熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現在位置:范文先生網>教案大全>數學教案>初中數學命題教案

初中數學命題教案

時間:2023-02-23 17:33:11 數學教案 我要投稿
  • 相關推薦

初中數學命題教案

  作為一名老師,時常會需要準備好教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。教案要怎么寫呢?以下是小編精心整理的初中數學命題教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

初中數學命題教案

初中數學命題教案1

  教學目標

  1。進一步掌握有理數的運算法則和運算律;

  2。使學生能夠熟練地按有理數運算順序進行混合運算;

  3。注意培養(yǎng)學生的運算能力。

  教學重點和難點

  重點:有理數的混合運算。

  難點:準確地掌握有理數的運算順序和運算中的符號問題。

  課堂教學過程設計

  一、從學生原有認知結構提出問題

  1、計算(五分鐘練習:

  (5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;

  (13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;

  (17)(-2)4;(18)(-4)2;(19)-32;(20)-23;

  (24)3.4×104÷(-5)。

  2、說一說我們學過的有理數的運算律:

  加法交換律:a+b=b+a;

  加法結合律:(a+b)+c=a+(b+c);

  乘法交換律:ab=ba;

  乘法結合律:(ab)c=a(bc);

  乘法分配律:a(b+c)=ab+ac.

  二、講授新課

  前面我們已經學習了有理數的加、減、乘、除、乘方等運算,若在一個算式里,含有以上的混合運算,按怎樣的順序進行運算?

  1、在只有加減或只有乘除的同一級運算中,按照式子的`順序從左向右依次進行。

  審題:

  (1)運算順序如何?

  (2)符號如何?

  說明:含有帶分數的加減法,方法是將整數部分和分數部分相加,再計算結果。帶分數分成整數部分和分數部分時的符號與原帶分數的符號相同。

  課堂練習

  審題:運算順序如何確定?

  注意結果中的負號不能丟。

  課堂練習

  計算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);

  2、在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減。

  例3計算:

  (1)(-3)×(-5)2;

  (2)[(-3)×(-5)]2;

  (3)(-3)2-(-6);

  (4)(-4×32)-(-4×3)2。

  審題:運算順序如何?

  解:(1)(-3)×(-5)2=(-3)×25=-75。

  (2)[(-3)×(-5)]2=(15)2=225。

  (3)(-3)2-(-6)=9-(-6)=9+6=15。

  (4)(-4×32)-(-4×3)2

  =(-4×9)-(-12)2

  =-36-144

  =-180。

  注意:搞清(1),(2)的運算順序,(1)中先乘方,再相乘,(2)中先計算括號內的,然后再乘方。(3)中先乘方,再相減,(4)中的運算順序要分清,第一項(-4×32)里,先乘方再相乘,第二項(-4×3)2中,小括號里先相乘,再乘方,最后相減。

  課堂練習

  計算:

  (1)-72;(2)(-7)2;(3)-(-7)2;

  (7)(-8÷23)-(-8÷2)3。

  例4計算

  (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。

  審題:(1)存在哪幾級運算?

  (2)運算順序如何確定?

  解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4

  =4-(-25)×(-1)+87÷(-3)×1(先乘方)

  =4-25-29(再乘除)

  =-50。(最后相加)

  注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。

  課堂練習

  計算:

  (1)-9+5×(-6)-(-4)2÷(-8);

  (2)2×(-3)3-4×(-3)+15。

  3、在帶有括號的運算中,先算小括號,再算中括號,最后算大括號。

  課堂練習

  計算:

  三、小結

  教師引導學生一起總結有理數混合運算的規(guī)律。

  1、先乘方,再乘除,最后加減;

  2、同級運算從左到右按順序運算;

  3、若有括號,先小再中最后大,依次計算。

  四、作業(yè)

  1、計算:

  2、計算:

  (1)-8+4÷(-2);(2)6-(-12)÷(-3);

  (3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);

  3、計算:

  4、計算:

  (7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。

  5、計算(題中的字母均為自然數):

  (1)(-12)2÷(-4)3-2×(-1)2n-1;

  (4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。

初中數學命題教案2

 。ㄒ唬┙滩姆治

  1、知識結構

  2、重點、難點分析

  重點:

  找出命題的題設和結論.因為找出一個命題的題設和結論,是對該命題深刻理解的前提,而對命題理解能力是我們今后研究數學必備的能力,也是研究其它學科能力的基礎.

  難點:

  找出一個命題的題設和結論.因為理解和掌握一個命題,一定要分清它的題設和結論,所以找出一個命題的題設和結論是十分重要的問題.但有些命題的題設和結論不明顯.例如,“對頂角相等”,“等角的余角相等”等.一些沒有寫成“如果那么”形式的命題,學生往往搞不清哪是題設,哪是結論,又沒有一個通用的方法可以套用,所以分清題設和結論是教學的`一個難點.

 。ǘ┙虒W建議

  1、教師在教學過程中,組織或引導學生從具體到抽象,結合學生熟悉的事例,來理解命題的概念、找出一個命題的題設和結論,并能判斷一些簡單命題的真假.

