- 相關(guān)推薦
七年級數(shù)學(xué)上冊《絕對值》教案
在教學(xué)工作者實際的教學(xué)活動中,時常會需要準(zhǔn)備好教案,教案有助于順利而有效地開展教學(xué)活動。寫教案需要注意哪些格式呢?以下是小編整理的七年級數(shù)學(xué)上冊《絕對值》教案,希望對大家有所幫助。
七年級數(shù)學(xué)上冊《絕對值》教案1
一、教學(xué)目標(biāo)
1、知識與技能
。1)、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負(fù)數(shù)的大小。
(2)、通過應(yīng)用絕對值解決實際問題,體會絕對值的意義和作用。
2、過程與方法目標(biāo):
。1)、通過運用“| |”來表示一個數(shù)的絕對值,培養(yǎng)學(xué)生的數(shù)感和符號感,達到發(fā)展學(xué)生抽象思維的目的
。2)、通過探索求一個數(shù)絕對值的方法和兩個負(fù)數(shù)比較大小方法的過程,讓學(xué)生學(xué)會通過觀察,發(fā)現(xiàn)規(guī)律、總結(jié)方法,發(fā)展學(xué)生的實踐能力,培養(yǎng)創(chuàng)新意識;
。3)、通過對“做一做”“議一議” “試一試”的交流和討論,培養(yǎng)學(xué)生有條理地用語言表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負(fù)數(shù)大小的比較,讓學(xué)生學(xué)會嘗試評價兩種不同方法之間的差異。
3、情感態(tài)度與價值觀:
借助數(shù)軸解決數(shù)學(xué)問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學(xué)生積極參與數(shù)學(xué)活動,并在數(shù)學(xué)活動中體驗成功,鍛煉學(xué)生克服困難的意志,建立自信心,發(fā)展學(xué)生清晰地闡述自己觀點的能力以及培養(yǎng)學(xué)生合作探索、合作交流、合作學(xué)習(xí)的新型學(xué)習(xí)方式。
二、教學(xué)重點和難點
理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負(fù)數(shù)的大小。
三、教學(xué)過程:
1、教師檢查組長學(xué)案學(xué)習(xí)情況,組長檢查組員學(xué)案學(xué)習(xí)情況。(約5分鐘)
2、在組長的組織下進行討論、交流。(約5分鐘)
3、小組分任務(wù)展示。(約25分鐘)
4、達標(biāo)檢測。(約5分鐘)
5、總結(jié)(約5分鐘)
四、小組對學(xué)案進行分任務(wù)展示
。ㄒ唬、溫故知新:
前面我們已經(jīng)學(xué)習(xí)了數(shù)軸和數(shù)軸的三要素,請同學(xué)們回想一下什么叫數(shù)軸?數(shù)軸的三要素什么?
(二)小組合作交流,探究新知
1、觀察下圖,回答問題:(五組完成)
大象距原點多遠(yuǎn)?兩只小狗分別距原點多遠(yuǎn)?
歸納:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:4的絕對值記作,它表示在上與的距離,所以| 4|= 。
2、做一做:
。1)、求下列各數(shù)的絕對值:(四組完成)—1.5,0,—7,2
。2)、求下列各組數(shù)的絕對值:(一組完成)
。1)4,—4;
。2)0.8,—0.8;
從上面的結(jié)果你發(fā)現(xiàn)了什么?
3、議一議:(八組完成)
|+2|=,1=|+8.2|=;5(2)|—3|=|—0.2|=|—8|= 。(3)|0|=;
你能從中發(fā)現(xiàn)什么規(guī)律?
小結(jié):正數(shù)的絕對值是它,負(fù)數(shù)的絕對值是它的,0的絕對值是。
4、試一試:(二組完成)
若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
(通過上題例子,學(xué)生歸納總結(jié)出一個數(shù)的絕對值與這個數(shù)的關(guān)系。)
5:做一做:(三組完成)
1、
。1)在數(shù)軸上表示下列各數(shù),并比較它們的大小:
— 3,— 1
。2)求出(1)中各數(shù)的絕對值,并比較它們的大小
。3)你發(fā)現(xiàn)了什么?
