熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

初二數(shù)學教案

時間:2024-05-31 07:32:24 八年級數(shù)學教案 我要投稿

初二數(shù)學教案【實用】

  作為一無名無私奉獻的教育工作者,總歸要編寫教案,借助教案可以提高教學質(zhì)量,收到預(yù)期的教學效果。那么應(yīng)當如何寫教案呢?以下是小編精心整理的初二數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

初二數(shù)學教案【實用】

初二數(shù)學教案1

  教學目標

  1.知道梯形、等腰梯形、直角梯形的有關(guān)概念;能說出并證明等腰梯形的兩個性質(zhì);等腰梯形同一底上的兩個角相等;兩條對角線相等。

  2.會運用梯形的有關(guān)概念和性質(zhì)進行有關(guān)問題的論證和計算。

  3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉(zhuǎn)化的思想。

  教學模式問題解決教學

  教學過程

  想一想:

  什么樣的四邊形是平行四邊形?平行四邊形有哪些性質(zhì)?學生回答后,教師板書以下關(guān)系圖中的有關(guān)部分:

  畫一畫:

  畫一個梯形,并指出梯形的上、下底,畫出梯形的高。

  問題教學

  問題1:根據(jù)剛才的畫圖,請給梯形下一個定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學生自己給梯形下定義,有助于訓(xùn)練學生觀察、概括和語言表述的能力。如果學生定義時,遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學生討論以下問題:一組對邊平行且這組對邊不相等的.四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關(guān)系圖,并結(jié)合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的公垂線段,在計算面積時高即為上下兩底(平行線)間的距離,也就是夾在兩底間的公垂線段的長度。畫高時可以從上底任一點向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構(gòu)造直角三角形,便于計算。)

  問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會有困難;教師應(yīng)進一步引導(dǎo)學生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當CD⊥BC時,另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)

  練一練:課本例1后練習第l、2題。

  問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質(zhì)。并能證明你的猜想嗎?

  說明與建議:(l)教師要用微笑、點頭、贊嘆、激勵的表情和話語來鼓勵學生大膽猜想。(2)學生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導(dǎo)學生關(guān)注等腰梯形特有的性質(zhì)---等腰梯形的底角相等。(3)如何證明這個猜想,可讓學生自己思考、探索、交流,教師給以引導(dǎo),鼓勵證明多樣化,如課本第174頁的證法。教師可提醒學生證明過程中用到了"夾在平行線間的平行線段相等"這一性質(zhì)。并指出:這種證法的實質(zhì)是把一腰平移,從而構(gòu)造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構(gòu)造出兩個全等的直三角形等。

  問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學生用折紙的方法,確認等腰梯形是軸對稱圖形;教學中,還可引導(dǎo)學生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點的直線。)

  例題解析(課本例1)說明:本例的結(jié)論,為學生在討論"問題3"時已提及,則可由學生自已完成證明,并概括成為一個文字命題。如學生討論問題3時未提及,則可由教師引導(dǎo)學生猜想,然后再完成證明。

  課堂練習1.課本例1后練習第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)

初二數(shù)學教案2

  教學目標:

  1、了解什么是比例,能夠正確地表示比例關(guān)系。

  2、掌握比例的性質(zhì),能夠靈活地運用比例的性質(zhì)進行解題。

  3、通過練習,提高解決實際問題的能力。

  教學重點:

  1、比例的概念及表示方法。

  2、比例的性質(zhì)。

  3、比例的應(yīng)用。

  教學難點:

  1、比例的應(yīng)用。

  2、解決實際問題的能力。

  教學過程:

  一、引入(5分鐘)

  1、教師出示一張比例圖,讓學生猜測比例的含義。

  2、學生回答后,教師講解比例的概念及表示方法。

  二、講解(15分鐘)

  1、教師講解比例的`性質(zhì)。

  2、教師通過例題讓學生掌握比例的應(yīng)用。

  三、練習(30分鐘)

  1、教師出示一些比例題目,讓學生在課堂上完成。

  2、學生完成后,教師講解答案及解題方法。

  四、鞏固(10分鐘)

  1、教師出示一些實際問題,讓學生運用比例的知識進行解決。

  2、學生完成后,教師講解答案及解題方法。

  五、作業(yè)(5分鐘)

