高中數(shù)學(xué)數(shù)列教案(精選10篇)
作為一位杰出的教職工,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么問題來了,教案應(yīng)該怎么寫?以下是小編為大家整理的高中數(shù)學(xué)數(shù)列教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
高中數(shù)學(xué)數(shù)列教案 1
一、知識(shí)與技能
1.了解公差的概念,明確一個(gè)數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等差數(shù)列;
2.正確認(rèn)識(shí)使用等差數(shù)列的各種表示法,能靈活運(yùn)用通項(xiàng)公式求等差數(shù)列的首項(xiàng)、公差、項(xiàng)數(shù)、指定的項(xiàng).
二、過程與方法
1.通過對(duì)等差數(shù)列通項(xiàng)公式的推導(dǎo)培養(yǎng)學(xué)生:的觀察力及歸納推理能力;
2.通過等差數(shù)列變形公式的教學(xué)培養(yǎng)學(xué)生:思維的深刻性和靈活性.
三、情感態(tài)度與價(jià)值觀
通過等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識(shí).
四、教學(xué)過程
導(dǎo)入新課
師:上兩節(jié)課我們學(xué)習(xí)了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項(xiàng)公式、遞推公式、圖象法.這些方法從不同的角度反映數(shù)列的特點(diǎn).下面我們看這樣一些數(shù)列的例子:(課本P41頁的4個(gè)例子)
(1)0,5,10,15,20,25,…;
(2)48,53,58,63,…;
(3)18,15.5,13,10.5,8,5.5…;
(4)10 072,10 144,10 216,10 288,10 366,….
請(qǐng)你們來寫出上述四個(gè)數(shù)列的第7項(xiàng).
生:第一個(gè)數(shù)列的第7項(xiàng)為30,第二個(gè)數(shù)列的第7項(xiàng)為78,第三個(gè)數(shù)列的第7項(xiàng)為3,第四個(gè)數(shù)列的第7項(xiàng)為10 510.
師:我來問一下,你依據(jù)什么寫出了這四個(gè)數(shù)列的第7項(xiàng)呢?以第二個(gè)數(shù)列為例來說一說.
生:這是由第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律性我得到了這個(gè)數(shù)列的第7項(xiàng)為78.
師:說得很有道理!我再請(qǐng)同學(xué)們仔細(xì)觀察一下,看看以上四個(gè)數(shù)列有什么共同特征?我說的是共同特征.
生:1每相鄰兩項(xiàng)的差相等,都等于同一個(gè)常數(shù).
師:作差是否有順序,誰與誰相減?
生:1作差的順序是后項(xiàng)減前項(xiàng),不能顛倒.
師:以上四個(gè)數(shù)列的共同特征:從第二項(xiàng)起,每一項(xiàng)與它前面一項(xiàng)的差等于同一個(gè)常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個(gè)名字叫——等差數(shù)列.
這就是我們這節(jié)課要研究的內(nèi)容.
推進(jìn)新課
等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的.公差(常用字母“d”表示).
(1)公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來求;
(2)對(duì)于數(shù)列{an},若an-a n-1=d(與n無關(guān)的數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差.
師:定義中的關(guān)鍵字是什么?(學(xué)生:在學(xué)習(xí)中經(jīng)常遇到一些概念,能否抓住定義中的關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他學(xué)科的重要一環(huán).因此教師:應(yīng)該教會(huì)學(xué)生:如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生:分析問題、認(rèn)識(shí)問題的能力)
生:從“第二項(xiàng)起”和“同一個(gè)常數(shù)”.
師:很好!
師:請(qǐng)同學(xué)們思考:數(shù)列(1)、(2)、(3)、(4)的通項(xiàng)公式存在嗎?如果存在,分別是什么?
生:數(shù)列(1)通項(xiàng)公式為5n-5,數(shù)列(2)通項(xiàng)公式為5n+43,數(shù)列(3)通項(xiàng)公式為2.5n-15.5,….
師:好,這位同學(xué)用上節(jié)課學(xué)到的知識(shí)求出了這幾個(gè)數(shù)列的通項(xiàng)公式,實(shí)質(zhì)上這幾個(gè)通項(xiàng)公式有共同的特點(diǎn),無論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來共同思考.
。酆献魈骄浚
等差數(shù)列的通項(xiàng)公式
師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得到的,若一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則據(jù)其定義可得什么?
生:a2-a1=d,即a2=a1+d.
師:對(duì),繼續(xù)說下去!
生:a3-a2=d,即a3=a2+d=a1+2d;
a4-a3=d,即a4=a3+d=a1+3d;
師:好!規(guī)律性的東西讓你找出來了,你能由此歸納出等差數(shù)列的通項(xiàng)公式嗎?
生:由上述各式可以歸納出等差數(shù)列的通項(xiàng)公式是an=a1+(n-1)d.
師:很好!這樣說來,若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)a1和公差d,便可求得其通項(xiàng)an了.需要說明的是:此公式只是等差數(shù)列通項(xiàng)公式的猜想,你能證明它嗎?
生:前面已學(xué)過一種方法叫迭加法,我認(rèn)為可以用.證明過程是這樣的:
因?yàn)閍2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d.
師:太好了!真是活學(xué)活用啊!這樣一來我們通過證明就可以放心使用這個(gè)通項(xiàng)公式了.
。劢處煟壕v]
由上述關(guān)系還可得:am=a1+(m-1)d,
即a1=am-(m-1)d.
則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,
即等差數(shù)列的第二通項(xiàng)公式an=am+(n-m)d.(這是變通的通項(xiàng)公式)
由此我們還可以得到.
。劾}剖析]
【例1】(1)求等差數(shù)列8,5,2,…的第20項(xiàng);
。2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?
師:這個(gè)等差數(shù)列的首項(xiàng)和公差分別是什么?你能求出它的第20項(xiàng)嗎?
生:1這題太簡(jiǎn)單了!首項(xiàng)和公差分別是a1=8,d=5-8=2-5=-3.又因?yàn)閚=20,所以由等差數(shù)列的通項(xiàng)公式,得a20=8+(20-1)×(-3)=-49.
師:好!下面我們來看看第(2)小題怎么做.
生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項(xiàng)公式為an=-5-4(n-1).
由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng).
師:剛才兩個(gè)同學(xué)將問題解決得很好,我們做本例的目的是為了熟悉公式,實(shí)質(zhì)上通項(xiàng)公式就是an,a1,d,n組成的方程(獨(dú)立的量有三個(gè)).
