- 數(shù)學(xué)奧數(shù)教案 推薦度:
- 相關(guān)推薦
數(shù)學(xué)奧數(shù)教案(精選11篇)
作為一位優(yōu)秀的人民教師,可能需要進行教案編寫工作,借助教案可以有效提升自己的教學(xué)能力。我們應(yīng)該怎么寫教案呢?以下是小編收集整理的數(shù)學(xué)奧數(shù)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)奧數(shù)教案 1
一、本講學(xué)習(xí)目標
聯(lián)系生活實際,弄清楚工作量、時間、效率之間的關(guān)系,提高解決行程問題的能力。
二、重點難點考點分析
工程問題的實質(zhì)就是工作量、工作時間和工作效率之間的關(guān)系問題。工程問題的解題思路和行程問題相似,需要找出三個基本量之間的關(guān)系,通過三個基本量之間的換算找出解題方法。工程問題當中,分數(shù)的出現(xiàn)與運算較為常見,因此,解決工程問題首先要學(xué)好分數(shù)的四則運算。
三、知識框架
解決工程問題首先弄清行程問題中這三個量的關(guān)系:
工作量=時間×效率(a=t×e)
時間=工作量÷效率(t=a÷e)
效率=工作量÷時間(e=a÷t)
四、概念解析
工作量:工程問題中的工作量是工程問題的總體量,在未知情況下,可假設(shè)工作量為1;
時間:工程問題中的時間是工程問題的因子量;
效率:和時間一樣,效率也是工程問題的因子量,其地位和形式與時間類似。
五、例題講解
甲、乙兩個工程隊共同完成一項工程需18天,如果甲隊干3天、乙隊干4天則完成工程的1/5。問:甲、乙兩隊獨立完成該工程各需多少天?
打印一份稿件,甲單獨打需要50分完成,乙單獨打需30分完成。現(xiàn)在甲單獨打若干份后,乙接著打完,共42分。問:甲打了稿件的幾分之幾
有甲、乙兩根水管,分別同時給兩個大小相同的水池A和B注水,在相同的時間內(nèi)甲、乙兩管注水量之比是7:5。經(jīng)過2時,A、B兩池中已注入水之和恰好是一池水。此后,甲管的注水速度提高25%,乙管的注水速度降低30%。當甲管注滿A池時,乙管還需多長時間注滿B池?
一項工程,甲,乙兩隊合作30天完成。如果甲隊單獨做24天后,乙隊再加入合作,兩隊合作12天后,甲隊因事離去,由乙隊繼續(xù)做了15天才完成。這項工程如果由甲隊單獨完成,需要多少天
李師傅加工540個零件。他前一半時間每分生產(chǎn)8個,后一半時間每分生產(chǎn)12個,正好完成任務(wù)。當他完成任務(wù)的45%時,恰好是上午9點。張師傅開始工作的時間是幾點幾分幾秒?
師徒三人合作承包一項工程,8天能夠全部完成。已知師傅單獨做所需的天數(shù)與兩個徒弟合作所需的`天數(shù)相同。師傅與徒弟甲所需的天數(shù)的4倍與徒弟乙單獨完成這項工程所需的天數(shù)相同。問:徒弟乙單獨完成這項工程需多少天?
一項工程,甲,隊獨做10天可以完成,乙隊獨做30天可以完成。現(xiàn)在兩隊合作期間甲隊休息了2天,乙隊休息了8天(兩隊不在同一天休息)。從開始到完工共用了多少天
某工程如果由第一、二、三小隊合干需要12天才能完成;如果由第一、三、五小隊合干需要7天才能完成;如果由第二、四、五合干需要8天完成;如果由第一、三、四小隊合干需要42天。那么這五個小隊一起合干需要多少天才能完成這項工程?
六、課堂練習(xí)
完成一項工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。問:甲、乙單獨干這件工作各需多少天?
一件工作,甲、乙合干需要6天完成,已知甲單獨完成該工作的1/2所需的時間與乙單獨完成該工作1/3的時間相等。問:甲單獨完成該工作需要多長時間?
一項工程,如甲隊獨做,可6天完成。甲3天的工作量,乙要4天完成。兩隊合做了2天后,由乙隊單獨做,乙隊還需做多少天才能完成
七、課后作業(yè)
甲、乙、丙三人合修一圍墻。甲、乙合修5天修好圍墻的1/3,乙、丙合修2天修好圍墻的余下1/4,剩下的圍墻甲、丙又合修5天才完成。問:甲、乙、丙單獨修好圍墻分別需要幾天?
有一批工人完成某項工程,如果能增加八人,則10天就能完成;如果能增加3人,就要20天完成,F(xiàn)在只能增加2個人,那么完成這項工程需要多少天?
數(shù)學(xué)奧數(shù)教案 2
年齡問題
年齡問題是小學(xué)奧數(shù)中常見的一類問題。例如:已知兩個人或若干個人的年齡,求他們年齡之間的某種數(shù)量關(guān)系等等。年齡問題又往往是和倍、差倍、和差等問題的綜合。它有一定的難度,因此解題時需抓住其特點。
年齡問題的主要特點是:大小年齡差是個不變的量,而年齡的倍數(shù)卻年年不同。我們可以抓住差不變這個特點,再根據(jù)大小年齡之間的倍數(shù)關(guān)系與年齡之和等條件,解答這類應(yīng)用題。
解答年齡問題的一般方法是:
幾年后年齡=大小年齡差÷倍數(shù)差-小年齡,
幾年前年齡=小年齡-大小年齡差÷倍數(shù)差。
例1爸爸媽媽現(xiàn)在的年齡和是72歲;五年后,爸爸比媽媽大6歲。今年爸爸媽媽二人各多少歲?