  1、教師布置相關(guān)作業(yè)。

  2、學生完成后,交給教師批改。

  教學反思:

  通過本節(jié)課的教學,學生們對比例的概念及表示方法有了更深入的了解,掌握了比例的性質(zhì),并通過練習提高了解決實際問題的能力。但是,教學過程中還存在一些問題,比如有些學生對比例的應(yīng)用還不夠熟練,需要加強練習。因此,下一節(jié)課需要針對這些問題進行更加深入的講解和練習。

初二數(shù)學教案3

  初二上冊數(shù)學知識點總結(jié):等腰三角形

  一、等腰三角形的性質(zhì):

  1、等腰三角形兩腰相等.

  2、等腰三角形兩底角相等(等邊對等角)。

  3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

  4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

  5、等邊三角形的性質(zhì):

 、俚冗吶切稳叾枷嗟.

 、诘冗吶切稳齻內(nèi)角都相等,都等于60°

 、鄣冗吶切蚊織l邊上都存在三線合一.

  ④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).

  6.基本判定:

  ⑴等腰三角形的判定:

 、儆袃蓷l邊相等的三角形是等腰三角形.

 、谌绻粋三角形有兩個角相等,那么這兩個角所對的.邊也相等(等角對等邊).

 、频冗吶切蔚呐卸ǎ

  ①三條邊都相等的三角形是等邊三角形.

 、谌齻角都相等的三角形是等邊三角形.

 、塾幸粋角是60°的等腰三角形是等邊三角形.

初二數(shù)學教案4

  教學目標

  知識與技能目標

  1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

  2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

  3.逐步掌握說理的`基本方法。

  過程與方法目標

  1.在探索平行四邊形的判別條件的過程中,發(fā)展學生的合情推理意識,主動探索的習慣。

  2.鼓勵學生用多種方法進行說理。

  情感與態(tài)度目標

  1.培養(yǎng)學生探索創(chuàng)新的能力,開拓學生思路,發(fā)展學生的思維能力。

  2.培養(yǎng)學生合作學習,增強學生的自我評價意識。

  教材分析

  教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學生自己準備,由學生自我操作。也可由教師演示。

  教學重點:平行四邊形的判別方法。

  教學難點:利用平行四邊形的判別方法進行正確的說理。

  學情分析

  初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學習,要引導(dǎo)學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

  教學流程

  一、創(chuàng)設(shè)情境,引入新課

  師:請同學們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

  學生活動:學生按小組進行探索。

初二數(shù)學教案5

  一、教材分析1、特點與地位:重點中的重點。本課是教材求兩結(jié)點之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運輸、通訊網(wǎng)絡(luò)等方面具有一定的實用意義。

  2、重點與難點:結(jié)合學生現(xiàn)有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

  (1)重點:如何將現(xiàn)實問題抽象成求解最短路徑問題,以及該問題的解決方案。(2)難點:求解最短路徑算法的程序?qū)崿F(xiàn)。3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結(jié)點的最短路徑,另一種是求每一對結(jié)點之間的最短路徑。根據(jù)教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應(yīng)用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結(jié)合,逐步推動教學過程。

  二、教學目標分析1、知識目標:掌握最短路徑概念、能夠求解最短路徑。2、能力目標:(1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學生的數(shù)據(jù)抽象能力。(2)通過旅游景點線路選擇問題的解決,培養(yǎng)學生的獨立思考、分析問題、解決問題的能力。3、素質(zhì)目標:培養(yǎng)學生講究工作方法、與他人合作,提高效率。

  三、教法分析課前充分準備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發(fā)的方式展開教學。由于本節(jié)課的內(nèi)容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據(jù)學生的反應(yīng)控制好教學進度是本節(jié)課成功的關(guān)鍵。

  四、學法指導(dǎo)1、課前上次課結(jié)課時給學生布置任務(wù),使其有針對性的'預(yù)習。2、課中指導(dǎo)學生討論任務(wù)解決方法,引導(dǎo)學生分析本節(jié)課知識點。3、課后給學生布置同類型任務(wù),加強練習。