說明:(1)強(qiáng)調(diào)當(dāng)數(shù)列{an}的項(xiàng)數(shù)n已知時(shí),下標(biāo)應(yīng)是確切的數(shù)字;(2)實(shí)際上是求一個(gè)方程的正整數(shù)解的問題.這類問題學(xué)生:以前見得較少,可向?qū)W生:著重點(diǎn)出本問題的實(shí)質(zhì):要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出數(shù)列的通項(xiàng)公式an,判斷是否存在正整數(shù)n,使得an=-401成立.
【例2】已知數(shù)列{an}的通項(xiàng)公式an=pn+q,其中p、q是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?
例題分析:
師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么?
生:只要看差an-an-1(n≥2)是不是一個(gè)與n無關(guān)的常數(shù).
師:說得對(duì),請(qǐng)你來求解.
生:當(dāng)n≥2時(shí),〔取數(shù)列{an}中的任意相鄰兩項(xiàng)an-1與an(n≥2)〕
an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù),
所以我們說{an}是等差數(shù)列,首項(xiàng)a1=p+q,公差為p.
師:這里要重點(diǎn)說明的是:
(1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,….
(2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)(n,an)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差p,直線在y軸上的截距為q.
(3)數(shù)列{an}為等差數(shù)列的充要條件是其通項(xiàng)an=pn+q(p、q是常數(shù)),稱其為第3通項(xiàng)公式.課堂練習(xí)
(1)求等差數(shù)列3,7,11,…的第4項(xiàng)與第10項(xiàng).
分析:根據(jù)所給數(shù)列的前3項(xiàng)求得首項(xiàng)和公差,寫出該數(shù)列的通項(xiàng)公式,從而求出所┣笙.
解:根據(jù)題意可知a1=3,d=7-3=4.∴該數(shù)列的通項(xiàng)公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.
評(píng)述:關(guān)鍵是求出通項(xiàng)公式.
(2)求等差數(shù)列10,8,6,…的第20項(xiàng).
解:根據(jù)題意可知a1=10,d=8-10=-2.
所以該數(shù)列的通項(xiàng)公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.
評(píng)述:要求學(xué)生:注意解題步驟的規(guī)范性與準(zhǔn)確性.
(3)100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說明理由.
分析:要想判斷一個(gè)數(shù)是否為某一個(gè)數(shù)列的其中一項(xiàng),其關(guān)鍵是要看是否存在一個(gè)正整數(shù)n值,使得an等于這個(gè)數(shù).
解:根據(jù)題意可得a1=2,d=9-2=7.因而此數(shù)列通項(xiàng)公式為an=2+(n-1)×7=7n-5.
令7n-5=100,解得n=15.所以100是這個(gè)數(shù)列的第15項(xiàng).
(4)-20是不是等差數(shù)列0,-7,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說明理由.
解:由題意可知a1=0,,因而此數(shù)列的通項(xiàng)公式為.
令,解得.因?yàn)闆]有正整數(shù)解,所以-20不是這個(gè)數(shù)列的項(xiàng).
課堂小結(jié)
師:(1)本節(jié)課你們學(xué)了什么?
(2)要注意什么?
。3)在生:活中能否運(yùn)用?(讓學(xué)生:反思、歸納、總結(jié),這樣來培養(yǎng)學(xué)生:的概括能力、表達(dá)能力)
生:通過本課時(shí)的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式a n-a n-1=d(n≥2);其次要會(huì)推導(dǎo)等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d(n≥1).
高中數(shù)學(xué)數(shù)列教案 2
一、教材分析
1、教學(xué)目標(biāo):
A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;
B.培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
C 通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
2、教學(xué)重點(diǎn)和難點(diǎn)
、俚炔顢(shù)列的概念。
、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項(xiàng)公式。
二、教法分析
采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、教學(xué)程序
本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼(表示鞋底長(zhǎng),單位是c)分別是
21,22,23,24,25,
2.某劇場(chǎng)前10排的座位數(shù)分別是:
38,40,42,44,46,48,50,52,54,56。
3.某長(zhǎng)跑運(yùn)動(dòng)員7天里每天的訓(xùn)練量(單位:)是:
7500,8000,8500,9000,9500,10000,10500。
共同特點(diǎn):
從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一個(gè)常數(shù)。
(二)新課探究
1、給出等差數(shù)列的概念:
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):
① “從第二項(xiàng)起”滿足條件;
、诠頳一定是由后項(xiàng)減前項(xiàng)所得;
、酃羁梢允钦龜(shù)、負(fù)數(shù),也可以是0。
2、推導(dǎo)等差數(shù)列的`通項(xiàng)公式
若等差數(shù)列{an }的首項(xiàng)是 ,公差是d, 則據(jù)其定義可得:
- =d 即: = +d
– =d 即: = +d = +2d
– =d 即: = +d = +3d
進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:
= +(n-1)d
此時(shí)指出:
這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:
– =d
– =d
– =d
– =d
將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d
當(dāng)n=1時(shí),上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時(shí)上面公式都成立,因此它就是等差數(shù)列{an }的通項(xiàng)公式。
接著舉例說明:若一個(gè)等差數(shù)列{ }的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用
(三)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的 、d、n、 這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項(xiàng);
。2)-401是不是等差數(shù)列-5,-9,-13,…的項(xiàng)?如果是,是第幾項(xiàng)?
第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式
例2 在等差數(shù)列{an}中,已知 =10, =31,求首項(xiàng) 與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固
例3 梯子的最高一級(jí)寬33c,最低一級(jí)寬110c,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。
(四)反饋練習(xí)
1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。
2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列
此題是對(duì)學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念。
(五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.
強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)
2.等差數(shù)列的通項(xiàng)公式 = +(n-1) d會(huì)知三求一
(六)布置作業(yè)
必做題:課本P114 習(xí)題3.2第2,6 題
選做題:已知等差數(shù)列{ }的首項(xiàng) = -24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
四、板書設(shè)計(jì)
在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。
高中數(shù)學(xué)數(shù)列教案 3
教學(xué)目標(biāo)
1.理解數(shù)列概念,了解數(shù)列和函數(shù)之間的關(guān)系
2.了解數(shù)列的通項(xiàng)公式,并會(huì)用通項(xiàng)公式寫出數(shù)列的任意一項(xiàng)
3.對(duì)于比較簡(jiǎn)單的數(shù)列,會(huì)根據(jù)其前幾項(xiàng)寫出它的個(gè)通項(xiàng)公式
4.提高觀察、抽象的能力.