分析五年后,爸比媽大6歲,即爸媽的年齡差是6歲。它是一個不變量。所以爸爸、媽媽現(xiàn)在的年齡差仍然是6歲。這樣原問題就歸結(jié)成“已知爸爸、媽媽的年齡和是72歲,他們的年齡差是6歲,求二人各是幾歲”的和差問題。
解:①爸爸年齡:(72+6)÷2=39(歲)
②媽媽的.年齡:39-6=33(歲)
答:爸爸的年齡是39歲,媽媽的年齡是33歲。
例2在一個家庭里,現(xiàn)在所有成員的年齡加在一起是73歲。家庭成員中有父親、母親、一個女兒和一個兒子。父親比母親大3歲,女兒比兒子大2歲。四年前家庭里所有的人的年齡總和是58歲,F(xiàn)在家里的每個成員各是多少歲?
分析根據(jù)四年前家庭里所有的人的年齡總和是58歲,可以求出到現(xiàn)在每個人長4歲以后的實際年齡和是58+4×4=74(歲)。
但現(xiàn)在實際的年齡總和只有73歲,可見家庭成員中最小的一個兒子今年只有3歲。女兒比兒子大2歲,女兒是3+2=5(歲),F(xiàn)在父母的年齡和是73-3-5=65(歲)。又知父母年齡
差是3歲,可以求出父母現(xiàn)在的年齡。
解:①從四年前到現(xiàn)在全家人的年齡和應(yīng)為:
58+4×4=74(歲)
、趦鹤蝇F(xiàn)在幾歲?4-(74-73)=3(歲)
、叟畠含F(xiàn)在幾歲?3+2=5(歲)
④父親現(xiàn)在年齡:(73-3-5+3)÷2=34(歲)
、菽赣H現(xiàn)在年齡:34-3=31(歲)
答:父親現(xiàn)在34歲,母親31歲,女兒5歲,兒子3歲。
例3父親現(xiàn)年50歲,女兒現(xiàn)年14歲。問:幾年前父親年齡是女兒的5倍?
分析父女年齡差是50-14=36(歲)。不論是幾年前還是幾年后,這個差是不變的。當父親的年齡恰好是女兒年齡的5倍時,父親仍比女兒大36歲。這36歲是父親比女兒多的5-1=4(倍)所對應(yīng)的年齡。
解:(50-14)÷(5-1)=9(歲)
當時女兒9歲,14-9=5(年),也就是5年前。
答:5年前,父親年齡是女兒的5倍。
例46年前,母親的年齡是兒子的5倍。6年后母子年齡和是78歲。問:母親今年多少歲?
分析6年后母子年齡和是78歲,可以求出母子今年年齡和是78-6×2=66(歲)。6年前母子年齡和是66-6×2=54(歲)。又根據(jù)6年前母子年齡和與母親年齡是兒子的5倍,可以求出6年前母親年齡,再求出母親今年的年齡。
解:①母子今年年齡和:78-6×2=66(歲)
、谀缸6年前年齡和:66-6×2=54(歲)
、勰赣H6年前的年齡:54÷(5+1)×5=45(歲)
④母親今年的年齡:45+6=51(歲)
答:母親今年是51歲。
例510年前吳昊的年齡是他兒子年齡的7倍。15年后,吳昊的年齡是他兒子的2倍。現(xiàn)在
父子倆人的年齡各是多少歲?
分析根據(jù)15年后吳昊的年齡是他兒子年齡的2倍,得出父子年齡差等于兒子當時的年齡。因此年齡差等于10年前兒子的年齡加上25歲。
10年前吳昊的年齡是他兒子年齡的7倍,父子年齡差相當于兒子當時年齡的7-1=6倍。
由于年齡差不變,所以兒子10年前的年齡的6-1=5倍正好是25歲,可以求出兒子當時的年齡,從而使問題得解。
解:①兒子10年前的年齡:(10+15)÷(7-2)=5(歲)
、趦鹤蝇F(xiàn)在年齡:5+10=15(歲)
③吳昊現(xiàn)在年齡:5×7+10=45(歲)
答:吳昊現(xiàn)在45歲,兒子15歲。
例6甲對乙說:“我在你這么大歲數(shù)的時候,你的歲數(shù)是我今年歲數(shù)的一半!币覍渍f:“我到你這么大歲數(shù)的時候,你的歲數(shù)是我今年歲數(shù)的2倍減7!眴枺杭、乙二人現(xiàn)在各多少歲?