  五、教學過程分析(一)課前復(fù)習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。教學方法及注意事項:(1)采用提問方式,注意及時小結(jié),提問的目的是幫助學生回憶概念。(2)提示學生“溫故而知新”,養(yǎng)成良好的學習習慣。

  (二)導(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個點間最短距離的實際需要,引出本課教學內(nèi)容“求最短路徑問題”。教學方法及注意事項:(1)先講實例,再指出概念,既可以吸引學生注意力,激發(fā)學習興趣,又可以實現(xiàn)教學內(nèi)容的自然過渡。(2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

  (三)講授新課(25~30分鐘)1、求某一結(jié)點到其他各結(jié)點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。(1)將實際問題抽象成圖中求任一結(jié)點到其他結(jié)點最短路徑問題。(3~5分鐘)教學方法及注意事項:①主要采用講授法,將實際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉(zhuǎn)化。③及時總結(jié),原型抽象(景點作為圖的結(jié)點,景點間的線路作為圖的邊,旅途費用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點到其他各結(jié)點的最短路徑問題。④利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學做準備。

  教學方法及注意事項:①啟發(fā)式教學,如何實現(xiàn)按路徑長度遞增產(chǎn)生最短路徑?②結(jié)合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。

  (四)課堂小結(jié)(3~5分鐘)1、明確本節(jié)課重點

  2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?

  (五)布置作業(yè)1、書面作業(yè):復(fù)習本次課內(nèi)容,準備一道備用習題,靈活把握時間安排。六、教學特色以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現(xiàn)所講內(nèi)容的實用性,提高學生的學習興趣。

初二數(shù)學教案6

  1。教材分析

 。1)知識結(jié)構(gòu):

 。2)重點和難點分析:

  重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學習起著重要的作用。

  難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個條件,這幾個字的意思學生不好理解,所以是難點。

  2。教法建議

 。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學生學習數(shù)學的興趣。

  (2)本節(jié)的教學,要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。

  (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。

  (4)本節(jié)用到的數(shù)學思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學思想方法進行總結(jié),使學生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

  一、素質(zhì)教育目標

 。ㄒ唬┲R教學點

  1。使學生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。

  2。了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應(yīng)用。

 。ǘ┠芰τ(xùn)練點

  1。通過引導(dǎo)學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力。

  2。通過推導(dǎo)四邊形內(nèi)角和定理,對學生滲透化歸思想。

  3。會根據(jù)比較簡單的條件畫出指定的四邊形。

  4。講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學生滲透類比思想。

 。ㄈ┑掠凉B透點

  使學生認識到這些四邊形都是常見的,研究他們都有實際應(yīng)用意義,從而激發(fā)學生學習新知識的興趣。

 。ㄋ模┟烙凉B透點

  通過四邊形內(nèi)角和定理數(shù)學,滲透統(tǒng)一美,應(yīng)用美。

  二、學法引導(dǎo)

  類比、觀察、引導(dǎo)、講解

  三、重點難點疑點及解決辦法

  1。教學重點:四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題。

  2。教學難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。

  3。疑點及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角。

  四、課時安排

  2課時

  五、教具學具準備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設(shè)計

  教師引入新課,學生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學生閱讀相關(guān)材料。

  第一課時

  七、教學步驟

  【復(fù)習引入】

  在小學里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一

  章我們將比較系統(tǒng)地學習各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題。

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖。

  師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形)。

  【講解新課】

  1。四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:

 。1)要結(jié)合圖形。

  (2)要與三角形類比。

  (3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的'定義中為什么不加同一平面內(nèi)(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖42中的點 。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。

 。4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。

 。5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。

  (6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。

  2。四邊形內(nèi)角和定理

  教師問:

 。1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?

 。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?

