- 高二優(yōu)秀數(shù)學教案 推薦度:
- 高二優(yōu)秀數(shù)學教案 推薦度:
- 相關(guān)推薦
高二優(yōu)秀數(shù)學教案5篇
作為一名為他人授業(yè)解惑的教育工作者,有必要進行細致的教案準備工作,編寫教案有利于我們科學、合理地支配課堂時間。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的高二優(yōu)秀數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
高二優(yōu)秀數(shù)學教案1
一、教學目標
1.把握菱形的判定.
2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
3.通過教具的演示培養(yǎng)學生的學習愛好.
4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
二、教法設(shè)計
觀察分析討論相結(jié)合的.方法
三、重點·難點·疑點及解決辦法
1.教學重點:菱形的判定方法.
2.教學難點:菱形判定方法的綜合應(yīng)用.
四、課時安排
1課時
五、教具學具預備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設(shè)計
教師演示教具、創(chuàng)設(shè)情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
復習提問
1.敘述菱形的定義與性質(zhì).
2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為xxxxxxxx.
引入新課
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來學習這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問:本定理有幾個條件?
生答:兩個.
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直.
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學生口述證實)
證實時讓學生注重線段垂直平分線在這里的應(yīng)用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形.
菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):
注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結(jié)、擴展
1.小結(jié):
(1)歸納判定菱形的四種常用方法.
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
八、布置作業(yè)
教材P159中9、10、11、13
高二優(yōu)秀數(shù)學教案2
一、學情分析
本節(jié)課是在學生已學知識的基礎(chǔ)上進行展開學習的,也是對以前所學知識的鞏固和發(fā)展,但對學生的知識準備情況來看,學生對相關(guān)基礎(chǔ)知識掌握情況是很好,所以在復習時要及時對學生相關(guān)知識進行提問,然后開展對本節(jié)課的鞏固性復習。而本節(jié)課學生會遇到的困難有:數(shù)軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。
二、考綱要求
1.會用坐標表示平面向量的加法、減法與數(shù)乘運算.
2.理解用坐標表示的平面向量共線的條件.
3.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.
4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.
三、教學過程
(一)知識梳理:
1.向量坐標的求法
(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.
(2)設(shè)A(x1,y1),B(x2,y2),則
=xxxxxxxxxxxxxxxx_
||=xxxxxxxxxxxxxx_
(二)平面向量坐標運算
1.向量加法、減法、數(shù)乘向量
設(shè)=(x1,y1),=(x2,y2),則
+=-=λ=.
2.向量平行的坐標表示
設(shè)=(x1,y1),=(x2,y2),則∥?xxxxxxxxxxxxxxxx.
(三)核心考點·習題演練
考點1.平面向量的坐標運算
例1.已知A(-2,4),B(3,-1),C(-3,-4).設(shè)(1)求3+-3;
(2)求滿足=m+n的實數(shù)m,n;
練:(20xx江蘇,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)
(m,n∈R),則m-n的值為
考點2平面向量共線的坐標表示
例2:平面內(nèi)給定三個向量=(3,2),=(-1,2),=(4,1)
若(+k)∥(2-),求實數(shù)k的值;
練:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ為實數(shù),(+λ)∥,則λ=( )
思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?
方法總結(jié):
1.向量共線的兩種表示形式
設(shè)a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應(yīng)視題目的具體條件而定,一般情況涉及坐標的應(yīng)用②.
2.兩向量共線的充要條件的作用
判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.
考點3平面向量數(shù)量積的坐標運算
例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,
則的值為;的值為.
【提示】解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.
練:(20xx,安徽,13)設(shè)=(1,2),=(1,1),=+k.若⊥,則實數(shù)k的'值等于( )
【思考】兩非零向量⊥的充要條件:·=0? .
解題心得:
(1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.
(2)解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標系利用向量的數(shù)量積的坐標表示來運算,這樣可以使數(shù)量積的運算變得簡捷.
(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.
考點4:平面向量模的坐標表示
例4:(20xx湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則的值為( )
A.6B.7C.8D.9
練:(20xx,上海,12)
在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則的取值范圍是?
解題心得:
求向量的模的方法:
(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉(zhuǎn)化為數(shù)量積運算;
(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..