分析從已知條件中可以看出甲比乙年齡大,甲乙年齡差這是一個不變的量。
甲對乙說“我在你這么大歲數(shù)的時候”,意思是說幾年以前。這幾年就是甲乙的年齡差。因此,甲整句話可理解為:乙今年的歲數(shù),減去年齡差,正好是甲今年歲數(shù)的一半。
乙對甲說“我到你這么大歲數(shù)的時候”,意思是說幾年后。因此,乙整句話可理解為:甲今年的歲數(shù),加上年齡差,正好是乙今年歲數(shù)的2倍減去7。
把甲乙的對話用下圖表示為:
由(3)(4)年齡差=7(歲)
從上圖不難看出,甲現(xiàn)在的年齡是乙?guī)啄昵澳挲g的2倍,1倍相當于2個年齡差,2倍相當于4個年齡差。乙現(xiàn)在的年齡相當3個年齡差。
乙?guī)啄旰蟮哪挲g和甲現(xiàn)在的年齡相等,所以乙?guī)啄旰笙喈?個年齡差。甲幾年后的年齡比乙?guī)啄旰蟮哪挲g多一個年齡差,正好是7歲,從而得出年齡差是7歲。
解:①乙現(xiàn)在年齡:7×3=21(歲)
、诩赚F(xiàn)在年齡:7×4=28(歲)
答:乙現(xiàn)在21歲,甲現(xiàn)在28歲。
數(shù)學(xué)奧數(shù)教案 3
課題:
兩步計算的應(yīng)用題、用畫圖法解應(yīng)用題
知識點
1、用數(shù)學(xué)的方法解決在生活和工作中的實際問題——解應(yīng)用題。
2、用畫圖來表示題目中的條件,幫助理解題意,正確解答。
教學(xué)目標
1、分析思考題目所包含的數(shù)量關(guān)系,鍛煉思維的靈活性。
2、讓學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,感學(xué)與日常生活的密切聯(lián)系,體驗數(shù)學(xué)的價值,增強受數(shù)應(yīng)用數(shù)學(xué)的意識。
3、在探索問題解決方法的過程中,發(fā)展學(xué)生的數(shù)學(xué)思考能力,培養(yǎng)主動探索的意識。
教學(xué)內(nèi)容
第一課時:【典型例題】
例1:小明的錢不到5元(是整角數(shù)),如果買6枝鉛筆,錢不夠,還少5角。小明原來最多有多少錢?
解題策略:問題求的是“小明原來最多有多少錢”。由題意已知小明原來的'錢不到5元,但加上5角后就超過5元,且能被6整除。假設(shè)每枝筆8角錢,6枝則是48角,不到5元,所以不能;如果每枝9角,6枝就是54角,再減去少5角,原來最多49角。算式:6×9-5=49。
【畫龍點睛】
解答兩步計算的應(yīng)用題,如果不認真思考,提筆就做,很容易出錯。所以應(yīng)該先從條件或問題入手,仔細分析,找出正確的解題方法。
第二課時
【舉一反三】
1、一盒糖果,總數(shù)不超過20顆,把它們平均分給6個小朋友,還余2顆,這盒糖最多有幾顆?最少有幾顆?
2、停車場里原來停放的轎車比卡車多12輛,后來轎車開走6輛,卡車開進8輛,這時停車場里哪種車多?多多少輛?
3、有大、小兩桶油共重50千克,兩個桶都倒出同樣多的油后,分別還剩10千克和6千克。大、小兩個桶原來各裝油多少千克?
第二課時:【典型例題】
例2:小明有10枝鉛筆,小紅有4枝鉛筆,要使兩人的鉛筆同樣多,小明要給小紅幾枝鉛筆?
解題策略:我們用圖來表示已知條件:
小明:
小紅:
從圖中我們可以清楚地看到,小明比小紅多6枝鉛筆,把多出來的6枝鉛筆平均分成兩份,即6÷2=3,所以小明給小紅3枝鉛筆后,兩人的枝數(shù)相同。
【畫龍點睛】
用畫圖法解應(yīng)用題,特別是解技巧性較強的題,能形象直觀地揭示數(shù)量關(guān)系,使抽象思維與形象思維協(xié)同發(fā)揮作用,從而構(gòu)建出解題思維的模式。
第三課時【舉一反三】
1、小明給小紅3枝鉛筆后,兩人的枝數(shù)相同。問:小明比小紅多幾枝鉛筆?
2、小紅有4枝鉛筆,小明給小紅3枝鉛筆后,兩人的枝數(shù)相同,小明有幾支鉛筆?
3、一根12米長的木條,鋸3次,每段幾米?
4、小紅媽媽到水果店買蘋果,她的錢若買3斤多1元,若買4斤少1元5角,問媽媽帶了多少錢?
6、二(1)班同學(xué)做早操,每行人數(shù)相等,小李的位置從左邊數(shù)是第3個,從右邊數(shù)是第4個,從前邊數(shù)是第4個,從后邊數(shù)是第2個。
問:二(1)班有多少同學(xué)在做早操?
數(shù)學(xué)奧數(shù)教案 4
教學(xué)目標:
1、掌握等差數(shù)列的定義,了解等差數(shù)列首項,末項和公差。
2、學(xué)會等差數(shù)列的簡單求和。
教學(xué)重難點:
重點:公式的簡單應(yīng)用
難點:公式的理解
教學(xué)過程:
一、引入:
世界上有一名著名的數(shù)學(xué)家叫高斯,他在很小的時候,老師給同學(xué)們出了一道數(shù)學(xué)題,讓大家計算:1+2+3+4+5?+99+100=?
高斯仔細觀察后,很快就計算出了結(jié)果。你們能猜出他是怎么計算的嗎?