 。3)若在四邊形ABCD如圖4—7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。

  我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:

 、2180=360如圖4

 、4180—360=360如圖4—7。

  例1 已知:如圖48,直線 于B、 于C。

  求證:(1) (2) 。

  本例題是四邊形內(nèi)角和定理的應(yīng)用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應(yīng)用,作兩三步推理就可以證出。

  【總結(jié)、擴展】

  1。四邊形的有關(guān)概念。

  2。四邊形對角線的作用。

  3。四邊形內(nèi)角和定理。

  八、布置作業(yè)

  教材P128中1(1)、2、 3。

  九、板書設(shè)計

  四邊形(一)

  四邊形有關(guān)概念

  四邊形內(nèi)角和

  例1

  十、隨堂練習

  教材P122中1、2、3。

初二數(shù)學教案7

  教學設(shè)計思想:

  本節(jié)主要學習了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學生的主觀能動性。

  教學目標

  知識與技能:

  1.總結(jié)出平行四邊形的三種判定方法;

  2.應(yīng)用平行四邊形的判定解決實際問題;

  3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;

  4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學會基本的添輔助線法。

  過程與方法:

  1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。

  2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學中的重要性。

  情感態(tài)度價值觀:

  1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習慣;

  2.通過探索式證明法開拓思路,發(fā)展思維能力;

  3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。

  教學重難點

  重點:1.平行四邊形的.判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。

  難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。

  教學方法

  小組討論、合作探究

  課時安排

  3課時

  教學媒體

  課件、

  教學過程

  第一課時

  (一)引入

  師:上節(jié)課我們已經(jīng)知道了平行四邊形的邊、角及對角線所具有的性質(zhì),請同學們回憶一下都有哪些?

初二數(shù)學教案8

  新課指南

  1.知識與技能:(1)在具體情境中了解代數(shù)式及代數(shù)式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養(yǎng)學生用字母表示數(shù)和探索數(shù)學規(guī)律的能力.

  2.過程與方法:經(jīng)歷探索規(guī)律并用代數(shù)式表示規(guī)律的過程,學會列簡單的代數(shù)式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結(jié)合并同類項及去括號的.法則,并利用它們進行整式的加減運算和解決簡單的實際問題.

  3.情感態(tài)度與價值觀:通過對整式加減的學習,深入體會代數(shù)式在實際生活中的應(yīng)用,它為后面學習方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學知識的產(chǎn)生來源于實際生產(chǎn)和生活的需求,反之,它又服務(wù)于實際生活的方方面面.

  4.重點與難點:重點是用含有字母的式子表式規(guī)律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規(guī)律的過程及用代數(shù)式表示規(guī)律的方法,以及準確識別整式的項、系數(shù)等知識.

  教材解讀精華要義

  數(shù)學與生活

  如圖15-1所示,用同樣規(guī)格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.

  思考討論由圖15-1可以看到,當n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發(fā)現(xiàn):4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數(shù)等于n加上3,一豎列的瓷磚數(shù)等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數(shù),即代數(shù)式,你還能舉出這樣用字母表示數(shù)的例子嗎?

  知識詳解

  知識點1代數(shù)式

  用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù).的字母連接起來的式子叫做代數(shù)式.單獨的一個數(shù)或一個字母也是代數(shù)式.

  例如:5,a,(a+b),ab,a2-2ab+b2等等.

  知識點2列代數(shù)式時應(yīng)該注意的問題

  (1)數(shù)與字母、字母與字母相乘時常省略“×”號或用“·”.

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

  (2)數(shù)字通常寫在字母前面.

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

  (3)帶分數(shù)與字母相乘時要化成假分數(shù).

  如:2×ab=ab,切勿錯誤寫成“2ab”.

  (4)除法常寫成分數(shù)的形式.

  如:S÷x=.

初二數(shù)學教案9

  一、教材分析:

  勾股定理是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。

  教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

  據(jù)此,制定教學目標如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養(yǎng)學生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  二、教學重點:

  勾股定理的證明和應(yīng)用。

  三、教學難點:

  勾股定理的證明。

  四、教法和學法:

  教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:以自學輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

  切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

  通過演示實物,引導(dǎo)學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

  五、教學程序:

  本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設(shè)計如下:

  (一)創(chuàng)設(shè)情境以古引新

  1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。

  2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。

  3、板書課題,出示學習目標。(二)初步感知理解教材

  教師指導(dǎo)學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。

  (三)質(zhì)疑解難討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。2、教師引導(dǎo)學生按照要求進行拼圖,觀察并分析;(1)這兩個圖形有什么特點?(2)你能寫出這兩個圖形的面積嗎?