教學(xué)重點(diǎn)
1.理解數(shù)列概念;
2.用通項(xiàng)公式寫出數(shù)列的任意一項(xiàng).
教學(xué)難點(diǎn)
根據(jù)一些數(shù)列的前幾項(xiàng)抽象、歸納數(shù)列的通項(xiàng)公式.
教學(xué)方法
發(fā)現(xiàn)式教學(xué)法
教具準(zhǔn)備
投影片1張
教學(xué)過程
。1)復(fù)習(xí)回顧
師:在前面第二章中我們一起學(xué)習(xí)了有關(guān)映射與函數(shù)的知識(shí),現(xiàn)在我們?cè)賮砘仡櫼?/p>
下函數(shù)的定義.
生:(齊聲回答函數(shù)定義).
師:函數(shù)定義(板書)
如果A、B都是非空擻集,那么A到B的映射就叫做A到B的函數(shù),記作:,其中
。á颍┲v授新課
師:在學(xué)習(xí)第二章的基礎(chǔ)上,今天我們一起來學(xué)習(xí)第三章數(shù)列有關(guān)知識(shí),首先我們來看一些例子。(放投影片)
4,5,6,7,8,9,10.①
、
1,0.1,0.01,0.001,0.0001….③
1,1.4,1.41,1.41,4,….④
-1,1,-1,1,-1,1,….⑤
2,2,2,2,2,
師:觀察這些例子,看它們有何共同特點(diǎn)?
。▎l(fā)學(xué)生發(fā)現(xiàn)數(shù)列定義)
生:歸納、總結(jié)上述例子共同特點(diǎn):
1.均是一列數(shù);
2.有一定次序
師:引出數(shù)列及有關(guān)定義
一、定義
1.?dāng)?shù)列:按一定次序排列的一列數(shù)叫做數(shù)列;
2.項(xiàng):數(shù)列中的`每一個(gè)數(shù)都叫做這個(gè)數(shù)列的項(xiàng)。
各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))。第2項(xiàng),…,第n項(xiàng)…。
如:上述例子均是數(shù)列,其中例①:“4”是這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))“9”是這個(gè)數(shù)列的第6項(xiàng)。
3.?dāng)?shù)列的一般形式:,或簡(jiǎn)記為,其中是數(shù)列的第n項(xiàng)
生:綜合上述例子,理解數(shù)列及項(xiàng)定義
如:例②中,這是一個(gè)數(shù)列,它的首項(xiàng)是“1”,“”是這個(gè)數(shù)列的第“3”項(xiàng),等等。
師:下面我們?cè)賮砜催@些數(shù)列的每一項(xiàng)與這一項(xiàng)的序號(hào)是否有一定的對(duì)應(yīng)關(guān)系?這一關(guān)系可否用一個(gè)公式表示?(引導(dǎo)學(xué)生進(jìn)一步理解數(shù)列與項(xiàng)的定義,從而發(fā)現(xiàn)數(shù)列的通項(xiàng)公式)對(duì)于上面的數(shù)列②,第一項(xiàng)與這一項(xiàng)的序號(hào)有這樣的對(duì)應(yīng)關(guān)系:
項(xiàng)
↓↓↓↓↓
序號(hào)12345
師:看來,這個(gè)數(shù)的第一項(xiàng)與這一項(xiàng)的序號(hào)可用一個(gè)公式:來表示其對(duì)應(yīng)關(guān)系
即:只要依次用1,2,3…代替公式中的n,就可以求出該數(shù)列相應(yīng)的各項(xiàng)
生:結(jié)合上述其他例子,練習(xí)找其對(duì)應(yīng)關(guān)系
如:數(shù)列①:=n+3(1≤n≤7)
數(shù)列③:≥1)
數(shù)列⑤:n≥1)
4.通項(xiàng)公式:如果數(shù)列的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式來表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式。
師:從映射、函數(shù)的觀點(diǎn)來看,數(shù)列也可以看作是一個(gè)定義域?yàn)檎麛?shù)集N+(或它的有限子集的函數(shù),當(dāng)自變量從小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值,數(shù)列的通項(xiàng)公式就是相應(yīng)函數(shù)的解析式。
師:對(duì)于函數(shù),我們可以根據(jù)其函數(shù)解析式畫出其對(duì)應(yīng)圖象。看來,數(shù)列也可根據(jù)其通項(xiàng)公式來函出其對(duì)應(yīng)圖象,下面同學(xué)們練習(xí)畫數(shù)列①②的圖象。
生:根據(jù)扭注通項(xiàng)公式畫出數(shù)列①,②的圖象,并總結(jié)其特點(diǎn)。
圖3?1
特點(diǎn):它們都是一群弧立的點(diǎn)
5.有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列
6.無窮數(shù)列:項(xiàng)數(shù)無限的數(shù)列
二、例題講解
略
高中數(shù)學(xué)數(shù)列教案 4
一、設(shè)計(jì)思想
本節(jié)課是數(shù)列的起始課,著重研究數(shù)列的概念,明確數(shù)列與函數(shù)的關(guān)系,用函數(shù)的思想看待數(shù)列。通過引導(dǎo)學(xué)生通過對(duì)實(shí)例的分析體會(huì)數(shù)列的有關(guān)概念,并與集合類比,通過類比,學(xué)生能認(rèn)識(shí)到數(shù)列的明確性、有序性和可重復(fù)性的特點(diǎn)。在體會(huì)數(shù)列與集合的區(qū)別中,學(xué)生意識(shí)到數(shù)列中的每一項(xiàng)與所在位置有關(guān),并通研究數(shù)列的表示法,學(xué)生意識(shí)到數(shù)列中還有潛在的自變量——序號(hào),從而發(fā)現(xiàn)數(shù)列也是一種特殊的函數(shù),能用函數(shù)的觀點(diǎn)重新看待數(shù)列。
二、教學(xué)目標(biāo)
1.通過自然界和生活中實(shí)例,學(xué)生意識(shí)到有序的數(shù)是存在的,能概況出數(shù)列的概念,并能辨析出數(shù)列和集合的區(qū)別;
2.通過思考數(shù)列的表示,學(xué)生意識(shí)到可以用表達(dá)式簡(jiǎn)潔的表達(dá)數(shù)列,能分析出數(shù)列的項(xiàng)是與序號(hào)相關(guān),需要借助于序號(hào)來表示數(shù)列的項(xiàng);
3.在用表達(dá)式表示數(shù)列的過程中,學(xué)生發(fā)現(xiàn)項(xiàng)與序號(hào)的對(duì)應(yīng)關(guān)系,認(rèn)識(shí)到數(shù)列是一種特殊的函數(shù),能用函數(shù)的觀點(diǎn)重新研究數(shù)列;
4.通過對(duì)一列數(shù)的觀察,能用聯(lián)系的觀點(diǎn)看待數(shù)列,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
5.從現(xiàn)實(shí)出發(fā),學(xué)生能抽象出現(xiàn)實(shí)生活中的數(shù)列
重點(diǎn):理解數(shù)列的概念,認(rèn)識(shí)數(shù)列是反映自然規(guī)律的基本數(shù)學(xué)模型難點(diǎn):認(rèn)識(shí)數(shù)列是一種特殊的函數(shù),發(fā)現(xiàn)數(shù)列與函數(shù)之間的關(guān)系
三、教學(xué)過程
活動(dòng)一:生活中實(shí)例,概括出數(shù)列的概念
1.背景引入:
觀察以下情境:
情境1:各年樹木的枝干數(shù): 1,1,2,3,5,8,...