高斯解題過程:1+100=2+99=3+98=?=49+52=50+51=101,共有100÷2=50(個)。于是
1+2+3+4+5?+99+100 =(1+100)×100÷2 =5050
在這里,出現(xiàn)了一列數(shù)據(jù)。我們定義:按一定次序排列的'一串數(shù)叫做數(shù)列。一個數(shù)列,如果從第二項開始,每一項減去它緊前邊的一項,所得的差都相等,就叫做等差數(shù)列。
等差數(shù)列中的每一個數(shù)都叫做項,其中從左起第一項叫做首項,最后一項叫做末項,項的個數(shù)叫做項數(shù)。等差數(shù)列中相鄰兩項的差叫做公差。
例如:上面高斯求解的問題:首項是1,末項是100,項數(shù)是100,公差是1.我們得出高斯求解方法更多的是告訴我們一個求解等差數(shù)列的公式:
等差數(shù)列的和=(首項+末項)×項數(shù)÷2 例一:找出下列算式當中的首項,末項,項數(shù)和公差。
。1)2 ,5 ,8 ,11 ,14 ,17 ,20 ,23
。2)0 ,4 ,8 ,12 ,16 ,20 ,24 ,28
(3)3 ,15 ,27 ,39 ,51 ,63
讓學(xué)生上黑板演示結(jié)果。
。1)首項2,末項23,項數(shù)8,公差3
。2)首項0,末項28,項數(shù)8,公差4
。3)首項3,末項63,項數(shù)6,公差12
知道在等差數(shù)列中如何準備找出首項,末項,項數(shù)及公差以后,更重要的是熟練運用等差數(shù)列求和公式解決一般等差數(shù)列問題。
例二:1+2+3+4+?+1998+1999.問:算式當中的首項,末項,項數(shù)分別是什么?
答:首項是1,末項是1999,項數(shù)是1999。
解析:原式=(1+1999)×1999÷2
=20xx×1999÷2
= 小結(jié):這是一道一般等差數(shù)列類型題,可以直接找到求解公式中需要的幾個量。在計算過程中,當一個數(shù)乘另外一個數(shù)末尾有零時,先不看末尾的零,計算結(jié)束后,將零的相同個數(shù)添在積的末尾就行。
練習(xí):
。1)1+2+3+4+?+250
。2)1+2+3+4+?+200
。3)1+3+5+7+?+97+99
數(shù)學(xué)奧數(shù)教案 5
《奧賽天天練》第25講《植樹問題》、第26講《上樓梯與植樹》,知識原理是一樣的,都是應(yīng)用一一間隔的規(guī)律解決問題。
一一間隔的規(guī)律是指:兩個不同的物體一一間隔地排成一行,如果兩端的物體相同,則排在兩端的物體比中間另一種物體多一個;如果兩端的物體不同,則兩種物體的個數(shù)相同;如果兩個不同的物體一一間隔地排成一個封閉圖形,兩種物體的個數(shù)也是相同的(把封閉圖形從任意一個點剪開展開,就可以得到與第二種情況相同的排列)。
在植樹問題中我們可以把樹苗和間距看作兩種物體,先求出間距的個數(shù),再利用一一間隔規(guī)律,算出樹苗的棵數(shù)。
在爬樓問題中我們可以把樓層看著兩端物體,把樓梯看做中間物體,再利用一一間隔規(guī)律,根據(jù)樓層求樓梯的層數(shù)。
《奧賽天天練》第25講,鞏固訓(xùn)練,習(xí)題1
【題目】:
有16個同學(xué)排成一排,要求每2名學(xué)生中間放2盆花,需要放幾盆花?
【解析】:
16個同學(xué)排成一排,每兩個同學(xué)之間有一個間隔,共有間隔:16-1=15(個)
每個間隔放2盆花,需要擺花:15×2=30(盆)。
《奧賽天天練》第25講,鞏固訓(xùn)練,習(xí)題2
【題目】:
某城市舉行長跑比賽,從市體育館出發(fā),最后再回到市體育館。全長42千米,沿途等距離設(shè)茶水站7個,求每相鄰兩個茶水站之間的距離。
【解析】:
從題目給出條件:“從市體育館出發(fā),最后再回到市體育館!笨芍@次長跑路線是個封閉圖形,所以茶水站個數(shù)與茶水站之間的間距的個數(shù)是相同的。所以每相鄰兩個茶水站之間的距離是:
42÷7=6(千米)
《奧賽天天練》第25講,拓展提高,習(xí)題2
【題目】:
小敏用同樣的速度在校園的林蔭道上散步,他從第1棵樹走到第6棵樹用了5分鐘,當他走了15分鐘時應(yīng)到達地幾棵樹?
【解析】:
首先要讓孩子弄清:在散步過程中,與時間有直接數(shù)量關(guān)系的是路程,也就是樹的間距,而不是樹的棵數(shù)。
走到第6棵樹,走來5個間距,用了5分鐘,每分鐘的路程為1個間距:5÷(6-1)=1(個)。
走15分鐘,共走了15個間距,到達第16棵樹:15×1+1=16(棵)。
《奧賽天天練》第26講,鞏固訓(xùn)練,習(xí)題1
【題目】:
一根木料鋸成4段用了6分鐘,另外有同樣的一根木料以同樣的速度鋸,18分鐘可以鋸幾段?