  (3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

  (四)鞏固練習強化提高

  1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。

  2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

  (五)歸納總結(jié)練習反饋

  引導(dǎo)學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助多媒體提高課堂教學效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。

  六、教學目標:

  1.經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學活動中發(fā)展學生的探究意識和合作交流的習慣。

  2.掌握勾股定理和他的簡單應(yīng)用

  重點難點:

  重點:能熟練運用拼圖的方法證明勾股定理

  難點:用面積證勾股定理

  教學過程

  七、創(chuàng)設(shè)問題的情境,激發(fā)學生的學習熱情,導(dǎo)入課題

  我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的.正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

  (同學們回答有這幾種可能:(1) (2) )

  在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

  =請同學們對上面的式子進行化簡,得到:即=

  這就可以從理論上說明勾股定理存在。請同學們?nèi)ビ脛e的拼圖方法說明勾股定理。

  八、講例

  1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

  分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

  解:由勾股定理得

  即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

  答:飛機每個小時飛行540千米。

  九、議一議

  展示投影2(書中的圖1—9)

  觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足

  同學在議論交流形成共識之后,老師總結(jié)。

  勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

  十、作業(yè)

  1、 1、課文P11§1.2 1 、2

  2、選用作業(yè)。

初二數(shù)學教案10

  教學目標

  1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計量的直方圖;

  2、讓學生進一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

  教學重點

  掌握頻率分布直方圖概念及其應(yīng)用;

  教學難點

  繪制連續(xù)統(tǒng)計量的直方圖

  教學過程

 、瘢岢鰡栴},創(chuàng)設(shè)情境,引入新課:

  問題:我們班準備從63名同學中挑選出身高相差不多的40名同學參加比賽,那么這個想法可以實現(xiàn)嗎?應(yīng)該選擇身高在哪個范圍的學生參加?

  63名學生的身高數(shù)據(jù)如下:

  158158160168159159151158159

  168158154158154169158158158

  159167170153160160159159160

  149163163162172161153156162

  162163157162162161157157164

  155156165166156154166164165

  156157153165159157155164156

  解:(確定組距)最大值為172,最小值為149,他們的差為23

 。ㄉ砀選的'變化范圍在23厘米,)

  (分組劃記)頻數(shù)分布表:

  身高(x)劃記頻數(shù)(學生人數(shù))

  149≤x

  152≤x

  155≤x

  158≤x

  161≤

  164≤x

  167≤x

  170≤x

  從表中看,身高在155≤x

 。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)

  探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個組,這樣做能否選出身高比較整齊的隊員?

  分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。

  歸納:組距和組數(shù)的確定沒有固定的標準,要憑借經(jīng)驗和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當數(shù)據(jù)在100個以內(nèi)時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。

  我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。

  首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數(shù)為0的點,在上方圖的左邊取(147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數(shù)折線圖。

  頻數(shù)折線圖也可以不通過直方圖直接畫出。

  根據(jù)表12.2-2,求了各個小組兩個端點的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標,各小組對應(yīng)的頻數(shù)為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數(shù)分布折線圖如課本P73圖。

  II課堂小結(jié):

 。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

 。2)組距和組數(shù)沒有確定標準,當數(shù)據(jù)在1000個以內(nèi)時,通常分成5~12組

 。3)如果取個長方形上邊的中點,可以得到頻數(shù)折線圖

 。4)求各小組兩個斷點的平均數(shù),這些平均數(shù)叫組中值。

初二數(shù)學教案11

重難點分析

  本節(jié)的重點是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學習的正方形的基礎(chǔ)。

  本節(jié)的難點是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學生手足無措,教師在教學過程中應(yīng)給予足夠重視。

  教法建議

  根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學過程中注意以下問題:

  1.矩形的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

  2.矩形在現(xiàn)實中的實例較多,在講解矩形的性質(zhì)和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學生的參與感又鞏固了所學的知識.

  3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的`掌握更輕松些.

  4. 在對性質(zhì)的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.

  5. 由于矩形的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學生分析思路,由學生來進行具體的證明.

  6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

  矩形教學設(shè)計

  教學目標

  1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。

  2.能運用以上性質(zhì)進行簡單的證明和計算。

  此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學生辨證唯物主義觀點。

  引導(dǎo)性材料

  想一想:一般四邊形與平行四邊形之間的相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。

  小學里已學過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學里已學過)等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應(yīng)畫在哪里?

