初一數學教案(合集15篇)
作為一位杰出的教職工,就不得不需要編寫教案,教案是保證教學取得成功、提高教學質量的基本條件?靵韰⒖冀贪甘窃趺磳懙陌桑∠旅媸切【幷淼某跻粩祵W教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
初一數學教案1
【教學目標】
1、理解同類項、合并同類項的概念。
2、掌握合并同類項法則,會應用該法則及運算律合并多項式的同類項,會應用同類項及合并同類項解決實際問題。
3、感受其中的“數式通性”和類比的數學思想。
【教學重點】
理解同類項的概念;掌握合并同類項法則。
【教學難點】
正確運用法則及運算律合并同類項。
【教學過程】
一、知識鏈接
1、運用運算律計算下列各題。
、6×20+3×20=②6×(-20)+3×(-20)=
2、口答。
8個人+5個人=8只羊+5只羊=
8個人+5只羊=
[意圖:①復習乘法分配律;②感受“同類”。操作流程:幻燈片出示→學生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解釋]
二、探究新知
探究一:一只蝸牛在爬一根豎立的竹竿,每節(jié)竹竿是a厘米,第1小時向上爬了6節(jié),第2小時向上爬了2節(jié),問這個蝸牛在竹竿上向上爬了多少厘米?
。1)請列式表示:,你能對上式進行化簡計算嗎?
。2)說說化簡計算的依據。
[意圖:聯系生活情境,探究新知。操作流程:幻燈片出示→學生獨立思考并回答→師生小結方法]
探究二:根據以上式子的運算,化簡下列式子。
、100t-252t
②3x2+2x2
、3ab2-4ab2
④2m2n3-5m2n3
(1)上述各多項式的項有什么共同特點?
。2)上述多項式的運算有什么共同特點,有何規(guī)律?
[意圖:讓學生經歷動手、觀察、猜想、歸納的'學習過程,從而探究出新知。操作流程:幻燈片出示→動手計算→回答并解釋→觀察(交流)→猜想→引導學生歸納新知]
三、例題精煉
例1、合并同類項。
4x2+2x+7+3x-8x2-2
例2、求多項式-x2+4x+5x2-3x-4x2+3的值,其中x=。
[意圖:運用知識解決問題,突出重點。操作流程:完成例1(3~4人演排)→學生質疑→師點評并規(guī)范格式、注意事項(例2處理方式同上)]
四、課堂小結
這節(jié)課你學到了哪些知識?
[意圖:養(yǎng)成總結反思的好習慣。操作流程:交流→小組代表發(fā)言→師補充]
五、課堂檢測(略)
初一數學教案2
一、教學內容:
人教版教材五年級上冊第五單元多邊形的面積整理與復習
二、教學目標:
1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
2、使學生感受數學方法和思想的重要性及其應用的廣泛性。體會數學的價值,培養(yǎng)對數學學習的熱愛
三、教學重、難點
重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
難點:引導學生整理多邊形面積的推導過程,掌握轉化的數學思想方法,建構知識網絡。
四、教學準備:多媒體課件,多邊形紙模
五、教學步驟與過程
。ㄒ唬⿲霃土
師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節(jié)課我們就來重點整理和復習有關這些多邊形的'面積的知識。
板書課題:多邊形面積計算復習課
。ǘ┗仡櫿,建構網絡
1.復習平行四邊形、三角形、梯形面積公式的推導過程。
、耪埓蠹一貞浺幌:平行四邊形、三角形、梯形面積的計算公式是怎樣經過平移、旋轉等方法轉化成我們已經學過的圖形,從而推導出它們的面積計算公式的。
、聘鶕䦟W生的回答,出示每個公式的推導過程。
六、課堂練習
學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關系嗎?
七,作業(yè)布置:練習十九
板書設計
S=ah÷2
S=abS=ah
S=(a+b)h÷2
初一數學教案3
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的.位置關系除相交外,還有哪些呢?