【解析】:
首先要讓孩子弄清:一、在鋸木頭的過程中,與時間有直接數(shù)量關(guān)系的是鋸的.次數(shù)和每次鋸的時間,而不是鋸的段數(shù);二、木頭鋸成的段數(shù)總比鋸的次數(shù)多1。
鋸4段需要鋸3次,鋸一次的時間是:6÷(4-1)=2(分)。
18分鐘可以鋸的次數(shù)是:18÷2=9(次)。
18分鐘可以鋸的段數(shù)是:9+1=10(段)。
《奧賽天天練》第26講,鞏固訓(xùn)練,習(xí)題2
【題目】:
時鐘6時敲了6下,5秒敲完。那么,這只鐘12時敲12下,幾秒敲完?
【解析】:
與時間有直接數(shù)量關(guān)系的是鐘每敲兩下之間的時間間隔。
時鐘敲6下,有5個時間間隔共5秒,即每敲兩下之間間隔1秒:5÷(6-1)=1(秒)。
時鐘敲12下有11個時間間隔,需時間:(12-1)×1=11(秒)。
《奧賽天天練》第26講,拓展提高,習(xí)題1
【題目】:
一個運動員參加馬拉松賽跑,他從第1個茶水站跑到第4個茶水站共用了75分鐘,已知從起點到終點每兩個茶水站相距5千米(起點和終點都沒有茶水站),他跑完全程共花了200分鐘,問馬拉松的賽程是多少千米?
【解析】:
從第1個茶水站到第4個茶水站中間有3個間隔,共用了75分鐘,每跑一個間隔需要時間:75÷(4-1)=25(分鐘)。
每兩個茶水站相距5千米,即這個運動員25分鐘跑了5千米。200分鐘跑的路程也就是馬拉松的賽程:200÷25×5=40(千米)。
數(shù)學(xué)奧數(shù)教案 6
《奧賽天天練》第46講《平均數(shù)問題》。把幾個不相等的同類數(shù)量,通過移多補少,使它們最終都變得完全相等,這個相等的數(shù)就叫做這幾個同類數(shù)量的平均數(shù)。其基本特征是:在移多補少求平均數(shù)的過程中,幾個初始數(shù)量的總和及數(shù)量的個數(shù)都保持不變。
根據(jù)問題的復(fù)雜程度這種問題被分為兩類:算術(shù)平均數(shù)問題、加權(quán)平均數(shù)問題,兩類問題的基本原理是一樣的。本講就要學(xué)習(xí)把簡單的加權(quán)平均數(shù)轉(zhuǎn)化為算術(shù)平均數(shù)來求解。解決平均數(shù)問題,需要熟練掌握以下三個主要數(shù)量關(guān)系式:
總數(shù)量÷總份數(shù)=平均數(shù)
總數(shù)量÷平均數(shù)=總份數(shù)
平均數(shù)×總份數(shù)=總數(shù)量
《奧賽天天練》第46,鞏固訓(xùn)練,習(xí)題1
【題目】:
甲、乙兩地之間的公路長30千米,一個人騎自行車從甲地到乙地去時用了2個小時,回來時由于頂風(fēng)用了3小時,求他往返一次平均每小時行了多少千米?
【解析】:
問題“往返一次平均每小時行了多少千米?”中,往返的總路程相當于總數(shù)量,往返總時間相當于總份數(shù)。
往返總路程為:30×2=60(千米)
往返總時間為:3+2=5(小時)
即他用5個小時行了60千米的`路程,則平均每小時行:60÷5=12(千米)。
《奧賽天天練》第46講,鞏固訓(xùn)練,習(xí)題2
【題目】:
小明前幾次數(shù)學(xué)測驗的平均成績是84分,這次要考100分,才能把平均成績提高到86分,問這一次是第幾次測驗?
【解析】:
我們可以這樣假設(shè):小明前幾次數(shù)學(xué)測驗都考了84分,而這次就考了100分,總體平均分是86分。題目的意思就是求在這種情況下的測驗次數(shù)。
想移多補少,從100分里要移走:100-86=14(分);此前每次測驗的分數(shù)都要補上:86-84=2(分)。14分里有7個2分:14÷2=7。
所以,此前測驗了7次,這一次是第8次測驗。
《奧賽天天練》第46講,拓展提高,習(xí)題1
【題目】:
某一幢居民樓里原有3戶安裝了空調(diào),后來又增加了一戶。這4臺空調(diào)全部打開時就會燒斷保險絲。因此最多同時使用3臺空調(diào)。這樣在24小時內(nèi)平均每戶最多可使用空調(diào)多少小時?
【解析】:
我們假定在24小時內(nèi),有3臺空調(diào)開了24小時,即始終開著,有一臺空調(diào)開了0小時,即始終沒開。求平均每戶開多少小時,就是求這四臺空調(diào)打開時間的平均數(shù):24×3÷4=18(小時)。
《奧賽天天練》第46講,拓展提高,習(xí)題2
【題目】:
有甲、乙、丙3個數(shù),甲、乙兩數(shù)的和是90,甲、丙兩數(shù)的和是82,乙、丙兩數(shù)的和是86。甲、乙、丙3個數(shù)的平均數(shù)是多少?