情境2:某彗星出現(xiàn)的年份: 1740,1823,1906,1989,2072,...
情境3:細(xì)胞分裂的個(gè)數(shù): 1,2,4,8,16,...
情境4 : A同學(xué)最近6次考試的名次17, 18, 5, 8, 10, 8
情境5:奇虎360最近一個(gè)周每日的收盤價(jià):
問題1:以上各情境中都有一系列的數(shù),你看了這些數(shù),有什么感受?
或者有什么共同特征?
共同特點(diǎn):
(1)排成一列,可以表達(dá)信息
(2)順序不能交換,否則意義不一樣.
設(shè)計(jì)思想:通過例子,學(xué)生感受到數(shù)列在現(xiàn)實(shí)生活中是大量存在的,一列數(shù)的順序是蘊(yùn)含信息的,從而感受到數(shù)列的有序性。
2.數(shù)列的概念
(1)數(shù)列、項(xiàng)的定義:
通過上述的例子,讓學(xué)生思考以上一列數(shù)據(jù)共同的特征,從而歸納出數(shù)列的定義:
按照一定次序排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。
問題2:能否用準(zhǔn)確的語言給我描述一下情境4中的數(shù)列?
設(shè)計(jì)思想:通過讓學(xué)生描述,學(xué)生再次體會(huì)數(shù)列中除了數(shù)之外,還蘊(yùn)含著重要的信息:序號(hào)。
問題3:這兩個(gè)數(shù)都是8,表示的含義是否一樣?
不一樣,第四項(xiàng),第六項(xiàng),即每一項(xiàng)結(jié)合序號(hào)才有意義,所以,描述數(shù)列的項(xiàng)時(shí)必須包含位置信息,即序號(hào)。
排在第一位的叫首項(xiàng),排在第二位的叫第二項(xiàng)……排在第n位的'數(shù)
問題4:根據(jù)對(duì)數(shù)列的理解,你能否舉出數(shù)列的例子?
答:我校高一年級(jí)各班的人數(shù)。
問題5:能否抽象出數(shù)列的一般形式?
a1,a2,a3,...,an,...,記為?an?
(2)數(shù)列與集合的區(qū)別
問題6:數(shù)列是集合嗎?
通過與集合的特點(diǎn)進(jìn)行對(duì)比,更清楚的數(shù)列的特點(diǎn)。
讓學(xué)生與前一章學(xué)習(xí)的集合做比較,可以更清楚的了解到數(shù)列的本質(zhì)性的定義。也符合建構(gòu)主義的舊知基礎(chǔ)上形成新知的有效學(xué)習(xí)。
(3)數(shù)列的分類?能不能不講?
活動(dòng)二:思考數(shù)列的表示——通項(xiàng)公式
3.通項(xiàng)公式的概念
問題7:對(duì)于上述情境中的數(shù)列,有沒有更簡(jiǎn)潔的表示方式?
學(xué)生活動(dòng):學(xué)生可能會(huì)用序號(hào)n來表示,問學(xué)生為什么用n來表示,引出通項(xiàng)公式的概念
一般地,如果數(shù)列?an?的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)公式來表示.那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.
4.通項(xiàng)公式的存在性
問題8:是否任意一個(gè)數(shù)列都能寫出通項(xiàng)公式?
寫出通項(xiàng)公式
活動(dòng)三:用函數(shù)的觀點(diǎn)看待數(shù)列
5.數(shù)列也是函數(shù)
問題9:在數(shù)列?an?中,對(duì)于每一個(gè)正整數(shù)n(或n1,2,...,k?),是不是都有一個(gè)數(shù)an與之對(duì)應(yīng)?
問題10:數(shù)列是不是函數(shù)?
通過前鋪墊,學(xué)生觀察數(shù)列的項(xiàng)與它數(shù)列中的序號(hào)之間的對(duì)應(yīng)關(guān)系,讓學(xué)生理解數(shù)列是函數(shù)。
把序號(hào)看作看作自變量,數(shù)列中的項(xiàng)看作隨之變動(dòng)的量,用函數(shù)的觀點(diǎn)來深化數(shù)列的概念。
6.用函數(shù)的觀點(diǎn)看待數(shù)列
問題11:所以,除了用解析式表示數(shù)列,還有哪些方法?
再?gòu)暮瘮?shù)的表示方法過渡到數(shù)列的三種表示方法:列表法,圖象法,通項(xiàng)公式法。學(xué)生通過觀察發(fā)現(xiàn)數(shù)列的圖象是一些離散的點(diǎn)。
例2.已知數(shù)列?an?的通項(xiàng)公式,寫出這個(gè)數(shù)列的前5項(xiàng),并作出它的圖象:(?1)nn(1)an?; (2).an?n n?12
問題12:數(shù)列的圖象的特點(diǎn)是什么?