。ㄒ唬┊嬈叫芯
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
、谶^點C畫直線a的平行線,能畫 條;
、勰惝嫷闹本有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
。1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
。3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初一數學教案4
教學目標
1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2,利用正負數正確表示相反意義的量(規(guī)定了指定方向變化的量)
3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發(fā)學習數學的興趣。
教學難點:深化對正負數概念的理解
知識重點:正確理解和表示向指定方向變化的量
教學過程:(師生活動)設計理念
知識回顧與深化回顧:上一節(jié)課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區(qū)分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示、這就是說:數的范圍擴大了(數有正數和負數之分)、那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?
學生思考并討論、
。〝0既不是正數又不是負數,是正數和負數的分
界,是基準、這個道理學生并不容易理解,可視學生的討論情況作些啟發(fā)和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規(guī)定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的最高溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數 。
那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類?“數0耽不是正數,也不是負數”也應看作是負數定義的一部分、在引入
負數后,0除了表示一個也沒有以外,還是正數和負數的分界、了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。
所舉的例子,要考慮學生的可接受性、“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明、這個問題只要初步認識即可,不必深究、
分析問題
解決問題問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的`相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁)、
類似的例子很多,如:
水位上升-3m,實際表示什么意思呢?
收人增加-10%,實際表示什么意思呢?
可視教學中的實際情況進行補充、
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健、這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出、
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業(yè)
課堂小結以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?
(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規(guī)定為正數,而把向指定方向的相反方向變化的量規(guī)定為負數、)
本課作業(yè)
1,必做題:教科書第7頁習題1.1第3,6,7,8題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分、在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助、由于上節(jié)課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課、
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解、
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識、通過實際例子的學習激發(fā)學生學習數學的興趣、
初一數學教案5
教學目標
1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2,能區(qū)分兩種不同意義的量,會用符號表示正數和負數;
3,體驗數學發(fā)展的一個重要原因是生活實際的需要,激發(fā)學生學習數學的興趣。
教學難點:正確區(qū)分兩種不同意義的量。
知識重點:兩種相反意義的量
教學過程:(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
。ㄒ部梢猿鍪練庀箢A報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多
地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發(fā)學生的學習興
趣,所以創(chuàng)設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發(fā)學生探究的欲望,學生自己看書學習是培養(yǎng)學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節(jié)課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規(guī)范,要舍得花時間讓學充分發(fā)表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業(yè)
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1, 0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的`0以外的數前面加“-”。
本課作業(yè)教科書第7頁習題1.1 第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設必做題和選 做題,體現要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創(chuàng)設學習情境.本課是有理數的第一節(jié)課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,
體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
初一數學教案6
教學目標
1,掌握有理數的概念,會對有理數按照一定的標準進行分類,培養(yǎng)分類能力;
2,了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3,體驗分類是數學上的常用處理問題的方法。
教學難點正確理解分類的標準和按照一定的標準進行分類
知識重點正確理解有理數的概念
教學過程(師生活動)設計理念
探索新知在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節(jié)課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5.1不是整個的數,稱為“正分數(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數。
按照書本的說法,得出“整數”“分數”和“有理數”的概念。
看書了解有理數名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的)分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.
思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
也可以教師說出一些數,讓學生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。
有理數這個分類可視學生的程度確定是否有必要教學。
應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結與作業(yè)
課堂小結到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業(yè)1,必做題:教科書第18頁習題1.2第1題
2,教師自行準備
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概
念.分類是數學中解決問題的常用手段,通過本節(jié)課的學習使學生了解分類的思想并進
行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分
類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
課題:1.2.2數軸
教學目標1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;
2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;
3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。
教學難點數軸的概念和用數軸上的點表示有理數
知識重點
教學過程(師生活動)設計理念
設置情境
引入課題教師通過實例、課件演示得到溫度計讀數.
問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
(小組討論,交流合作,動手操作)創(chuàng)設問題情境,激發(fā)學生的學習熱情,發(fā)現生活中的數學
點表示數的感性認識。
點表示數的理性認識。
合作交流
探究新知教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數嗎?