【解析】:
分別用□、△、○代表甲、乙、丙三個數(shù),由題意可得:□+△=90;□+○=82;△+○=86。
所以:(□+△)+(□+○)+(△+○)=90+82+86=258,
即:(□+△+○)×2=258,
則甲、乙、丙三個數(shù)的和為:258÷2=129,
所以甲、乙、丙3個數(shù)的平均數(shù)是:129÷3=43。
數(shù)學(xué)奧數(shù)教案 7
【教學(xué)目標】
知識目標:
通過實例,認識扇形統(tǒng)計圖,了解扇形統(tǒng)計圖的特點與作用。
能力目標:
能讀懂扇形統(tǒng)計圖,從中獲得有效的信息,體會統(tǒng)計在現(xiàn)實生活中的作用。
情感目標:
讓學(xué)生體會統(tǒng)計在現(xiàn)實生活中的作用,滲透健康飲食的教育。
【教學(xué)重點、難點】
了解扇形統(tǒng)計圖的特點與作用。
【教學(xué)策略】
課前讓學(xué)生收集一些反映本地的或者反映現(xiàn)實生活的扇形統(tǒng)計圖,通過交流,體會扇形統(tǒng)計圖的特點與作用。
教學(xué)準備:各種扇形統(tǒng)計圖、投影儀。
【教學(xué)過程】
一、導(dǎo)入新課。
誰知道我們以前學(xué)過哪些統(tǒng)計圖?并且說出它們的.特點?
。▽W(xué)生回答,教師小結(jié))
那么,我們今天學(xué)習(xí)新的一種統(tǒng)計圖《扇形統(tǒng)計圖》。
二、教學(xué)扇形統(tǒng)計圖的特點
1、用投影儀出示小麗一家三口一天各類食物的攝入量統(tǒng)計表。
2、先讓學(xué)生通過計算獨立填上表中的數(shù)據(jù)。
3、獨立制作條形統(tǒng)計圖。
4、出示扇形統(tǒng)計圖。
5、組織學(xué)生交流兩種統(tǒng)計圖,你能從中獲得哪些信息。
6、全班交流。
7、教師小結(jié):條形統(tǒng)計圖能清楚地看到哪個量多,哪個量少。而扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。
三、說一說。
用投影儀出示四幅扇形統(tǒng)計圖,先讓學(xué)生每幅圖中各百分數(shù)的意義。再讓學(xué)生說一說每幅統(tǒng)計圖獲得信息。
四、試一試。
1、出示每幅圖。
2、交流這三個問題。
3、教師小結(jié)。
數(shù)學(xué)奧數(shù)教案 8
學(xué)習(xí)內(nèi)容:
“水桶和油桶”的問題
學(xué)習(xí)目標:
1、讓學(xué)生增加對數(shù)學(xué)的興趣,認識數(shù)學(xué)的'多種形式。
2、另外教授一些數(shù)學(xué)計算的巧妙方法。
3、引導(dǎo)學(xué)生通過思考操作發(fā)現(xiàn)并驗證“水桶和油桶”問題的特征,培養(yǎng)學(xué)生大膽猜測、勇于探究的求索精神。
4、利用簡便方法,提高學(xué)生計算效率,更加高效的學(xué)習(xí)數(shù)學(xué)。
學(xué)習(xí)形式:
學(xué)生自主探索、合作交流
學(xué)習(xí)過程
一、引入
師:提出問題:你能解決這樣的問題嗎?展臺出示題目。
二、探究新知
1、請同學(xué)們?nèi)〕?號靶,認真觀察(引導(dǎo)學(xué)生觀察)
2、小組交流,探究解決。
3、請同學(xué)們?nèi)〕?號靶,嘗試解決。(引導(dǎo)學(xué)生動手實踐)如果有的學(xué)生做出來,讓孩子展示,教師給予贊賞;如果學(xué)生做不出來,充分調(diào)動組內(nèi)力量,探究解決。
4、請同學(xué)們按照組內(nèi)交流出的方法各自解決。(小組合作,互相幫助)
三、課堂拓展
同學(xué)們通過今天這節(jié)課的學(xué)習(xí),是不是覺得數(shù)學(xué)充滿了奧秘呢?課后,有興趣的`同學(xué)可以在網(wǎng)絡(luò)上找很多有關(guān)“水桶和油桶”的知識,然后和老師、同學(xué)們一起去研究研究,好嗎?