2、比較下列每組數(shù)的大小。
。1)—1和5;(五組完成)
。2)—8和—3(七組完成)
5和— 2.7(六組完成)
五、達標(biāo)檢測:
1、填空:
絕對值是10的數(shù)有()
|+15|=() |4|=()
| 0 |=() | 4 |=()
2、判斷
(1)、絕對值最小的數(shù)是0.()
。2)、一個數(shù)的絕對值一定是正數(shù)。()
(3)、一個數(shù)的絕對值不可能是負(fù)數(shù)。()
(4)、互為相反數(shù)的兩個數(shù),它們的'絕對值一定相等。()
。5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()
六、總結(jié):
1絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值
2絕對值的性質(zhì):正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0
因為正數(shù)可用a>0表示,負(fù)數(shù)可用a<0表示,所以上述三條可表述成:a="">0,那么|a|=a(2)如果a<0,那么|a|=—a(3)如果a=0,那么|a|=0
3、會利用絕對值比較兩個負(fù)數(shù)的大小:兩個負(fù)數(shù)比較大小,絕對值大的反而小
七、布置作業(yè)
P50頁,知識技能第1,2題
七年級數(shù)學(xué)上冊《絕對值》教案2
教學(xué)目標(biāo):
1.了解絕對值的概念,會求有理數(shù)的絕對值;
2.會利用絕對值比較兩個負(fù)數(shù)的大;
3.在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學(xué)生的思維能力。
一、重點、難點分析
絕對值概念既是本節(jié)的教學(xué)重點又是教學(xué)難點。關(guān)于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負(fù)性,也就是說,任何一個有理數(shù)的絕對值都是非負(fù)數(shù),即無論a取任意有理數(shù),都有。
教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。
二、知識結(jié)構(gòu)
絕對值的定義絕對值的表示方法用絕對值比較有理數(shù)的大小
三、教法建議
用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的,初學(xué)絕對值用語言敘述的定義,好像更便于學(xué)生記憶和運用,以后逐步改用解析式表示絕對值的定義,即在教學(xué)中,只能突出一種定義,否則容易引起混亂,可以把利用數(shù)軸給出的定義作為絕對值的一種直觀解釋。
此外,要反復(fù)提醒學(xué)生:一個有理數(shù)的絕對值不能是負(fù)數(shù),但不能說一定是正數(shù),“非負(fù)數(shù)”的概念視學(xué)生的情況,逐步滲透,逐步提出。
四、有關(guān)絕對值的一些內(nèi)容
1.絕對值的代數(shù)定義
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零
2.絕對值的幾何定義
在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值
3.絕對值的.主要性質(zhì)
。1)一個實數(shù)的絕對值是一個非負(fù)數(shù),即|a|≥0,因此,在實數(shù)范圍內(nèi),絕對值最小的數(shù)是零
。2)兩個相反數(shù)的絕對值相等
五、運用絕對值比較有理數(shù)的大小
兩個負(fù)數(shù)大小的比較,因為兩個負(fù)數(shù)在數(shù)軸上的位置關(guān)系是:絕對值較大的負(fù)數(shù)一定在絕對值較小的負(fù)數(shù)左邊,所以,兩個負(fù)數(shù),絕對值大的反而小
比較兩個負(fù)數(shù)的方法步驟是:
(1)先分別求出兩個負(fù)數(shù)的絕對值;
。2)比較這兩個絕對值的大小;
。3)根據(jù)“兩個負(fù)數(shù),絕對值大的反而小”作出正確的判斷
七年級數(shù)學(xué)上冊《絕對值》教案3
一、學(xué)習(xí)與導(dǎo)學(xué)目標(biāo):
知識與技能:會求出一個數(shù)的絕對值,能利用數(shù)軸及絕對值的知識,比較兩個有理數(shù)的大;
過程與方法:經(jīng)歷絕對值概念的形成,初步體會數(shù)形結(jié)合的思想方法,豐富解決問題的策略;
情感態(tài)度:通過創(chuàng)設(shè)情境,初步感悟?qū)W習(xí)絕對值的必要性,促進責(zé)任心的形成。
二、學(xué)程與導(dǎo)程活動:
A、創(chuàng)設(shè)情境(幻燈片或掛圖)
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和—8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標(biāo)準(zhǔn)問題
2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關(guān)。
B、學(xué)習(xí)概念:
1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,—8的絕對值分別是10,8.
如在數(shù)軸上表示數(shù)—6的'點和表示數(shù)6的點與原點的距離都是6,所以,—6和6的絕對值都是6,記作︱—6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)
2、嘗試回答
。1)︱+2︱=,︱1/5︱=,︱+8.2︱=;
。2)︱—3︱=,︱—0.2︱=,︱—8.2︱=;
(3)︱0︱= 。(幻燈片)
思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導(dǎo)學(xué)生得出:(幻燈片)
性質(zhì):一個正數(shù)的絕對值是它本身;
一個負(fù)數(shù)的絕對值是它的相反數(shù);
零的絕對值是零。
如果用字母a表示有理數(shù),上述性質(zhì)可表述為:
當(dāng)a是正數(shù)時,︱a︱=a;
當(dāng)a是負(fù)數(shù)時,︱a︱=—a;
當(dāng)a=0時,︱a︱=0.