讓學生在討論的基礎上動手操作,在操作的.基礎上歸納出:可以表示有理數的直線必須滿足什么條件?
從而得出數軸的三要素:原點、正方向、單位長度體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。
從游戲中學數學做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規(guī)定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發(fā)出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規(guī)定第3個同學為原點,游戲還能進行嗎?學生游戲體驗,對數軸概念的理解
尋找規(guī)律
歸納結論問題3:
1,你能舉出一些在現實生活中用直線表示數的實際例子嗎?
2,如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?
3,哪些數在原點的左邊,哪些數在原點的右邊,由此你會發(fā)現什么規(guī)律?
4,每個數到原點的距離是多少?由此你會發(fā)現了什么規(guī)律?
(小組討論,交流歸納)
歸納出一般結論,教科書第12的歸納。這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習
教科書第12頁練習
小結與作業(yè)
課堂小結請學生總結:
1,數軸的三個要素;
2,數軸的作以及數與點的轉化方法。
本課作業(yè)1,必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3,注意從學生的知識經驗出發(fā),充分發(fā)揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學生自主探索的學習方法。
初一數學教案7
教學目標1,掌握相反數的概念,進一步理解數軸上的點與數的對應關系;
2,通過歸納相反數在數軸上所表示的點的特征,培養(yǎng)歸納能力;
3,體驗數形結合的思想。
教學難點歸納相反數在數軸上表示的點的特征
知識重點相反數的概念
教學過程(師生活動)設計理念
設置情境
引入課題問題1:請將下列4個數分成兩類,并說出為什么要這樣分類
4,-2,-5,+2
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當的引導,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)
思考結論:教科書第13頁的思考
再換2個類似的數試一試。
歸納結論:教科書第13頁的歸納。以開放的形式創(chuàng)設情境,以學生進行討論,并培養(yǎng)分類的能力
培養(yǎng)學生的觀察與歸納能力,滲透數形思想
深化主題提煉定義給出相反數的定義
問題2:你怎樣理解相反數定義中的“只有符號不同”和“互為”一詞的含義?零的'相反數是什么?為什么?
學生思考討論交流,教師歸納總結。
規(guī)律:一般地,數a的相反數可以表示為-a
思考:數軸上表示相反數的兩個點和原點有什么關系?
練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數在數軸上的特征做準備。
深化相反數的概念;“零的相反數是零”是相反數定義的一部分。
強化互為相反數的數在數軸上表示的點的幾何意義
給出規(guī)律
解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數是-5和+5
練一練:教科書第14頁第二個練習利用相反數的概念得出求一個數的相反數的方法
小結與作業(yè)
課堂小結1,相反數的定義
2,互為相反數的數在數軸上表示的點的特征
3,怎樣求一個數的相反數?怎樣表示一個數的相反數?
本課作業(yè)1,必做題教科書第18頁習題1.2第3題
2,選做題教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,相反數的概念使有理數的各個運算法則容易表述,也揭示了兩個特殊數的特征.這兩個特殊數在數量上具有相同的絕對值,它們的和為零,在數軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數量和幾何意義展開,滲透數形結合的思想.
2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數在數軸上表示出來并觀察它們的特征,在復習數軸知識的同時,滲透了數形結合的數學方法,數與形的相互轉化也能加深對相反數概念的理解;問題2能幫助學生準確把握相反數的概念;問題3實際上給出了求一個數的相反數的方法.
3,本教學設計體現了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地.
課題:1.2.4絕對值
教學目標1,掌握絕對值的概念,有理數大小比較法則.
2,學會絕對值的計算,會比較兩個或多個有理數的大小.
3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.
教學難點兩個負數大小的比較
知識重點絕對值的概念
教學過程(師生活動)設計理念
設置情境
引入課題星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反
意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;
觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.
學生回答后,教師說明如下:
數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負
數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體
驗數學知識與生活實際的聯系.
初一數學教案8
教學目標
(一)教學知識點
1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
(二)能力訓練要求
1.經歷探索二次函數與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
2.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養(yǎng)學生的數形結合思想.