今后老師會繼續(xù)為你們介紹一些更有趣的數(shù)學(xué)現(xiàn)象,這些數(shù)學(xué)方法更貼近你們平時的數(shù)學(xué)學(xué)習(xí),有助于你們更好地學(xué)習(xí)數(shù)學(xué)。
數(shù)學(xué)奧數(shù)教案 9
教學(xué)內(nèi)容:
教科書104頁例4及“做一做”、練習(xí)十八第1~3題、第7題。
教學(xué)目標:
1、通過有限個例證使學(xué)生理解整數(shù)的運算定律在小數(shù)運算中同樣適用。
2、能根據(jù)數(shù)據(jù)特點正確應(yīng)用加法的運算定律進行簡便運算。
教學(xué)重點:
理解整數(shù)的運算定律在小數(shù)運算中同樣適用。
教學(xué)難點:
會運用定律和性質(zhì)靈活地進行簡便計算
教法:
創(chuàng)設(shè)情境,引導(dǎo)發(fā)現(xiàn)。
學(xué)法:
小組合作交流。
教具、準備:
多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1、口算
2、用簡便方法計算下面各題
36+125+75 48+85+52+15 460—176—124先讓學(xué)生獨立計算,再指名板演
師:在剛才的計算中,我們應(yīng)用了哪些運算定律和運算性質(zhì)?(加法交換律、加法結(jié)合律、減法的性質(zhì))
師:這些運算定律和性質(zhì)具體是怎樣的?A+B=B+A(A+B)+C=A+(B+C)A—B—C=A—(B+C)
2、小數(shù)的加、減法有簡便算法嗎?這節(jié)課我們來探究這個問題(板書課題)。
二、情境導(dǎo)入課件顯示某小學(xué)春季運動會的場景,伴隨聲音響起:下一個項目是四年級組男子4×50米接力賽,請四年級各班做好準備。畫面分別出示四年級4個班運動員50米成績的情況表
提問:從表中你能知道哪些信息?生有可能提供:
我知道有三個班參加比賽。
我知道每個班有四名運動員參加比賽。我知道求的是每個班的總成績。
二、自主探究,學(xué)習(xí)新知
1、自主嘗試計算
師:同學(xué)們回答的非常棒,那么,你最想知道哪個班的成績呀?(四年二班)那你想怎樣來解決這個問題呢?小組討論一下,然后在練習(xí)本上計算出來。師:誰想到黑板上來做?(師巡視,做完后把你這樣做的想法說給同桌聽聽)
2、匯報結(jié)果:
師:誰還有不同的方法?讓學(xué)生說說自己的算法
生:我是把幾個數(shù)加數(shù)來,再一步一步算出來的。師:同意嗎?即:
、伲剑剑34(秒)
生:我是把幾個數(shù)加起來,然后交換位置,再結(jié)合起來,這樣算起來簡便。即:
、冢剑ǎ+(+)=17+17=34(秒)
師:同意嗎?這們同學(xué)真了不起同學(xué)會用簡便方法呢!
3、觀察兩種做法,說出有什么相同點和不同點?(小組內(nèi)互相交流)
4、匯報結(jié)果:
A、不同點:
生:第一種是挨著算的,
師:怎么叫挨著算呢?前兩個數(shù)加起來再加上第3個數(shù)再加第4個數(shù)。那么,具體一點說,按怎樣的順序來算的,按從左到右的順序來算的,第2種是運用是簡便方法用了加法的.交換律和加法的結(jié)合律。
師:為什么把這兩個數(shù)結(jié)合在一起?這兩個數(shù)加起來能湊成一個整數(shù),算起來簡便。
B、相同點:
同學(xué)們,同意他的說法嗎?還有誰還想說說?生:這兩種做法計算起來不一樣,但結(jié)果一樣。
師:這位同學(xué)觀察得真不錯,同樣一個問題,我們可以用不同的方法得出相同的結(jié)果。那么,你喜歡哪一種方法呢?(第2種)師:為什么?
生:第二種用加法交換律和加法結(jié)合律簡便。
師“那整數(shù)的運算定律在小數(shù)運算中同樣可以應(yīng)用嗎?(可以)這么說,小數(shù)的運算中,我們也可以用整數(shù)的運算定律來進行簡便運算。是嗎?(是)
噢,原來整數(shù)的運算定律起碼小數(shù)運算中同樣適用的。(再次交待課題)同時指導(dǎo)看書。
四、引入及時練習(xí)
師:通過剛才的努力,同學(xué)們知道了自己班的成績,那你還想不想知道其他班的'成績呢?現(xiàn)在可以用你喜歡的方法在練習(xí)本上算一下其他兩個班的成績。
2、匯報結(jié)果:
生:我算的是四年級三班的成績(投影展示)
師:同意嗎?(同意)跟他方法一樣的請舉手,還有沒有不同的做法?(沒有)生:我算的是?
師:讓我們來看一下三個班的成績,你認為哪個班可以得冠軍?
五、課堂反饋練習(xí)
師:同學(xué)們的學(xué)習(xí)興趣可真高哇!老師在這里還準備了幾個題目,有沒有信心來完成?(課件出示)
1、在方框里填上適當?shù)臄?shù)。(1)++=+□+(2)(+)+=□+(□+□)
2、進入快車道(口算卡片形式出示)
3、練一練
六、全課總結(jié)
數(shù)學(xué)奧數(shù)教案 10
一、認識圖形
例1下面五個圖形中,哪一個與眾不同?
①②③④⑤
解③號圖的四條邊長度不同,是一般四邊形,其他四個圖形的各邊都相等,都是正多邊形.
例2用一副七巧板可以拼成許多有趣的圖形,請同學(xué)們看一看、想一想,這些都代表什么圖形?
下面是一副七巧板,它被拼成一個正方形.
其中,是三角形的有xx,是平行四邊形的有xx,是正方形的有xx,它們都是基本圖形。
、佗冖
解
、亳橊
、诠
③仙鶴
二、圖形的`計數(shù)
例3數(shù)一數(shù),圖中共有多少條線段?
解我們在數(shù)數(shù)時,總是按照一定順序數(shù),1,2,3,…,從小到大,而且每次加1。
一段為一條的有4條;
兩段為一條的有3條;
三段為一條的有2條;
四段為一條的有1條.
一共有4+3+2+1=10(條).
例4數(shù)一數(shù),下圖中有多少個角?
解6個
、佗冖邰堍茛
例5數(shù)一數(shù),下圖中有多少個長方形?
解按從小到大的順序數(shù).