解答課本P19/7及P15練習(xí),由P19/7體會絕對值在實際中的應(yīng)用,由練習(xí)1體會上面的三個等式,由練習(xí)2中提到的絕對值大小、數(shù)軸,引出問題:
在引入負(fù)數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負(fù)數(shù)的大?
3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導(dǎo)閱讀P16(幻燈片)。
顯然,結(jié)合問題的實際意義不難得到:—4—202。
因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。
再找?guī)讉量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用P19/6,8為素材)
通過以上探究活動得到:正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);
兩個負(fù)數(shù),絕對值大的反而小。
4、師生活動比較下列各對數(shù)的大。篜17例,P18練習(xí)。
5、師生小結(jié)歸納(幻燈片)
三、筆記與板書提綱:
1、幻燈片
2、師生板演練習(xí)P15/1
四、練習(xí)與拓展選題:
P19/4,5,9,10
七年級數(shù)學(xué)上冊《絕對值》教案4
一、教學(xué)目標(biāo):
1、掌握絕對值的概念,有理數(shù)大小比較法則。
2、學(xué)會絕對值的計算,會比較兩個或多個有理數(shù)的大小。
3、體驗數(shù)學(xué)的概念、法則來自于實際生活,滲透數(shù)形結(jié)合和分類思想。
二、教學(xué)難點:
兩個負(fù)數(shù)大小的比較。
三、知識重點:
絕對值的概念。
四、教學(xué)過程:
。ㄒ唬┰O(shè)置情境。
1、引入課題。
星期天黃老師從學(xué)校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學(xué)校、朱家尖、家在同一直線上),如果規(guī)定向東為正:
。1)用有理數(shù)表示黃老師兩次所行的路程。
。2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
2、學(xué)生思考后,教師作如下說明:
實際生活中有些問題只關(guān)注量的具體值,而與相反意義無關(guān),即正負(fù)性無關(guān),如汽車的耗油量我們只關(guān)心汽車行駛的距離和汽油的價格,而與行駛的方向無關(guān)。
3、觀察并思考:
畫一條數(shù)軸,原點表示學(xué)校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學(xué)校的距離。
4、學(xué)生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關(guān),而與它所表示的數(shù)的正負(fù)性無關(guān);一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|。
例如,上面的問題中|20|=20|—10|=10顯然|0|=0這個例子中,第一問是相反意義的量,用正負(fù)數(shù)表示,后一問的解答則與符號沒有關(guān)系,說明實際生活中有些問題,人們只需知道它們的'具體數(shù)值,而并不關(guān)注它們所表示的意義。為引入絕對值概念做準(zhǔn)備。使學(xué)生體驗數(shù)學(xué)知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數(shù)形轉(zhuǎn)化的典型模型,學(xué)生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準(zhǔn)備。
。ǘ┖献鹘涣。
1、探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
—3,5,0,+58,0.6。
2、要求小組討論,合作學(xué)習(xí)。
3、教師引導(dǎo)學(xué)生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結(jié)合相反數(shù)的意義,最后總結(jié)得出求絕對值法則。
。ㄈ╈柟叹毩(xí)。
1、其中第1題按法則直接寫出答案,是求絕對值的基本訓(xùn)練;第2題是對相反數(shù)和絕對值概念進行辨別,對學(xué)生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學(xué)生體會出不同說法之間的區(qū)別。求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應(yīng)用,所以安排此例。學(xué)生能做的盡量讓學(xué)生完成,教師在教學(xué)過程中只是組織者。本著這個理念,設(shè)計這個討論。
2、結(jié)合實際發(fā)現(xiàn)新知引導(dǎo)學(xué)生看教科書第16頁的圖,并回答相關(guān)問題:
(1)把14個氣溫從低到高排列。
。2)把這14個數(shù)用數(shù)軸上的點表示出來。
3、觀察并思考:
。1)觀察這些點在數(shù)軸上的位置,并思考它們與溫度的高低之間的關(guān)系,由此你覺得兩個有理數(shù)可以比較大小嗎?應(yīng)怎樣比較兩個數(shù)的大小呢?