3.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識.
(三)情感與價值觀要求
1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創(chuàng)造,感受數學的嚴謹性以及數學結論的確定性.
2.具有初步的創(chuàng)新精神和實踐能力.
教學重點
1.體會方程與函數之間的聯系.
2.理解何時方程有兩個不等的實根,兩個相等的實數和沒有實根.
3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.
教學難點
1.探索方程與函數之間的聯系的過程.
2.理解二次函數與x軸交點的個數與一元二次方程的根的.個數之間的關系.
教學方法
討論探索法.
教具準備
投影片二張
第一張:(記作§2.8.1A)
第二張:(記作§2.8.1B)
教學過程
、.創(chuàng)設問題情境,引入新課
[師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數y=kx+b(k≠0)后,討論了它們之間的關系.當一次函數中的函數值y=0時,一次函數y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解.
現在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數y=ax2+bx+c(a≠0),它們之間是否也存在一定的關系呢?本節(jié)課我們將探索有關問題。
通過學生的討論,使學生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關系;
(2)分解因式的結果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數都必須低于原來的多項式的次數;
(4)必須分解到每個多項式不能再分解為止。
活動5:應用新知
例題學習:
P166例1、例2(略)
在教師的引導下,學生應用提公因式法共同完成例題。
讓學生進一步理解提公因式法進行因式分解。
活動6:課堂練習
1.P167練習;
2.看誰連得準
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學生自主完成練習。
通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結
從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
學生發(fā)言。
通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數學思想的理解。
活動8:課后作業(yè)
課本P170習題的第1、4大題。
學生自主完成
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。
板書設計(需要一直留在黑板上主板書)
15.4.1提公因式法例題
1.因式分解的定義
2.提公因式法
初一數學教案9
教學目標
1.使學生正確理解數軸的意義,掌握數軸的三要素;
2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.
難點:正確理解有理數與數軸上點的'對應關系.
課堂教學過程設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容——數軸.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出數軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數軸.
進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例變式練習
例1畫一個數軸,并在數軸上畫出表示下列各數的點:
例2指出數軸上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面數軸上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.
五、作業(yè)
1.在下面數軸上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面數軸上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初一數學教案10
一、教學目標
1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。
2.能用適當的圖形和語言表示自己的思考結果。
二、教學重點和難點
本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。
三、教學手段
引導活動討論
引導:意在教師講解七巧板的歷史,七巧板制作的方法。
活動:人人參與制作七巧板,拼擺七巧板的圖案。
討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。
四、教學方法
啟發(fā)式教學
五、教學過程
1 創(chuàng)設情景,引入新課
先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。
2 合作交流,探索新知
利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。
(1) 你的拼圖用了什么形狀的板?你想表現什么?
(2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。
(3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。
通過學生的展示,教師作適時的評價,樹立榜樣,培養(yǎng)學生之間的競爭意識。
3 范例教學
介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的.圖案,激發(fā)學生的創(chuàng)造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發(fā)揮學生的創(chuàng)造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。
4 反饋練習
由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。
5 歸納小結
通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。
六、練習設計
利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環(huán)境。
七、板書設計
4.7有趣的七巧板
(一)知識回顧 (三)例題解析 (五)課堂小結
(二)觀察發(fā)現 (四)課堂練習 練習設計
初一數學教案11
一、學習與導學目標:
知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;
過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;
情感態(tài)度:通過師生、生生合作學習,促進交流,激發(fā)興趣。
二、學程與導程活動:
A、準備活動:
1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數。現在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。
2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的距離相等,真可謂從原點背道而馳“唱反調”)。
提問:數軸上與原點距離是4的點有幾個?這些點表示的數是多少?
歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。
B、學習概念:
1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3?梢姡合喾磾凳浅蓪Τ霈F的,不能單獨存在。
一般地,a和-a互為相反數!-a”可讀成“a的相反數”。
2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱)
3、從上述意義上看,你看如何規(guī)定0的相反數更為合理?