數(shù)列的圖象是一些孤立的點(diǎn)。
通過學(xué)生觀察數(shù)列的項(xiàng)與它數(shù)列中的序號(hào)之間的對(duì)應(yīng)關(guān)系,讓學(xué)生理解數(shù)列是以特殊的函數(shù),再?gòu)暮瘮?shù)的表示方法過度到數(shù)列的三種表示方法:列表法,圖象法,數(shù)列的通項(xiàng)。學(xué)生通過觀察發(fā)現(xiàn)數(shù)列的圖象是一些離散的點(diǎn)。最后通過通項(xiàng)求數(shù)列的項(xiàng),進(jìn)而升華到觀察數(shù)列的前幾項(xiàng)寫出數(shù)列的通項(xiàng)。
課堂小結(jié)
1.數(shù)列的概念;
2.求數(shù)列的通項(xiàng)公式的要領(lǐng).
高中數(shù)學(xué)數(shù)列教案 5
一、設(shè)計(jì)思想
數(shù)學(xué)是思維的體操,是培養(yǎng)學(xué)生分析問題、解決問題的能力及創(chuàng)造能力的載體,新課程倡導(dǎo):強(qiáng)調(diào)過程,強(qiáng)調(diào)學(xué)生探索新知識(shí)的經(jīng)歷和獲得新知的體驗(yàn),不能在讓教學(xué)脫離學(xué)生的內(nèi)心感受,必須讓學(xué)生追求過程的體驗(yàn)。基于以上認(rèn)識(shí),在設(shè)計(jì)本節(jié)課時(shí),教師所考慮的不是簡(jiǎn)單告訴學(xué)生等差數(shù)列的定義和通項(xiàng)公式,而是創(chuàng)造一些數(shù)學(xué)情境,讓學(xué)生自己去發(fā)現(xiàn)、證明。在這個(gè)過程中,學(xué)生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學(xué)生的學(xué)習(xí)興趣,也提高了他們提出問題解決問題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導(dǎo)的數(shù)學(xué)理念。
本節(jié)課借助多媒體輔助手段,創(chuàng)設(shè)問題的情境,讓探究式教學(xué)走進(jìn)課堂,保障學(xué)生的主體地位,喚醒學(xué)生的主體意識(shí),發(fā)展學(xué)生的主體能力,塑造學(xué)生的主體人格,讓學(xué)生在參與中學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)合作、學(xué)會(huì)創(chuàng)新。
二、教材分析
高中數(shù)學(xué)必修五第二章第二節(jié),等差數(shù)列,兩課時(shí)內(nèi)容,本節(jié)是第一課時(shí)。研究等差數(shù)列的定義、通項(xiàng)公式的推導(dǎo),借助生活中豐富的典型實(shí)例,讓學(xué)生通過分析、推理、歸納等活動(dòng)過程,從中了解和體驗(yàn)等差數(shù)列的定義和通項(xiàng)公式。通過本節(jié)課的學(xué)習(xí)要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式,并且了解等差數(shù)列與一次函數(shù)的關(guān)系。
本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點(diǎn)內(nèi)容。在高考中也是重點(diǎn)考察內(nèi)容之一,并且在實(shí)際生活中有著廣泛的應(yīng)用,它起著承前啟后的作用。同時(shí)也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列是學(xué)生探究特殊數(shù)列的開始,它對(duì)后續(xù)內(nèi)容的學(xué)習(xí),無論在知識(shí)上,還是在方法上都具有積極的意義。
三、學(xué)情分析
學(xué)生已經(jīng)具有一定的理性分析能力和概括能力,且對(duì)數(shù)列的知識(shí)有了初步的接觸和認(rèn)識(shí),對(duì)數(shù)學(xué)公式的運(yùn)用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動(dòng)過程,對(duì)函數(shù)、方程思想體會(huì)逐漸深刻。他們的思維正從屬于經(jīng)驗(yàn)性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗(yàn)材料來理解抽象的邏輯關(guān)系。同時(shí)思維的嚴(yán)密性還有待加強(qiáng)。
四、教學(xué)目標(biāo)
1.知識(shí)目標(biāo):理解等差數(shù)列概念,掌握等差數(shù)列的通項(xiàng)公式,了解等差數(shù)列與一次函數(shù)的關(guān)系。
2.能力目標(biāo):培養(yǎng)學(xué)生觀察、歸納能力,應(yīng)用數(shù)學(xué)公式的能力及滲透函數(shù)、方程的思想。
3.情感目標(biāo):體驗(yàn)從特殊到一般,又到特殊的認(rèn)知規(guī)律,提高數(shù)學(xué)猜想、歸納的能力。
五、重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):等差數(shù)列的概念及通項(xiàng)公式的推導(dǎo)。
教學(xué)難點(diǎn):對(duì)等差數(shù)列概念的理解及學(xué)會(huì)通項(xiàng)公式的推導(dǎo)及應(yīng)用。
六、教學(xué)策略和手段
數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)共同發(fā)展的過程,結(jié)合學(xué)生的實(shí)際情況,及本節(jié)內(nèi)容的特點(diǎn),我采用的是“問題教學(xué)法”,其主導(dǎo)思想是以探究式教學(xué)思想為主導(dǎo),由教師提出一系列精心設(shè)計(jì)的'問題,在教師的啟發(fā)指導(dǎo)下,讓學(xué)生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而使學(xué)生即獲得知識(shí)又發(fā)展智能的目的。
教學(xué)手段:多媒體計(jì)算機(jī)和傳統(tǒng)黑板相結(jié)合。通過計(jì)算機(jī)模擬演示,使學(xué)生獲得感性知識(shí)的同時(shí),為掌握理性知識(shí)創(chuàng)造條件,這樣做,可以使學(xué)生有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學(xué)生更好的經(jīng)歷整個(gè)教學(xué)過程。
七、課前準(zhǔn)備
學(xué)生預(yù)習(xí),教師做好課件并安裝好。
八、教學(xué)過程
創(chuàng)設(shè)情景,引入概念
設(shè)計(jì)意圖:希望學(xué)生能通過日常生活中的實(shí)際問題的分析對(duì)比,建立等差數(shù)列模型,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過程。
師生活動(dòng):
情景1:
師—把班上學(xué)生學(xué)號(hào)從小到大排成一列:
學(xué)生:
師—這是數(shù)列嗎?你能歸納出它的通項(xiàng)公式嗎?