五、課后作業(yè)(課后習題1、2題)
高二優(yōu)秀數(shù)學教案3
一、教材分析
教材的地位和作用
期望是概率論和數(shù)理統(tǒng)計的重要概念之一,是反映隨機變量取值分布的特征數(shù),學習期望將為今后學習概率統(tǒng)計知識做鋪墊。同時,它在市場預測,經(jīng)濟統(tǒng)計,風險與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學習數(shù)學及相關(guān)學科產(chǎn)生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應(yīng)用。
[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的.教學作為本節(jié)課的教學重點。此外,學生初次應(yīng)用概念解決實際問題也較為困難,故把其作為本節(jié)課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經(jīng)歷概念的建構(gòu)這一過程,讓學生進一步體會從特殊到一般的思想,培養(yǎng)學生歸納、概括等合情推理能力。
通過實際應(yīng)用,培養(yǎng)學生把實際問題抽象成數(shù)學問題的能力和學以致用的數(shù)學應(yīng)用意識。
[情感與態(tài)度目標]
通過創(chuàng)設(shè)情境激發(fā)學生學習數(shù)學的情感,培養(yǎng)其嚴謹治學的態(tài)度。在學生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實現(xiàn)自我的價值。
三、教法選擇
引導發(fā)現(xiàn)法
四、學法指導
“授之以魚,不如授之以漁”,注重發(fā)揮學生的主體性,讓學生在學習中學會怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
高二優(yōu)秀數(shù)學教案4
一、說教材:
1、地位、作用和特點:
《xxx》是高中數(shù)學課本第xx冊(x修)的第xx章“xxx”的第xx節(jié)內(nèi)容。
本節(jié)是在學習了之后編排的。通過本節(jié)課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎(chǔ),所以是本章的重要內(nèi)容。此外,《xx》的知識與我們?nèi)粘I睢⑸a(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是xx;特點之二是:xxx。
教學目標:
根據(jù)《教學大綱》的要求和學生已有的知識基礎(chǔ)和認知能力,確定以下教學目標:
(1)知識目標:A、B、C
(2)能力目標:A、B、C
(3)德育目標:A、B
教學的重點和難點:
(1)教學重點:
(2)教學難點:
二、說教法:
基于上面的教材分析,我根據(jù)自己對研究性學習“啟發(fā)式”教學模式和新課程改革的理論認識,結(jié)合本校學生實際,主要突出了幾個方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設(shè)計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學xx真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學方法)。讓學生在探索學習知識的過程中,領(lǐng)會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應(yīng)在處理教學內(nèi)容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節(jié)課設(shè)計如下教學程序:
導入新課新課教學反饋發(fā)展
三、說學法:
學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學習方法。有效的能被學生接受的學法指導應(yīng)是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。
1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關(guān)知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
本節(jié)教師通過列舉具體事例來進行分析,歸納出,并依據(jù)此知識與具體事例結(jié)合、推導出,這正是一個分析和推理的全過程。
2、讓學生親自經(jīng)歷運用科學方法探索的過程。主要是努力創(chuàng)設(shè)應(yīng)用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創(chuàng)設(shè)探索規(guī)律的情境,引導學生以可靠的事實為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領(lǐng)悟到把可靠的事實和深刻的理論思維結(jié)合起來的特點。
3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結(jié)和推廣。
4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質(zhì)差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質(zhì)的能力。
四、教學過程:
(一)、課題引入:
教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關(guān)的事例。C、講述數(shù)學科學的有關(guān)情況。)激發(fā)學生的探究xx,引導學生提出接下去要研究的問題。
(二)、新課教學:
1、針對上面提出的問題,設(shè)計學生動手實踐,讓學生通過動手探索有關(guān)的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學生進行新問題的實驗方法設(shè)計—這時在設(shè)計上是有對比性、數(shù)學方法性的設(shè)計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的'實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結(jié)出知識的結(jié)構(gòu)。
(三)、實施反饋:
1、課堂反饋,遷移知識(遷移到與生活有關(guān)的例子)。讓學生分析有關(guān)的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。
2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。
五、板書設(shè)計:
在教學中我把黑板分為三部分,把知識要點寫在左側(cè),中間知識推導過程,右邊實例應(yīng)用。
六、說課綜述:
以上是我對《xxx》這節(jié)教材的認識和對教學過程的設(shè)計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
總之,對課堂的設(shè)計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應(yīng)用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。
高二優(yōu)秀數(shù)學教案5
一、教學內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象、恰當?shù)乩枚xxx題,許多時候能以簡馭繁、因此,在學習了橢圓、雙曲線、拋物線的'定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率、
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用xx解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣、
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義xx
【高二優(yōu)秀數(shù)學教案】相關(guān)文章:
高二優(yōu)秀數(shù)學教案11-14
高二數(shù)學教案08-27
高二數(shù)學教案12-04
關(guān)于高二數(shù)學教案12-01
中職高二數(shù)學教案11-07
最新高二數(shù)學教案09-29
高二數(shù)學教案15篇12-05
高二數(shù)學教案(15篇)12-06