商討得:0的相反數仍是0,即0的相反數等于它本身。
C、應用舉例:
1、兩人一組,一人任說一個有理數,請同伴說出它的'相反數。
2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。
3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。
結合前面相反數意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?
4、化簡下列各數P124練習,你愿意繼續(xù)嘗試化簡下列各式嗎?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能試著總結規(guī)律嗎?(括號內外同號結果為正,括號內外異號結果為負)。
5、若a=-5,則-a=;若-x=7,則x=。
三、筆記與板書提綱:
課題應用舉例中的2
活動引例應用舉例中的4、5
概念
四、練習與拓展選題:
1、教科書P18/3;
2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。
初一數學教案12
學習目標:
1、從實際生活中感受有序數對的意義,并會確定平面內物體的位置。
2、通過有序數對確定位置,讓學生感受二維空間觀,發(fā)展符號感及抽象思維能力,讓學生體會具體-抽象-具體的數學學習過程。
3、培養(yǎng)學生的合作交流意識和探索精神,創(chuàng)造性思維意識。體驗數學來源于生活及應用于生活的意識,更好的激發(fā)學習興趣。
學習重點:理解有序數對的概念,用有序數對來表示位置。
學習難點:理解有序數對是有序的并用它解決實際問題,
學習過程:
一、 學前準備
預習疑難: 。
二、 探索與思考
1、 觀察思考:觀察下圖,什么時候氣溫最低?什么時候氣溫最高?你是如何發(fā)現的?
2、想一想:你看過電影嗎?在電影院內,確定一個座位一般需要幾個數據,為什么?
(1)如何找到6排3號這個座位呢?
(2)在電影票上6排3號與3排6號有什么不同?
(3)如果將6排3號簡記作(6,3),那么3排6號如何表示?
(4)(5,6)表示什么含義?(6,5)呢?
3、結論:①可用排數和列數兩個不同的數來確定位置;
②排數和列數的先后順序對位置有影響。
4、概念:
有序數對:用含有 的詞表示一個 位置,其中各個數表示不同的含義,我們把這種 兩個數a與b組成的數對,叫做有序數對,記作(a,b)。
三、 理解與運用
(一)用有序數對來表示位置的情況是很常見的.如人們常用經緯度來表示地球上的地點.你有沒有見過用其他的方式來表示位置的?
(二)應用
例1 如圖,點A表示3街與5大道的十字路口,點B表示5街與3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一條路徑,那么你能用同樣的方法寫出由A到B的其他幾條路徑嗎?
分析:圖中確定點用前一個數表示大街,后一個數表示大道。
解:其他的路徑可以是:
(3,5)(4,5)(4,4)(5,4)(5,3);
(3,5)( ,5)(4,4)( , )(5,3);
(3,5)( , )( , )( , )(5,3);
四、學習體會:
1、 本節(jié)課你有哪些收獲?你還有哪些疑惑?
2、 預習時的疑難解決了嗎?
五、自我檢測
1、小游戲:
怪獸吃豆豆是一種計算機游戲,圖中的標志表示怪獸先后經過的幾個位置. 如果用(1,2)表示怪獸按圖中箭頭所指路線經過的第3個位置. 那么你能用同樣的方表示出圖中怪獸經過的其他幾個位置嗎?
2、如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
3、右圖是國際象棋的棋盤,E2在什么位置?又如何描述A、B、C的位置?
4、有趣玩一玩:
中國象棋中的馬頗有騎士風度,自古有馬踏八方之說,如圖六(1),按中國象棋中馬的行棋規(guī)則,圖中的馬下一步有A、B、C、D、E、F、G、H八種不同選擇,它的走法就象一步從日字形長方形的對角線的一個端點到另一個端點,不能多也不能少。
要將圖六(2)中的馬走到指定的位置P處,即從(四,6)走到(六,4),現提供一種走法:(四,6)(六,5)(四,4)(五,2)(六,4)
(1) 下面提供另一走法,請?zhí)钌纤钡囊徊剑?四,6)(五,8)(七,7)___(六,4)
(2)請你再給出另一種走法(要與前面的兩種走法不完全相同即可,步數不限),你的走法是:
六、方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
1、如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么
數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
2、如圖是某城市市區(qū)的一部分示意圖,對市政府來說:
(1) 北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?