學(xué)生—是,師—把上面的數(shù)列各項(xiàng)依次記為,填空:
學(xué)生—填空并歸納出一般規(guī)律:
師—上面這個(gè)規(guī)律還有其他形式嗎?
學(xué)生—或者寫成
注:要對(duì)強(qiáng)調(diào),原因在于有意義。
師—你能用普通語言概括上面的規(guī)律嗎?
學(xué)生—自由發(fā)言,選擇最恰當(dāng)?shù)恼Z言。
上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。
情景2:看幻燈片上的實(shí)例
(1)2008年北京奧運(yùn)會(huì),女子舉重共設(shè)置7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):
48,53,58,63
(2)水庫(kù)的管理員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚。如果一個(gè)水庫(kù)的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位組成數(shù)列(單位:m)
18,15.5,13,10.5,8,5.5
(3)我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計(jì)算下一期的利息。按照單利計(jì)算本利和的公式是:
本利和=本金(1+利率存期)
時(shí)間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅)
各年末本利和(單位:元)
10072,10144,10216,10288,10360
師:上面的三個(gè)數(shù)列又分別有什么規(guī)律呢?
學(xué)生—(1),(2),(3),師—?dú)w納上面數(shù)列的共同特征:
(d是常數(shù)),師—滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個(gè)名字?
學(xué)生(共同)—等差數(shù)列。
提出課題《等差數(shù)列》
師—給出文字?jǐn)⑹龅亩x(學(xué)生敘述,板書定義):
一般的,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項(xiàng)。
對(duì)定義進(jìn)行分析,強(qiáng)調(diào):= 1 GB3 ①同一個(gè)常數(shù);= 2 GB3 ②從第二項(xiàng)起。
師—這樣的數(shù)列在生活中的例子,誰能再舉幾個(gè)?
學(xué)生—某劇場(chǎng)前8排的座位數(shù)分別是
52,50,48,46,44,42,40,38.
學(xué)生—全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼分別是
21,21.5,22,22.5,23,23.5,24,24.5,25
搶答:觀察下列數(shù)列是否為等差數(shù)列
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
注:常數(shù)列也是等差數(shù)列,公差是0。
推進(jìn)概念,發(fā)現(xiàn)性質(zhì)
設(shè)計(jì)意圖:概括等差中項(xiàng)的概念?偨Y(jié)等差中項(xiàng)公式,用于發(fā)現(xiàn)等差數(shù)列的性質(zhì)。
師生活動(dòng):
師—想一想,一個(gè)等差數(shù)列最少有幾項(xiàng)?它們之間有什么關(guān)系?
學(xué)生思考后回答,至少三項(xiàng),然后老師引導(dǎo)學(xué)生概括等差中項(xiàng)的概念。
設(shè)三個(gè)數(shù)成等差數(shù)列,則A叫a與b的等差中項(xiàng)。同時(shí)有A-a=b-A,說明:(1)上面式子反過來也成立。(2)等差數(shù)列中的任意連續(xù)三項(xiàng)都構(gòu)成等差數(shù)列,反之亦成立。
(三)探究通項(xiàng)公式
設(shè)計(jì)意圖:通過具體數(shù)列的通項(xiàng)公式,總結(jié)一般等差數(shù)列的通項(xiàng)公式,體會(huì)特殊到一般的數(shù)學(xué)思想方法。
師生活動(dòng):
師—對(duì)于一個(gè)數(shù)列,我們最關(guān)心的是每一項(xiàng),而這就要求我們能知道它的通項(xiàng)公式。下面一起來研究等差數(shù)列的通項(xiàng)公式。
先寫出上面引例中等差數(shù)列的通項(xiàng)公式。再推導(dǎo)一般等差數(shù)列的通項(xiàng)公式。
師—若一個(gè)數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項(xiàng)公式是什么?
啟發(fā)學(xué)生:(歸納、猜想)可用首項(xiàng)與公差表示數(shù)列中任意一項(xiàng)。
學(xué)生—即:
即:
即:
由此可得:
師—從第幾項(xiàng)開始?xì)w納的?
學(xué)生—第二項(xiàng),所以n≥2。
師—n=1時(shí)呢?
學(xué)生—當(dāng)n=1時(shí),等式也是成立,因而等差數(shù)列的通項(xiàng)公式
師—很好!
高中數(shù)學(xué)數(shù)列教案 6
教學(xué)目標(biāo)
1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.
2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.
3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).
教學(xué)用具
投影儀,多媒體軟件,電腦.
教學(xué)方法
討論、談話法.
教學(xué)過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn).(幻燈片)
①-2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
、243,81,27,9,3,1,…
⑤31,29,27,25,23,21,19,…
、1,-1,1,-1,1,-1,1,-1,…
、1,-10,100,-1000,10000,-100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).
二、講解新課
請(qǐng)學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——. (這里播放變形蟲分裂的多媒體軟件的第一步)
(板書)
1.的定義(板書)
根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出的定義,標(biāo)注出重點(diǎn)詞語.
請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的.數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問理由,引出對(duì)的認(rèn)識(shí):
2.對(duì)定義的認(rèn)識(shí)(板書)
(1)的首項(xiàng)不為0;
(2)的每一項(xiàng)都不為0,即;
問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?
(3)公比不為0.
用數(shù)學(xué)式子表示的定義.
是①.在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?
式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.
3.的通項(xiàng)公式(板書)
問題:用和表示第項(xiàng).
、俨煌耆珰w納法
②疊乘法…這個(gè)式子相乘得,所以.
(板書)(1)的通項(xiàng)公式
得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.
(板書)(2)對(duì)公式的認(rèn)識(shí)
由學(xué)生來說,最后歸結(jié):
①函數(shù)觀點(diǎn);
、诜匠趟枷(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).
這里強(qiáng)調(diào)方程思想解決問題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.
1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;
2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;
3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.