。2)學(xué)生交流后,教師總結(jié):
14個數(shù)從左到右的順序就是溫度從低到高的順序:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。
4、想象練習(xí):
想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)—100和—90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關(guān)系。要求學(xué)生在頭腦中有清晰的圖形。讓學(xué)生體會到數(shù)學(xué)的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。
數(shù)在大小比較法則第2點學(xué)生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結(jié)合起來來了解,所以配置想象練習(xí),加強數(shù)與形的想象。
5、課堂練習(xí)例2,比較下列各數(shù)的大小。
比較大小的過程要緊扣法則進行,注意書寫格式。
6、練習(xí):第18頁練習(xí)。
(三)小結(jié)與作業(yè)。
課堂小結(jié)怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大?
。ㄋ模┍菊n作業(yè)。
1、必做題:教產(chǎn)書第19頁習(xí)題1,2,第4,5,6,10
2、選做題:教師自行安排。
五、本課教育評注。
1、情景的創(chuàng)設(shè)出于如下考慮:
(1)體現(xiàn)數(shù)學(xué)知識與生活實際的緊密聯(lián)系,讓學(xué)生在這些熟悉的日常生活情境中獲得數(shù)學(xué)體驗,不僅加深對絕對值的理解,更感受到學(xué)習(xí)絕對值概念的必要性和激發(fā)學(xué)習(xí)的興趣。
。2)教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉(zhuǎn)化為形來解釋,是難點),然后通過練習(xí)歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學(xué)生不易接受。
2、一個數(shù)絕對值的法則,實際上是絕對值概念的直接應(yīng)用,也體現(xiàn)著分類的數(shù)學(xué)思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學(xué)重點;從知識的發(fā)展和學(xué)生的能力培養(yǎng)角度來看,教師應(yīng)更重視學(xué)生的自主學(xué)習(xí)和探究的過程,關(guān)注學(xué)生的思維,做好教學(xué)的組織和引導(dǎo),留給學(xué)生足夠的"空間。
3、有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學(xué)生較難理解,教學(xué)中要結(jié)合絕對值的意義和規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,幫助學(xué)生建立數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小這個數(shù)形結(jié)合的模型。為此設(shè)置了想象練習(xí)。
4、本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學(xué)內(nèi)容很多,學(xué)生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學(xué)。
七年級數(shù)學(xué)上冊《絕對值》教案5
教學(xué)目標(biāo)
1.知識與技能
會利用絕對值比較兩個負(fù)數(shù)的大小.
2.過程與方法
利用絕對值概念比較有理數(shù)的大小,培養(yǎng)學(xué)生的邏輯思維能力.
3.情感、態(tài)度與價值觀
敢于面對數(shù)學(xué)活動中的困難,有學(xué)好數(shù)學(xué)的自信心.
教學(xué)重點難點
重點:利用絕對值比較兩個負(fù)數(shù)的.大小.
難點:利用絕對值比較兩個異分母負(fù)分?jǐn)?shù)的大小.
教與學(xué)互動設(shè)計
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
投影 你能比較下列各組數(shù)的大小嗎?
(1)│-3│與│-8│ (2)4與-5 (3)0與3
(4)-7和0 (5)0.9和1.2
(二)合作交流,解讀探究
討論交流 由以上各組數(shù)的大小比較可見:正數(shù)都大于0,0都大于負(fù)數(shù),正數(shù)都大于負(fù)數(shù).
思考 若任取兩個負(fù)數(shù),該如何比較它的大小呢?
點撥 若-7表示-7℃,-1表示-1℃,則兩個溫度誰高誰低?
【總結(jié)】 兩個負(fù)數(shù),絕對值大的反而小,或說,兩個負(fù)數(shù)絕對值小的反而大.
注意 ①比較兩個負(fù)數(shù)的大小又多了一種方法,即:兩個負(fù)數(shù),絕對值大的反而小.
、诋愄柕膬蓴(shù)比較大小,要考慮它們的正負(fù);同號兩數(shù)比較大小,要考慮先比較它們的絕對值.
③在數(shù)軸上表示有理數(shù),它們從左到右的順序也就是從小到大的順序,即:左邊的數(shù)總比右邊的數(shù)要小.即:利用數(shù)軸來比較有理數(shù)的大小.
【七年級數(shù)學(xué)上冊《絕對值》教案】相關(guān)文章:
初中數(shù)學(xué)絕對值教案12-30
七年級數(shù)學(xué)絕對值教案(精選12篇)07-04
七年級數(shù)學(xué)《絕對值》教案(精選11篇)07-20
七年級數(shù)學(xué)《絕對值》教案(通用14篇)07-21
七年級數(shù)學(xué)《絕對值》教學(xué)反思(精選11篇)08-31
七年級上冊數(shù)學(xué)數(shù)軸教案04-29
七年級上冊數(shù)學(xué)教案12-16