(2) 火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
課題:6.1.2平面直角坐標系(第一課時) 課型:新授
學習目標:1.理解平面直角坐標系,以及橫軸、縱軸、原點、坐標等的概念.
2.認識并能畫出平面直角坐標系.
3.能在給定直角坐標系中,由點的位置確定點的坐標,由點的坐標確定點的位置
學習重點:根據點的坐標在直角坐標系中描出點的位置。
學習難點:探索特殊的點與坐標之間的關系。
學具準備:坐標紙,三角板
學習過程:
一、學前準備
1、預習疑難: 。
2、填空:①規(guī)定了 、 、 的直線叫做數軸。
②數軸上原點及原點右邊的點表示的數是 ;原點左邊的點表示的數是 。
、郛嫈递S時,一般規(guī)定向 (或向 )為正方向。
二、探索與思考
(一)平面直角坐標系
1、觀察:在數軸上,點A的坐標為 ,點B的坐標為 。
即:數軸上的點可以用一個 來表示,這個數叫做這個點的 。
反過來,知道數軸上的一個點的坐標,這個點在數軸上的位置也就確定了。
2、思考:能不能有一種辦法來確定平面內的點的位置呢?
3、平面直角坐標系概念:
平面內畫兩條互相 、原點 的'數軸,組成平面直角坐標系.
水平的數軸稱為 或 ,習慣上取向 為正方向;
豎直的數軸為 或 ,取向 為正方向;
兩個坐標軸的交點為平面直角坐標系的 。
4、點的坐標:
我們用一對 表示平面上的點,這對數叫 。表示方法為(a,b).a是點對應 上的數值,b是點在 上對應的數值。
(二)如何在平面直角坐標系中表示一個點
1、以A(2,3)為例,表示方法為:
A點在x軸上的坐標為 ,A點在y軸上的坐標為 ,
A點在平面直角坐標系中的坐標為(2,3),記作:A(2,3)
2、方法歸納:由點A分別向X軸和 作垂線。
3、強調:X軸上的坐標寫在前面。
4、活動:你能說出點B、C、D的坐標嗎?
注意:橫坐標和縱坐標不要寫反。
5、思考歸納:原點O的坐標是( , ),
x軸上的點縱坐標都是 , y軸上的橫坐標都是 。
橫軸上的點坐標為(x,0) ,縱軸上的點坐標為(0,y)
(三)象限:
1、 建立平面直角坐標系后,平面被坐標軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。
第二象限(,+) 第一象限(+,+)
第三象限(,) 第四象限(+,)
2、注意:坐標軸上的點不屬于任何一個象限
3、你能說出上面例子中各點在第幾象限嗎?
三、理解與運用
1、在游戲中學數學:以某同學為原點,以他所在的橫排為x軸,以這一組為y軸,相鄰兩個同學之間的距離為單位長度建立坐標系.
(1)下面大家一起找一找自己在坐標系中的坐標分別是什么?
(2)下面這些坐標分別表示誰的位置? A(2,1);B(2,-1);C(-1,1);D(0,3);E(0,-1)
2、例 寫出圖中的多邊形ABCDEF各個頂點的坐標.
(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?
(2)線段CE的位置有什么特點?
(3)坐標軸上點的坐標有什么特點?
3、歸納:點的位置及其坐標特征:
、.各象限內的點;
、.各坐標軸上的點;
、.各象限角平分線上的點;
④.對稱于坐標軸的兩點;
、.對稱于原點的兩點。
4、對應練習:教材43頁1、2題(在書上完成)。
四、學習體會:
1、本節(jié)課你有哪些收獲?你還有哪些疑惑?
2、預習時的疑難解決了嗎?