  2、命題是數學中一個非常重要的概念,雖然高中階段我們還要學習,但對于程度好的A層學生還要理解:

 。1)假命題可分為兩類情況:

 、兕}設只有一種情形,并且結論是錯誤的,例如,“1+3=7”就是一個錯誤的命題.

 、陬}設有多種情形,其中至少有一種情形的結論是錯誤的.

  例如,“內錯角互補,兩直線平行”這個命題的題設可分為兩種情形:

  第一種情形是兩個內錯角都等于90°,這時兩直線平行;

  第二種情形是兩個內錯角不都等于90°,這時兩直線不平行.

  整體說來,這是錯誤的命題.

  (2)是否是命題:

  命題的定義包括兩層涵義:

 、倜}必須是一個完整的句子;

 、谶@個句子必須對某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語法上,這樣的句子叫做陳述句,它由“題設+結論”構成.

  另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點作該直線的平行線.”疑問句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結果!”以上三個句子都不是命題.

  (3)命題的組成

  每個命題都是由題設、結論兩部分組成.題設是已知事項;結論是由已知事項推出的事項.命題常寫成“如果,那么”的形式.具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結論.

  有些命題,沒有寫成“如果,那么”的形式,題設和結論不明顯.對于這樣的命題,要經過分折才能找出題設和結論,也可以將它們改寫成“如果那么”的形式.

  另外命題的題設(條件)部分,有時也可用“已知”或者“若”等形式表述;命題的結論部分,有時也可用“求證”或“則”等形式表述.

初中數學命題教案3

  教學目標

  (一)教學知識點

  1.命題的組成:條件和結論。 2。命題的真假 。 3。了解數學史。

  (二)能力訓練要求

  1.能夠分清命題的題設和結論。會把命題改寫成“如果……,那么……”的形式;能 判斷命題的真假。

  2.通過舉例判定一個命題是假命題,使學生學會反面思考問題的方法。

  3.通過對歐幾里得《原本》 的介紹,感受幾何的演繹體系對數學發(fā)展和人類文明的價值。

 。ㄈ┣楦信c價值觀要求

  1.通過舉反例的方法來 判斷一個命題是假命題,說明任何事物都是正反兩方面的對立統(tǒng)一體。

  2.通過了解數學知識,拓展學生的視野,從而激發(fā)學生學習的興趣。

  教學重點

  找出命題的條件(題設)和結論。

  教學 難點

  找出命題的條件和結論。

  教學過程

  Ⅰ.巧設現實情境,引入課題

  上節(jié)課我們研究了命題,那么什么叫命題呢?

  下面大家來 想一想:

  觀察下列命題,你能發(fā)現這些命題有什么共同的結構特征?

 。1)如果兩個三角形的三條邊對應相等,那么這兩個三角形全等。

 。2)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

 。3)如果一個三角形是 等腰三角形,那 么這個三角形的兩個底角相等。

 。4)如果一個四邊形的對角線相等,那么這個四邊形是矩形。

 。5)如果一個四邊形的'兩條對角線互相垂直,那么這個四邊形是菱形。

  學生分組討論。

 、龠@五個命題都是用“如果……,那么……”的 形 式敘述的。

 、诿總命題都 是由已知得到結論。

  ③這五個命題的每個命題都有條件和結論。

  Ⅱ.講授新課

  1 .命題的組成:每個命題都有條件和結論兩部分組成。

  條件是已知的事項,結論是由已知事項推斷 出的事項。

  2.舉例說明 命題如何寫成“如果……,那么……”的形式

 、倜黠@的。

 、诓幻黠@的。

  做一做

  1.下列各命題的條件是什么?結論是 什么?

 。1)如果兩個角相等,那么它們是對頂角;

  (2)如果a>b,b>c,那么a=c;

  (3)兩角和其中一角的對邊對應 相等的兩個三角形全等;

 。4)菱形的四條邊都 相等;

 。5)全等三角形的面積相等。

  2.上述命題中哪 些是正確的?哪些是不正確的?你怎么知道它們是不正確的?

  3.真命題和假命題

  我們把正確的命題稱為真命題(tru e statement),不正確的命題稱為假命題(false statement)。

  思考:如何證實一個命題是真命題呢?

  4.我們這套教材有如下命題作為公理:

  1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。

  2.兩條平行線被第三條直線所 截,同位角相等。

  3.兩邊及其夾角對應相等的兩個三角形全等。

  4.兩角及其夾邊對應相等的兩個三角形全 等。

  5.三邊對應相等的兩個 三角形全等。

  6.全等三角形的對應邊相等,對應角相等。

  Ⅲ.課堂練習

 、.課時小結

  本節(jié)課我們主要研究了命題的組成及真假。知道任何一個命題都是由條件和結論兩部分組成。命題分為真命題和 假命題。

  在辨別真假命題時。注意:假命題只需舉一個反例即可。而真命題除公理和性質外,必須通過推理得證。

 、.課后作業(yè)

  2.預習提綱

 。1)平行線的判定方法的證明

 。2)如何進行推理

初中數學命題教案4

  教學目標

  1.使學生在了解直線概念的基礎上,理解射線和線段的概念,并能理解它們的區(qū)別與聯系.