四、作業(yè)(略)
五、板書設(shè)計(jì)
1.等比數(shù)列的定義
2.對(duì)定義的認(rèn)識(shí)
3.等比數(shù)列的通項(xiàng)公式
(1)公式
(2)對(duì)公式的認(rèn)識(shí)
高中數(shù)學(xué)數(shù)列教案 7
一、教學(xué)內(nèi)容分析
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。
二、學(xué)生學(xué)習(xí)情況分析
教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。
三、設(shè)計(jì)思想
1、教法
、耪T導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。
、品纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性。
、侵v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。
2、學(xué)法
引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問題、水庫(kù)水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。
用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo)。
在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)目標(biāo)
通過本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問題;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):
①等差數(shù)列的概念。
、诘炔顢(shù)列的'通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。
難點(diǎn):
①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。
、诶斫獾炔顢(shù)列是一種函數(shù)模型。
關(guān)鍵:
等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。
六、教學(xué)過程
教學(xué)環(huán)節(jié)情境設(shè)計(jì)和學(xué)習(xí)任務(wù)學(xué)生活動(dòng)設(shè)計(jì)意圖創(chuàng)設(shè)情景在南北朝時(shí)期《張邱建算經(jīng)》中,有一道題“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下四人后入得金三斤,持出,中間三人未到者,亦依等次更給,問各得金幾何,及未到三人復(fù)應(yīng)得金幾何“。
這個(gè)問題該怎樣解決呢??jī)A聽課堂引入探索研究由學(xué)生觀察分析并得出答案:
在現(xiàn)實(shí)生活中,我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,___,___,___,___,…
水庫(kù)的管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清理水庫(kù)的雜魚。如果一個(gè)水庫(kù)的水位為18cm,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位組成數(shù)列(單位:m):18,15.5,13,10.5,8,5.5觀察分析,發(fā)表各自的意見引向課題發(fā)現(xiàn)規(guī)律思考:同學(xué)們觀察一下上面的這兩個(gè)數(shù)列:
0,5,10,15,20,…… ①
18,15.5,13,10.5,8,5.5 ②
看這些數(shù)列有什么共同特點(diǎn)呢?觀察分析并得出答案:
引導(dǎo)學(xué)生觀察相鄰兩項(xiàng)間的關(guān)系,得到:
對(duì)于數(shù)列①,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于5;
對(duì)于數(shù)列②,從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于-2.5;
由學(xué)生歸納和概括出,以上兩個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一個(gè)常數(shù)(即:每個(gè)都具有相鄰兩項(xiàng)差為同一個(gè)常數(shù)的特點(diǎn))。通過分析,激發(fā)學(xué)生學(xué)習(xí)的探究知識(shí)的興趣,引導(dǎo)揭示數(shù)列的共性特點(diǎn)。
總結(jié)提高[等差數(shù)列的概念]
對(duì)于以上幾組數(shù)列我們稱它們?yōu)榈炔顢?shù)列。請(qǐng)同學(xué)們根據(jù)我們剛才分析等差數(shù)列的特征,嘗試著給等差數(shù)列下個(gè)定義:
等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。那么對(duì)于以上兩組等差數(shù)列,它們的公差依次是5,5,-2.5。學(xué)生認(rèn)真閱讀課本相關(guān)概念,找出關(guān)鍵字。通過學(xué)生自己閱讀課本,找出關(guān)鍵字,提高學(xué)生的閱讀水平和思維概括能力,學(xué)會(huì)抓重點(diǎn)。提問:如果在與中間插入一個(gè)數(shù)A,使,A,成等差數(shù)列數(shù)列,那么A應(yīng)滿足什么條件?由學(xué)生回答:因?yàn)閍,A,b組成了一個(gè)等差數(shù)列,那么由定義可以知道:A-a=b-A
所以就有讓學(xué)生參與到知識(shí)的形成過程中,獲得數(shù)學(xué)學(xué)習(xí)的成就感。由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列,這時(shí),A叫做a與b的等差中項(xiàng)。
不難發(fā)現(xiàn),在一個(gè)等差數(shù)列中,從第2項(xiàng)起,每一項(xiàng)(有窮數(shù)列的末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等差中項(xiàng)。
如數(shù)列:1,3,5,7,9,11,13…中5是3和7的等差中項(xiàng),1和9的等差中項(xiàng)。
9是7和11的等差中項(xiàng),5和13的等差中項(xiàng)。
看來,從而可得在一等差數(shù)列中,若m+n=p+q
則深入探究,得到更一般化的結(jié)論引領(lǐng)學(xué)習(xí)更深入的探究,提高學(xué)生的學(xué)習(xí)水平。
總結(jié)提高[等差數(shù)列的通項(xiàng)公式]
對(duì)于以上的等差數(shù)列,我們能不能用通項(xiàng)公式將它們表示出來呢?這是我們接下來要學(xué)習(xí)的內(nèi)容。
⑴、我們是通過研究數(shù)列的第n項(xiàng)與序號(hào)n之間的關(guān)系去寫出數(shù)列的通項(xiàng)公式的。下面由同學(xué)們根據(jù)通項(xiàng)公式的定義,寫出這三組等差數(shù)列的通項(xiàng)公式。由學(xué)生經(jīng)過分析寫出通項(xiàng)公式:
高中數(shù)學(xué)數(shù)列教案 8
教學(xué)目標(biāo):
1.知識(shí)與技能目標(biāo):理解等差數(shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,掌握并會(huì)用等差數(shù)列的通項(xiàng)公式,初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\(yùn)用。
2.過程與方法目標(biāo):培養(yǎng)學(xué)生觀察分析、猜想歸納、應(yīng)用公式的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。
3.情感態(tài)度與價(jià)值觀目標(biāo):通過對(duì)等差數(shù)列的研究培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知的精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
教學(xué)重點(diǎn):
等差數(shù)列的概念及通項(xiàng)公式。
教學(xué)難點(diǎn):
(1)理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。
(2)等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。
教具:
多媒體、實(shí)物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
1.回憶上一節(jié)課學(xué)習(xí)數(shù)列的定義,請(qǐng)舉出一個(gè)具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項(xiàng)公式、遞推公式。我們這節(jié)課接著學(xué)習(xí)一類特殊的數(shù)列——等差數(shù)列。
2.由生活中具體的數(shù)列實(shí)例引入
(1).國(guó)際奧運(yùn)會(huì)早期,撐桿跳高的記錄近似的由下表給出:
你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項(xiàng)之間有什么關(guān)系嗎?
(2)某劇場(chǎng)前10排的座位數(shù)分別是:
48、46、44、42、40、38、36、34、32、30
引導(dǎo)學(xué)生觀察:數(shù)列①、②有何規(guī)律?