  (讓學生初步感知矩形與平行四邊形的從屬關(guān)系。)

  演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。

  問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學生能正確地給出矩形的定義。

  問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質(zhì)呢?

  說明與建議:讓學生分組探索,有必要時,教師可引導(dǎo)學生,根據(jù)研究平行四邊形獲得的經(jīng)驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學生,這種探索的基礎(chǔ)是矩形有一個角是直角矩形的四個角都相等(矩形性質(zhì)定理1),要學生給以證明(即課本例1后練習第1題)。

  學生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質(zhì)上是一致的,所以不必另列為一個性質(zhì)。

  學生探索矩形的四條對角線的大小關(guān)系時,如有困難,可引導(dǎo)學生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質(zhì)定理2。

  問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?

  說明與建議:(1)讓學生先觀察圖4.5-3,并議論猜想,如學生有困難,教師可引導(dǎo)學生觀察圖中的一個直角三角形(如Rt△ABC),讓學生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學生自己給出如下證明:

  證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。

  ,AO=CO

  在Rt△ABC中,BO是斜邊AC上的中線,且 。

  直角三角形斜邊上的中線等于斜邊的一半。

  例題解析

  例1:(即課本例1)

  說明:本題難度不大,又有助于學生加深對性質(zhì)定理的理解,教學中應(yīng)引導(dǎo)學生探索解法:

  如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:

  ∵四邊形ABCD是矩形,

  AC=BD(矩形的對角線相等)。

  又 。

  OA=BO,△AOB是等腰三角形,

  ∵AOD=120,AOB=180- 120= 60

  AOB是等邊三角形。

  BO=AB=4cm,

  BD=2BO=244cm=8cm。

  例2:(補充例題)

  已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點,EF平分BED交BD于點F。

  (l)猜想:EF與BD具有怎樣的關(guān)系?

  (2)試證明你的猜想。

  解:(l)EF垂直平分BD。

  (2)證明:∵ABC=90,點E是AC的中點。

  (直角三角形的斜邊上的中線等于斜邊的一半)。

  同理: 。

  BE=DE。

  又∵EF平分BED。

  EFBD,BF=DF。

  說明:本例是一道不給出結(jié)論,需要學生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學生的推理(包括合情推理和邏輯推理)能力。如果學生不適應(yīng),或有困難,教師可根據(jù)實際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對了沒有?證明了沒有?而是讓學生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個基本圖形。

  課堂練習

  1.課本例1后練習題第2題。

  2.課本例1后練習題第4題。

  小結(jié)

  1.矩形的定義:

  2.歸納總結(jié)矩形的性質(zhì):

  對邊平行且相等

  四個角都是直角

  對角線平行且相等

  3.直角三角形斜邊上的中線等于斜邊的一半。

  4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。

  作業(yè)

  l.課本習題4.3A組第2題。

  2.課本復(fù)習題四A組第6、7題。

初二數(shù)學教案12

 一、利用勾股定理進行計算

  1.求面積

  例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。

  析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。

  2.求邊長

  例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

  析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

  點評:這兩道題有一個共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊含著數(shù)學中很重要的轉(zhuǎn)化思想,請同學們要留心。

  二、利用勾股定理的逆定理判斷直角三角形

  例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

  析解:由于所給條件是關(guān)于a,b,c的一個等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的`值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

  點評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

  三、利用勾股定理說明線段平方和、差之間的關(guān)系

  例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。

  析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

  點評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時,則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。

初二數(shù)學教案13

  知識與技能

  1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運算。

  2.會用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實際問題。

  3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。

  4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運用這些知識進行有關(guān)的證明和計算。

  5.進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義,會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。

  過程與方法

  進一步培養(yǎng)學生的合情推理能力和發(fā)展學生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數(shù)的變化與對應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習慣和實事求是的科學態(tài)度;培養(yǎng)學生的探究能力、數(shù)學歸納能力,在活動中培養(yǎng)學生的合作交流能力;逐步形成獨立思考,主動探索的習慣。

  情感、態(tài)度與價值觀

  豐富學生從事數(shù)學活動的.經(jīng)驗和體驗,通過對問題的共同探討,培養(yǎng)學生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習慣,和理性思維。培養(yǎng)學生面對教學活動中的困難,能通過合作交流解決遇到的困難。

初二數(shù)學教案14

  一、教學目標

  1. 掌握等腰梯形的判定方法.