  2.通過直線、射線、線段概念的教學,培養(yǎng)學生的幾何想象能力和觀察能力,用運動的觀點看待幾何圖形.

  3.培養(yǎng)學生對幾何圖形的興趣,提高學習幾何的積極性.

  教學重點和難點

  直線、射線、線段的概念是重點.對直線的“無限延伸”性的理解是難點.

  教學過程設計

  一、聯系實際,提出問題

  1.讓學生舉出實際生活中所見到的直線的實例(可請5~6位學生發(fā)言).

  2.教師總結:鉛筆、尺子、桌子邊沿等都有長度,是可以度量的,它們都是直線的一部分,此時給出直線的概念“直線是向兩個方向無限延伸著的.”繼而提問“無限延伸”怎樣解釋,教師可形象的歸納出“直線是無頭無尾、要多長有多長.”讓學生閉起眼睛想象一下.

  再提問:在我們以前學過的知識中有沒有真正是直線的例子?(數軸)

  3.通過前面學生所舉的例子,給出線段定義“直線上兩個點和它們之間的部分叫做線段.”

  4.教師畫出一條直線,并在直線上標出一條線段,然后擦掉一部分,只剩下一條射線,先看它與直線、線段的區(qū)別,后給出射線的定義:“直線上的一點和它一旁的部分叫做射線.”

  二、正確表示直線、射線和線段

  1.直線的表示有兩種:一個小寫字母或兩個大寫字母.但前面必須加“直線”兩字,如:直線l;直線m,直線AB;直線CD.(板書表示出來)

  2.線段的表示也有兩種:一個小寫字母或用端點的兩個大寫字母.但前面必須加“線段”兩字.如:線段a;線段AB.(板書表示出來)

  3.射線的表示同樣有兩種:一個小寫字母或端點的大寫字母和射線上的一個大寫字母,前面必須加“射線”兩字.如:射線a;射線OA.(板書表示出來)

  三、運動變化,找出聯系

  1.讓學生找出三者之間的區(qū)別:端點的個數,0個,1個,2個.

  2.教師通過圖示將線段變化為射線、直線.指出事物之間都不是孤立的,靜止的,而是互相聯系的,變化的.

  (1)先畫出線段AB,然后向一方延長,成為一條射線,再向相反的方向延長,成為一條直線.告訴學生:線段向一方延長就會成為射線,向兩方延長就會成為直線.因此,直線、射線都可以看作是由線段運動而成的.

  (2)再畫出一條直線,在直線上任找一點,擦掉一點一旁的部分,就成為一條射線,在射線上再找一點,兩點之間的部分就成為一條線段.

  四、回到實際,鞏固概念

  1.讓學生舉出生活中的直線、射線和線段的.事例.如:手電筒的光線,燈泡發(fā)出的光線等.

  2.練習:

  (1)如圖1-1,A,B,C,D為直線l上的四個點.

  問:圖中共有幾條線段?以C為端點的射線有哪幾條?

  (2)如圖1-2,A,B,C為平面上的三個點,分別畫出過點A,B;點A,C;點B,C的三條直線.

  (3)如圖1-3,P是直線l外一點,A是直線L上一點.過P,A作一條直線;過A作一條射線.

  (4)如圖1-4,圖中共有多少條線段?

  五、小結

  1.教師提問:(1)本節(jié)課你掌握了幾個幾何概念?

  (2)直線、射線和線段三者之間的關系是什么?

  (3)本節(jié)課應該理解哪幾個關鍵詞?

  (4)在表示直線、射線和線段時應注意什么?

  在學生回答的基礎上教師給以完善和補充,并進一步強調三者之間的關系.同時指出這三個概念是平面幾何的基礎.

  2.再設問:直線還有什么性質呢?為下節(jié)課講直線的性質埋下伏筆.

  六、作業(yè) p.11,1;p.12,3;p.14,1.2.

  板書設計

  課堂教學設計說明

  1.本課的教學時間為1課時45分鐘.

  2.本設計對教材順序稍加改動,先將直線、射線和線段的概念給出,然后再講它們的性質.這樣對于學生建構知識結構較為有利.

  3.由于這節(jié)課為幾何的起始課,從感性認識出發(fā),在學生熟悉的實際生活中,抽象出幾何的概念,便于認知結構的形成.

  4.建議:本課時也可以將課型設計為“自學輔導式”,由學生自己討論直線、射線和線段的概念,并尋找它們之間的區(qū)別與聯系,這樣更有利于發(fā)揮學生自己的主觀能動性,參與意識更強,課堂更加活躍.

  5.在有條件的地方,對三者關系的變化過程,應用計算機輔助教學更為生動有趣,“變”的意義更為明顯.

【初中數學命題教案】相關文章:

初中命題作文02-07

初中數學 教案02-24

初中數學方差教案12-28

初中數學直線教案12-29

初中數學矩形教案12-30

初中數學《圓 》教案12-30

初中數學實數教案01-06

初中數學函數教案01-03

初中數學教案08-12