一個一個有4個;
兩個合為一個一共有4個。
四個合為一個一共有1個。
所以共有4+4+1=9(個)長方形。
例6數(shù)一數(shù)圖中有西紅柿的正方形有幾個?
解先數(shù)單個正方形,有西紅柿的正方形有1個。再數(shù)四個正方形合成的大正方形,有西紅柿的大正方形有4個。最后數(shù)由9個小正方形組成的大正方形,有1個。所以1+4+1=6,有西紅柿的正方形共6個。
例7數(shù)一數(shù)圖中共有幾個小正方體木塊?
解從上面先數(shù),第一排有2個小正方體,再數(shù)第二排有4個小正方體,最后數(shù)第三排有6個小正方體,所以2+4+6=12,有12個小正方體。
三、達標測試
1、數(shù)一數(shù),圖中共有xx條線段。
2、下圖一共有xx個角。
3、下圖中共有xx個三角形,xx個正方形。
4、找出只含一個圓圈的正方形的個數(shù)()個
5、右邊的圖形是由左邊的積木壘出來的,左邊每堆各有多少塊積木?右邊的圖中有幾個是看得見的?幾個是看不見的?右邊一共有多少塊積木你能數(shù)出來嗎?()塊)()塊看不得見()塊看得見()塊,一共()塊
6、數(shù)一數(shù),圖中共有幾個小正方體木塊?()塊
四、家庭作業(yè)
1、考眼力,哪幅圖是大長方形中缺少的那一塊?用"√"表示.
2、數(shù)一數(shù)下圖中三角形的個數(shù)。()個三角形
3、數(shù)一數(shù),算一算,下圖中有幾塊積木?()塊
數(shù)學(xué)奧數(shù)教案 11
教學(xué)目標:
1、了解相遇問題的特點,并學(xué)會解答求路程的相遇問題。
2、通過操作、觀察、比較、分析,提高學(xué)生靈活解答的能力。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興及趣創(chuàng)新意識。
教學(xué)重點:
掌握求路程的相遇問題的解題方法。
教學(xué)難點:
理解相遇時,兩人所走路程的和正好是兩地的距離,相遇時間為兩人共同所走的同一時間。
教學(xué)時間:
一課時
教具準備:
實物投影儀、多媒體CAI、小黑板
教學(xué)過程:
一、復(fù)習(xí)
1、列式計算
。1)李誠從家到學(xué)校,每分鐘走70米,4分鐘到達,他家離學(xué)校有多遠?
。2)張華從家到學(xué)校,每分鐘走60米,4分鐘到達,他家離學(xué)校有多遠?
2、板出關(guān)系式:速度×?xí)r間=路程
二、引入
過去,我們研究的是一個物體運動時速度、時間與路程之間的關(guān)系,今天我們就來研究兩個物體運動時速度、時間與路程之間的`關(guān)系。
三、新授
1、教學(xué)準備題
。1)點擊課件中準備題出示題目
。2)學(xué)生理解題意。
(3)找出出發(fā)時間、地點、運動方向。相向而行時間間
(4)點擊熱鍵和強調(diào)出發(fā)時間和運動方向,
(5)用課件演示兩人同時從兩地向?qū)Ψ阶呷,引?dǎo)學(xué)生思考會出什么情況。利用課件繼續(xù)演示會出現(xiàn)的三種情況(相距、相遇、交叉而過)。
。6)利用課件出示準備題的表格,指導(dǎo)學(xué)生填表格的一、二行并課件演示填空內(nèi)容。
。7)請一學(xué)生上來利用交換性課間完成表格第三行的填寫。
(8)引導(dǎo)學(xué)生討論:出發(fā)三分鐘后,兩人之間的距離變成了多少?這時,張華走了幾分鐘?李誠呢?他們倆人共走了幾分鐘?兩人所走路程的和與兩家有什么關(guān)系?
。9)小結(jié):出發(fā)一段時間后兩人之間的距離變成了零,這時兩人就相遇了,這就是我們這節(jié)課要研究的——相遇問題。(板書課題:相遇問題)
2、教學(xué)例5。
。1)點擊新課出示例5。
。2)理解題意。
(3)四人小組討論:
a、兩人是怎樣走向?qū)W校的?
b、4分鐘后兩人怎樣?
c、兩人所行的路程與全路程有什么關(guān)系?
(4)學(xué)生試做。
。5)用電腦課件演示解題思路并講評。
(6)學(xué)生看書、質(zhì)疑。
(7)小結(jié):我們解例5時用了哪兩種方法?
三、鞏固練習(xí)
1、學(xué)生做課本第59頁的第1題和第2題。
2、利用課件出示選擇題:
兩人同時從兩地走來,甲每分走52米,乙每分走48米,走了10分鐘,兩地相距多少米?
(1)2000米
。2)1000米
(3)無法確定。
四、全課總結(jié)
1、今天學(xué)了什么內(nèi)容?
2、解決這樣的問題,我們用了哪幾種方法?
3、質(zhì)疑。
五、聰明題。
小華和小明相向而行,小華以每分鐘20米的速度走了3分鐘后,小明才開始出發(fā),他每分鐘走25米,5分鐘后兩人相遇,兩地相距多少米?
【數(shù)學(xué)奧數(shù)教案】相關(guān)文章:
關(guān)于奧數(shù)的作文06-01
我的奧數(shù)老師作文03-07