  2. 能夠運用等腰梯形的性質(zhì)和判定進行有關(guān)問題的論證和計算,進一步培養(yǎng)學生的分析能力和計算能力.

  3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉(zhuǎn)化的思想

  二、教法設(shè)計

  小組討論,引導(dǎo)發(fā)現(xiàn)、練習鞏固

  三、重點、難點

  1.教學重點:等腰梯形判定.

  2.教學難點:解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線).

  四、課時安排

  1課時

  五、教具學具準備

  多媒體,小黑板,常用畫圖工具

  六、師生互動活動設(shè)計

  教師復(fù)習引入,學生閱讀課本;學生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線

  七、教學步驟

  【復(fù)習提問】

  1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

  2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

  3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?

  我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.

  【引人新課】

  等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.

  前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的`判定定理.

  例1已知:如圖,在梯形 中, , ,求證: .

  分析:我們學過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的兩個底角,定理就容易證明了.

  (引導(dǎo)學生口述證明方法,然后利用投影儀出示三種證明方法)

  (1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .

  又由 得 ,因此可得 .

  (2)作高 、 ,通過證 推出 .

  (3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .

  (證明過程略).

  例3 求證:對角線相等的梯形是等腰梯形.

  已知:如圖,在梯形 中, , .

  求證: .

  分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.

  在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .

  (引導(dǎo)學生說出證明思路,教師板書證明過程)

  證明:過點 作 ,交 延長線于 ,得 ,

  ∴ .

  ∵ , ∴

  ∴

  ∵ , ∴

  又∵ 、 ,∴

  ∴ .

  說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.

  例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.

  分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

  畫法:①畫 ,使 .

  .

  ②延長 到 使 .

 、鄯謩e過 、 作 , , 、 交于點 .

  四邊形 就是所求的等腰梯形.

  解:梯形 周長 .

  答:梯形周長為26cm,面積為 .

  【總結(jié)、擴展】

  小結(jié):(由學生總結(jié))

  (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.

  (2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

  八、布置作業(yè)

  l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.

  九、板書設(shè)計

  十、隨堂練習

  教材P177中l(wèi);P179中B組2

初二數(shù)學教案15

  知識目標:

  理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標:

  會用變化的量描述事物

  情感目標:

  回用運動的觀點觀察事物,分析事物

  重點:

  函數(shù)的概念

  難點:

  函數(shù)的概念

  教學媒體:

  多媒體電腦,計算器

  教學說明:

  注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學會確定自變量的取值范圍

  教學設(shè)計:

  引入:

  信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

  ①這張圖告訴我們哪些信息?

  ②這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

 。2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應(yīng)的數(shù):

 、龠@表告訴我們哪些信息?

 、谶@張表是怎樣刻畫波長和頻率之間的'變化規(guī)律的,你能用一個表達式表示出來嗎?

  一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。

  范例:例1判斷下列變量之間是不是函數(shù)關(guān)系:

 。5)長方形的寬一定時,其長與面積;

  (6)等腰三角形的底邊長與面積;

 。7)某人的年齡與身高;

  活動1:閱讀教材7頁觀察1。后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1)寫出表示y與x的函數(shù)關(guān)系式。

  (2)指出自變量x的取值范圍。

  (3)汽車行駛200km時,油箱中還有多少汽油?

  解:(1)y=50—0.1x

 。2)0500

 。3)x=200,y=30

  活動2:練習教材9頁練習

  小結(jié):

 。1)函數(shù)概念

 。2)自變量,函數(shù)值

 。3)自變量的取值范圍確定

  作業(yè):18頁:2,3,4題

【初二數(shù)學教案】相關(guān)文章:

初二數(shù)學教案11-02

初二數(shù)學教案12-12

初二數(shù)學教案《菱形》08-22

《矩形》初二的數(shù)學教案12-02

學校初二數(shù)學教案02-08

【熱】初二數(shù)學教案12-23

初二數(shù)學教案【精】12-20

初二數(shù)學教案【熱門】12-22

初二數(shù)學教案【推薦】12-18

【推薦】初二數(shù)學教案12-23