五、自我檢測:
(一)選擇題:
1、若點M(x,y)滿足x+y=0,則點M位于( )。
(A)第一、三象限兩坐標軸夾角的平分線上; (B)x軸上;
(C) x軸上; (D)第二、四象限兩坐標軸夾角的平分線上。
2、第四象限中的點P(a,b)到x軸的距離是( )
(A)a (B)-a (C)-b (D)b
3、點A(-m,1-2m)關于原點對稱的點在第一象限,那么m的取值范圍是( )。
(A)m(B)m (C)m (D)m0 。
(二)填空題:
1、點P(3,-4)關于原點的對稱點的坐標為___________;關于x軸的對稱點的坐標為___________;關于y軸的對稱點的坐標為____________
2、已知A(a,6),B(2,b)兩點。
、佼擜、B關于x軸對稱時,a=_____;b=_____。
、诋擜、B關于y軸對稱時,a=_____;b=_____。
③當A、B關于原點對稱時,a=_____;b=_____。
六、解答題
1.在下圖中,分別寫出八邊形各個頂點的坐標.
2.下圖是畫在方格紙上的某島簡圖.
(1)分別寫出地點A,L,O,P,E的坐標;
(2)(4,7)(5,5)(2,5)所代表的地點分別是什么?
初一數學教案13
初一上冊數學教案,歡迎各位老師和學生參考!
學習目標:1、理解有理數的絕對值和相反數的意義。
2、會求已知數的相反數和絕對值。
3、會用絕對值比較兩個負數的大小。
4、經歷將實際問題數學化的過程,感受數學與生活的聯系。
學習重點:1.會用絕對值比較兩個負數的大小。
2.會求已知數的相反數和絕對值。
學習難點:理解有理數的絕對值和相反數的意義。
學習過程:
一、創(chuàng)設情境
根據絕對值與相反數的意義填空:
1、
2、
-5的相反數是______,-10.5的相反數是______, 的相反數是______;
3、|0|=______,0的'相反數是______。
二、探索感悟
1、議一議
(1)任意說出一個數,說出它的絕對值、它的相反數。
(2)一個數的絕對值與這個數本身或它的相反數有什么關系?
2、想一想
(1)2與3哪個大?這兩個數的絕對值哪個大?
(2)-1與-4哪個大?這兩個數的絕對值哪個大?
(3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?
(4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?
三.例題精講
例1. 求下列各數的絕對值:
+9,-16,-0.2,0.
求一個數的絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。
議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?
(2)數軸上的點的大小是如何排列的?
例2比較-10.12與-5.2的大小。
例3.求6、-6、14 、-14 的絕對值。
小節(jié)與思考:
這節(jié)課你有何收獲?
四.練習
1. 填空:
⑴ 的符號是 ,絕對值是 ;
⑵10.5的符號是 ,絕對值是
、欠柺+號,絕對值是 的數是
⑷符號是-號,絕對值是9的數是 ;
、煞柺-號,絕對值是0.37的數是 .
2. 正式足球比賽時所用足球的質量有嚴格的規(guī)定,下表是6個足球的質量檢測結果(用正數記超過規(guī)定質量的克數,用負數記不足規(guī)定質量的克數).
請指出哪個足球質量最好,為什么?
第1個第2個第3個第4個第5個第6個
-25-10+20+30+15-40
3.比較下面有理數的大小
(1)-0.7與-1.7 (2) (3) (4)-5與0
五、布置作業(yè):
P25 習題2.3 5
家庭作業(yè):《評價手冊》 《補充習題》
六、學后記/教后記
這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!
