學(xué)生對平面圖形的認識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

  教學(xué)流程

  一、創(chuàng)設(shè)情境,引入新課

  師:請同學(xué)們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

  學(xué)生活動:學(xué)生按小組進行探索。

初二數(shù)學(xué)教案11

  一、教材分析:

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。

  教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

  據(jù)此,制定教學(xué)目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  二、教學(xué)重點:

  勾股定理的證明和應(yīng)用。

  三、教學(xué)難點:

  勾股定理的證明。

  四、教法和學(xué)法:

  教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。

  切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

  通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  五、教學(xué)程序:

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:

  (一)創(chuàng)設(shè)情境以古引新

  1、由故事引入,3000多年前有個叫商高的'人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。

  3、板書課題,出示學(xué)習(xí)目標。(二)初步感知理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。

  (三)質(zhì)疑解難討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;(1)這兩個圖形有什么特點?(2)你能寫出這兩個圖形的面積嗎?

  (3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

  (四)鞏固練習(xí)強化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。

  (五)歸納總結(jié)練習(xí)反饋

  引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。

  六、教學(xué)目標:

  1.經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣。

  2.掌握勾股定理和他的簡單應(yīng)用

  重點難點:

  重點:能熟練運用拼圖的方法證明勾股定理

  難點:用面積證勾股定理

  教學(xué)過程

  七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

  我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

  (同學(xué)們回答有這幾種可能:(1) (2) )

  在同學(xué)交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

  =請同學(xué)們對上面的式子進行化簡,得到:即=

  這就可以從理論上說明勾股定理存在。請同學(xué)們?nèi)ビ脛e的拼圖方法說明勾股定理。

  八、講例

  1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

  分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

  解:由勾股定理得

  即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

  答:飛機每個小時飛行540千米。

  九、議一議

  展示投影2(書中的圖1—9)

  觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足

  同學(xué)在議論交流形成共識之后,老師總結(jié)。

  勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

  十、作業(yè)

  1、 1、課文P11§1.2 1 、2

  2、選用作業(yè)。

初二數(shù)學(xué)教案12

  教學(xué)目的

  通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。

  重點、難點

  1.重點:探索這些實際問題中的等量關(guān)系,由此等量關(guān)系列出方程。

  2.難點:找出能表示整個題意的`等量關(guān)系。

  教學(xué)過程

  一、復(fù)習(xí)

  1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)

  本利和=本金×利息×年數(shù)+本金

  2.商品利潤等有關(guān)知識。

  利潤=售價—成本; =商品利潤率

  二、新授

  問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

  利息—利息稅=48。6

  可設(shè)小明爸爸前年存了x元,那么二年后共得利息為

  2.43%×X×2,利息稅為2.43%X×2×20%

  根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6

  問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

  2.43%x·2.80%=48.6

  解方程,得x=1250

  例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?

  大家想一想這15元的利潤是怎么來的?

  標價的80%(即售價)-成本=15

  若設(shè)這種服裝每件的成本是x元,那么

  每件服裝的標價為:(1+40%)x

  每件服裝的實際售價為:(1+40%)x·80%

  每件服裝的利潤為:(1+40%)x·80%—x

  由等量關(guān)系,列出方程:

 。1+40%)x·80%—x=15

  解方程,得x=125

  答:每件服裝的成本是125元。

  三、鞏固練習(xí)

  教科書第15頁,練習(xí)1、2。

  四、小結(jié)

  當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應(yīng)用一元一次方程解決實際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。

  五、作業(yè)

  教科書第16頁,習(xí)題6.3.1,第4、5題。

初二數(shù)學(xué)教案13

  通過學(xué)生的討論,使學(xué)生更清楚以下事實:

  (1)分解因式與整式的乘法是一種互逆關(guān)系;

  (2)分解因式的結(jié)果要以積的形式表示;

  (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式 的次數(shù);

  (4)必須分解到每個多項式不能再分解為止。

  活動5:應(yīng)用新知

  例題學(xué)習(xí):

  P166例1、例2(略)

  在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。

  讓學(xué)生進一步理解提公因式法進行因式分解。

  活動6:課堂練習(xí)

  1.P167練習(xí);

  2. 看誰連得準

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些變形是因式分解,為什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  學(xué)生自主完成練習(xí)。

  通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的'理解是否到位,以便教師能及時地進行查缺補漏。

  活動7:課堂小結(jié)

  從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?

  學(xué)生發(fā)言。

  通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。

  活動8:課后作業(yè)

  課本P170習(xí)題的第1、4大題。

  學(xué)生自主完成

  通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。

  板書設(shè)計(需要一直留在黑板上主板書)

  15.4.1提公因式法 例題

  1.因式分解的定義

  2.提公因式法

初二數(shù)學(xué)教案14

 一、利用勾股定理進行計算

  1.求面積

  例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。

  析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。

  2.求邊長

  例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

  析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

  點評:這兩道題有一個共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的'方法里蘊含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請同學(xué)們要留心。

  二、利用勾股定理的逆定理判斷直角三角形

  例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

  析解:由于所給條件是關(guān)于a,b,c的一個等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

  點評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

  三、利用勾股定理說明線段平方和、差之間的關(guān)系

  例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。

  析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

  點評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時,則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。

初二數(shù)學(xué)教案15

  教學(xué)目標

  1、理解并掌握等腰三角形的判定定理及推論

  2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.

  教學(xué)重點:

  等腰三角形的判定定理及推論的運用

  教學(xué)難點:

  正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.

  教學(xué)過程:

  一、復(fù)習(xí)等腰三角形的性質(zhì)

  二、新授:

  I提出問題,創(chuàng)設(shè)情境

  出示投影片.某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的'正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質(zhì)專家測得AC的長度就可知河流寬度.

  學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.

  II引入新課

  1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?

  作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?

  2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.

  2、小結(jié),通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

  強調(diào)此定理是在一個三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”.

  4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù).

  III例題與練習(xí)

  1.如圖2

  其中△ABC是等腰三角形的是[ ]

  2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).

 、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).

 、廴粢阎螦=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

 、苋粢阎狝D=4cm,則BC______cm.

  3.以問題形式引出推論l______.

  4.以問題形式引出推論2______.

  例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

  分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明.

  練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

  (2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

  練習(xí):P53練習(xí)1、2、3。

  IV課堂小結(jié)

  1.判定一個三角形是等腰三角形有幾種方法?

  2.判定一個三角形是等邊三角形有幾種方法?

  3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?

  4.現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?

  V布置作業(yè):P56頁習(xí)題12.3第5、6題

【初二數(shù)學(xué)教案】相關(guān)文章:

初二數(shù)學(xué)教案11-02

【推薦】初二數(shù)學(xué)教案12-23

初二數(shù)學(xué)教案【熱】12-24

初二數(shù)學(xué)教案【薦】12-22

【熱】初二數(shù)學(xué)教案12-23

【薦】初二數(shù)學(xué)教案12-19

【精】初二數(shù)學(xué)教案12-19

初二數(shù)學(xué)教案【推薦】12-18

初二數(shù)學(xué)教案【精】12-20

《矩形》初二的數(shù)學(xué)教案12-02