引導(dǎo)學(xué)生發(fā)現(xiàn)這些數(shù)字相鄰兩個(gè)數(shù)字的差總是一個(gè)常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。
二.新課探究,推導(dǎo)公式
1.等差數(shù)列的概念
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
強(qiáng)調(diào)以下幾點(diǎn):
、 “從第二項(xiàng)起”滿足條件;
、诠頳一定是由后項(xiàng)減前項(xiàng)所得;
、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );
所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。
在學(xué)生對(duì)等差數(shù)列有了直觀認(rèn)識(shí)的基礎(chǔ)上,我將給出練習(xí)題,以鞏固知識(shí)的.學(xué)習(xí)。
[練習(xí)一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項(xiàng)a1和公差d,如果不是,說明理由。
1.3,5,7,…… √ d=2
2.9,6,3,0,-3,…… √ d=-3
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
在這個(gè)過程中我將采用邊引導(dǎo)邊提問的方法,以充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
2.等差數(shù)列通項(xiàng)公式
如果等差數(shù)列{an}首項(xiàng)是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d
此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:
n=a1+(n-1)d
a2-a1=d
a3-a2=d
a4-a3 =d
……
an –a(n-1) =d
將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到
an-a1=(n-1)d
即an=a1+(n-1)d (Ⅰ)
當(dāng)n=1時(shí),(Ⅰ)也成立,所以對(duì)一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項(xiàng)公式。
三.應(yīng)用舉例
例1求等差數(shù)列,12,8,4,0,…的第10項(xiàng);20項(xiàng);第30項(xiàng);
例2 -401是不是等差數(shù)列-5,-9,-13,…的項(xiàng)?如果是,是第幾項(xiàng)?
四.反饋練習(xí)
1.P293練習(xí)A組第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)做完上述題目,教師提問)。目的:使學(xué)生熟悉通項(xiàng)公式對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。
五.歸納小結(jié)提煉精華
(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.
強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)
2.等差數(shù)列的通項(xiàng)公式an= a1+(n-1) d會(huì)知三求一
六.課后作業(yè)運(yùn)用鞏固
必做題:課本P284習(xí)題A組第3,4,5題
高中數(shù)學(xué)數(shù)列教案 9
[教學(xué)目標(biāo)]
1.知識(shí)與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問題。
2.過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。
3.情感態(tài)度與價(jià)值觀目標(biāo):通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時(shí)總結(jié)的好習(xí)慣。
[教學(xué)重難點(diǎn)]
1.教學(xué)重點(diǎn):等差數(shù)列的概念的理解,通項(xiàng)公式的推導(dǎo)及應(yīng)用。
2.教學(xué)難點(diǎn):
(1)對(duì)等差數(shù)列中“等差”兩字的把握;
(2)等差數(shù)列通項(xiàng)公式的推導(dǎo)。
[教學(xué)過程]
一、課題引入
創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)
二、新課探究
(一)等差數(shù)列的定義
1、等差數(shù)列的定義
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
(1)定義中的關(guān)健詞有哪些?
(2)公差d是哪兩個(gè)數(shù)的差?
(二)等差數(shù)列的通項(xiàng)公式
探究1:等差數(shù)列的通項(xiàng)公式(求法一)
如果等差數(shù)列首項(xiàng)是,公差是,那么這個(gè)等差數(shù)列如何表示?呢?
根據(jù)等差數(shù)列的定義可得:
因此等差數(shù)列的通項(xiàng)公式就是:,
探究2:等差數(shù)列的通項(xiàng)公式(求法二)
根據(jù)等差數(shù)列的定義可得:
將以上-1個(gè)式子相加得等差數(shù)列的通項(xiàng)公式就是:,
三、應(yīng)用與探索
例1、(1)求等差數(shù)列8,5,2,…,的第20項(xiàng)。
(2)等差數(shù)列-5,-9,-13,…,的第幾項(xiàng)是–401?
(2)、分析:要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出通項(xiàng)公式,并判斷是否存在正整數(shù)n,使得成立,實(shí)質(zhì)上是要求方程的`正整數(shù)解。
例2、在等差數(shù)列中,已知=10,=31,求首項(xiàng)與公差d.
解:由,得。
在應(yīng)用等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d過程中,對(duì)an,a1,n,d這四個(gè)變量,知道其中三個(gè)量就可以求余下的一個(gè)量,這是一種方程的思想。
鞏固練習(xí)
1.等差數(shù)列{an}的前三項(xiàng)依次為a-6,-3a-5,-10a-1,則a=()。
2.一張?zhí)葑幼罡咭患?jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。求公差d。
四、小結(jié)
1.等差數(shù)列的通項(xiàng)公式:
公差;
2.等差數(shù)列的計(jì)算問題,通常知道其中三個(gè)量就可以利用通項(xiàng)公式an=a1+(n-1)d,求余下的一個(gè)量;
3.判斷一個(gè)數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;
4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題.
五、作業(yè):
1、必做題:課本第40頁習(xí)題2.2第1,3,5題
2、選做題:如何以最快的速度求:1+2+3+???+100=
高中數(shù)學(xué)數(shù)列教案 10
一、教學(xué)目標(biāo)
【知識(shí)與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會(huì)等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及蘊(yùn)含的數(shù)學(xué)思想。
【過程與方法】在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識(shí)、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度與價(jià)值觀】通過對(duì)等差數(shù)列的研究,具備主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
等差數(shù)列的概念、等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。
【教學(xué)難點(diǎn)】
等差數(shù)列通項(xiàng)公式的推導(dǎo)。
三、教學(xué)過程
環(huán)節(jié)一:導(dǎo)入新課
教師PPT展示幾道題目:
1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個(gè)數(shù),可以得到數(shù)列:0,5,15,20,25 2.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。
在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級(jí)別,其中交情的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):48,53,58,63。
教師提問學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的差都等于一個(gè)常數(shù),教師引出等差數(shù)列。
環(huán)節(jié)二:探索新知
1.等差數(shù)列的概念
學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的.概念
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?
環(huán)節(jié)三:課堂練習(xí)
搶答:下列數(shù)列是否為等差數(shù)列?
。1)1,2,4,6,8,10,12,……
。2)0,1,2,3,4,5,6,……
(3)3,3,3,3,3,3,3,……
。4)-8,-6,-4,-2,0,2,4,……
。5)3,0,-3,-6,-9,……
環(huán)節(jié)四:小結(jié)作業(yè)
小結(jié):等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。
關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。
作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。
【高中數(shù)學(xué)數(shù)列教案】相關(guān)文章:
高中數(shù)學(xué)數(shù)列教案5篇12-30