初一數學教案14
大家都聽說過一句名言:“世界上不是缺少美,而是缺少發(fā)現美的眼睛”,大家知道這句話是誰說的嗎?不知道沒關系,大家記住下一句名言就好:“世界上不是缺少數學,而是缺少發(fā)現數學的眼睛——李老師語錄”,那這個著名的李老師是誰呢?遠在天邊,近在眼前。不要太驚訝,想要簽名的下課來找我就行。
好,那我們接下來就用發(fā)現數學的眼睛來看一看,生活中常見的幾何體都有哪些物體,分別是什么形狀?水杯,籃球,冰激凌,金字塔,黑板擦。分別對應圓柱,球,圓錐,棱錐,棱柱。其中長方體,正方體是特殊的棱柱。
好了,幾何體我們都了解了,面對這些雜亂無章的幾何體是不是感覺很亂,接下來我們就給幾何體分分類:
一、常見幾何體分類
1、 按照柱、錐、球分類
圓柱
柱生活中的立體圖形 球 棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱。
錐圓錐
棱錐
2、 按照有無頂點分類
生活中的立體圖形
3、 按照有無曲面分類
二、棱柱(直)
1、 基本概念
。1) 棱:在棱柱中,任何相鄰的兩個面的交線叫做棱。
。2) 側棱:在棱柱中,相鄰兩個側面的交線叫做側棱。
2、 特征
。1) 棱柱的所有側棱長相等。
。2) 棱柱的上下底面完全相同且都是多邊形。
。3) 棱柱的側面都是長方形。
(4) n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
3、 分類
按照底面多邊形的邊數分類,底面幾邊形就是幾棱柱。
三、圖形的構成元素
點:線與線橡膠的`地方就是點。
1 線:面與面相交的地方就是線。
面:包圍著體的是面。
2、聯系
點動成線,線動成面,面動成體。
展開與折疊
一、正方體的展開圖(11種)
1-4-1型:(6種)
2-3-1型(3種)
2-2-2型(1種)
3-3型(
1種)
二、正方體的折疊
展開圖中不出現一字型、田字形、凹字形,2-4型,若有此形狀的展開圖則折不成正方體。
三、總結規(guī)律:
一線不過四,
田凹應棄之;
相間、Z端是對面,
間二、拐角鄰面知。
四、常見幾何體的展開圖
三、截一個幾何體
一、正方體的截面
用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
可能出現的:銳角三角型、等邊、等腰三角形, 正方形、矩形、非矩形的平行四邊形、 非等腰梯形、 等腰梯形、五邊形、六邊形、正六邊形
不可能出現:鈍角三角形、直角三角形、直角梯形、正五邊形、七邊形或更多邊形
二、常見幾何體截面
四、從三個方向看物體的形狀
一、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
二、聯系
主俯長對正,主左高平齊,俯左寬相等。
三、畫法
一看,二畫,三查(尺寸,虛實)
初一數學教案15
學習目標:
理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。
學習重點:
多項式乘法法則及其應用。
學習難點:
理解運算法則及其探索過程。
一、課前訓練:
(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;
(3)3a2b2 ab3 = , (4) = ;
(5)- = ,(6) = 。
二、探索練習:
(1)如圖1大長方形,其面積用四個小長方形面積
表示為: ;
(2)大長方形的長為 ,寬為 ,要
計算其面積就是 ,其中包含的
運算為 。
由上面的問題可發(fā)現:( )( )=
多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的` 以另一個多項式的每一項,再把所得的積 。
三.運用法則規(guī)范解題。
四.鞏固練習:
3.計算:① ,
4.計算:
五.提高拓展練習:
5.若 求m,n的值.
6.已知 的結果中不含 項和 項,求m,n的值.
7.計算(a+b+c)(c+d+e),你有什么發(fā)現?
六.晚間訓練:
(7) 2a2(-a)4 + 2a45a2 (8)
3、(1)觀察:4×6=24
14×16=224
24×26=624
34×36=1224
你發(fā)現其中的規(guī)律嗎?你能用代數式表示這一規(guī)律嗎?
(2)利用(1)中的規(guī)律計算124×126。
4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。
(1)設AP= ,求兩個正方形的面積之和S;
(2)當AP分別 時,比較S的大小。
【初一數學教案】相關文章:
初一數學教案11-04
初一數學教案08-27
初一數學教案【熱】12-13
初一數學教案【精】12-14
初一數學教案【薦】12-13
【熱】初一數學教案12-12
【熱門】初一數學教案12-12
初一數學教案【推薦】12-11
初一上冊的數學教案11-13
初一數學教案【熱門】12-01