熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>數(shù)學(xué)等差數(shù)列教案

數(shù)學(xué)等差數(shù)列教案

時(shí)間:2024-10-28 18:49:50 夏杰 數(shù)學(xué)教案 我要投稿

數(shù)學(xué)等差數(shù)列教案(通用13篇)

  作為一名教學(xué)工作者,很有必要精心設(shè)計(jì)一份教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。來(lái)參考自己需要的教案吧!下面是小編幫大家整理的數(shù)學(xué)等差數(shù)列教案(通用13篇),僅供參考,大家一起來(lái)看看吧。

數(shù)學(xué)等差數(shù)列教案(通用13篇)

  數(shù)學(xué)等差數(shù)列教案 1

  一、教學(xué)內(nèi)容分析

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  二、學(xué)生學(xué)習(xí)情況分析

  教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過(guò)高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的'進(jìn)一步提高。

  三、設(shè)計(jì)思想

  1.教法

  ⑴誘導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。

 、品纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題,調(diào)動(dòng)學(xué)生的積極性。

  ⑶講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。

  2.學(xué)法

  引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問(wèn)題(數(shù)數(shù)問(wèn)題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問(wèn)題、水庫(kù)水位問(wèn)題、儲(chǔ)蓄問(wèn)題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。

  用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo)。

  在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。

  四、教學(xué)目標(biāo)

  通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握等差數(shù)列的通項(xiàng)公式與前 n 項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問(wèn)題;并在此過(guò)程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):

  ①等差數(shù)列的概念。

  ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

  難點(diǎn):

  ①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。

 、诶斫獾炔顢(shù)列是一種函數(shù)模型。

  關(guān)鍵:

  等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。

  六、教學(xué)過(guò)程(略)

  數(shù)學(xué)等差數(shù)列教案 2

  一、教材分析

  1、教學(xué)目標(biāo):

  A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;

  B.培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

  C 通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  2、教學(xué)重點(diǎn)和難點(diǎn)

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項(xiàng)公式。

  二、教法分析

  采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。

  三、教學(xué)程序

  本節(jié)課的教學(xué)過(guò)程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

 。ㄒ唬⿵(fù)習(xí)引入:

  1.全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼(表示鞋底長(zhǎng),單位是c)分別是

  21,22,23,24,25,

  2.某劇場(chǎng)前10排的座位數(shù)分別是:

  38,40,42,44,46,48,50,52,54,56。

  3.某長(zhǎng)跑運(yùn)動(dòng)員7天里每天的訓(xùn)練量(單位:)是:

  7500,8000,8500,9000,9500,10000,10500。

  共同特點(diǎn):

  從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一個(gè)常數(shù)。

  (二) 新課探究

  1、給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):

 、 “從第二項(xiàng)起”滿足條件;

 、诠頳一定是由后項(xiàng)減前項(xiàng)所得;

 、酃羁梢允钦龜(shù)、負(fù)數(shù),也可以是0。

  2、推導(dǎo)等差數(shù)列的通項(xiàng)公式

  若等差數(shù)列{an }的首項(xiàng)是 ,公差是d, 則據(jù)其定義可得:

  - =d 即: = +d

  – =d 即: = +d = +2d

  – =d 即: = +d = +3d

  進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  = +(n-1)d

  此時(shí)指出:

  這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的.方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:

  – =d

  – =d

  – =d

  – =d

  將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d

  當(dāng)n=1時(shí),上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時(shí)上面公式都成立,因此它就是等差數(shù)列{an }的通項(xiàng)公式。

  接著舉例說(shuō)明:若一個(gè)等差數(shù)列{ }的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是: =1+(n-1)×2 , 即 =2n-1 以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

 。ㄈ⿷(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過(guò)例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問(wèn)題的能力。通過(guò)例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的 、d、n、 這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項(xiàng);

  (2)-401是不是等差數(shù)列-5,-9,-13,…的項(xiàng)?如果是,是第幾項(xiàng)?

  第二問(wèn)實(shí)際上是求正整數(shù)解的問(wèn)題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式

  例2 在等差數(shù)列{an}中,已知 =10, =31,求首項(xiàng) 與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固

  例3 梯子的最高一級(jí)寬33c,最低一級(jí)寬110c,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列

  此題是對(duì)學(xué)生進(jìn)行數(shù)列問(wèn)題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問(wèn)題同時(shí)強(qiáng)化了等差數(shù)列的概念。

  (五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2.等差數(shù)列的通項(xiàng)公式 = +(n-1) d會(huì)知三求一

 。 布置作業(yè)

  必做題:課本P114 習(xí)題3.2第2,6 題

  選做題:已知等差數(shù)列{ }的首項(xiàng) = -24,從第10項(xiàng)開(kāi)始為正數(shù),求公差d的取值范圍。(目的:通過(guò)分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  四、板書(shū)設(shè)計(jì)

  在板書(shū)中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書(shū)充分體現(xiàn)了精講多練的教學(xué)方法。

  數(shù)學(xué)等差數(shù)列教案 3

  一、預(yù)習(xí)問(wèn)題:

  1、等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從 起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè) ,那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。

  2、等差中項(xiàng):若三個(gè)數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,

  即 或 。

  3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時(shí),數(shù)列為遞增數(shù)列; 時(shí),數(shù)列為遞減數(shù)列; 時(shí),數(shù)列為常數(shù)列;等差數(shù)列不可能是 。

  4、等差數(shù)列的通項(xiàng)公式: 。

  5、判斷正誤:

 、1,2,3,4,5是等差數(shù)列; ( )

  ②1,1,2,3,4,5是等差數(shù)列; ( )

  ③數(shù)列6,4,2,0是公差為2的'等差數(shù)列; ( )

 、軘(shù)列 是公差為 的等差數(shù)列; ( )

 、輸(shù)列 是等差數(shù)列; ( )

 、奕 ,則 成等差數(shù)列; ( )

 、呷 ,則數(shù)列 成等差數(shù)列; ( )

 、嗟炔顢(shù)列是相鄰兩項(xiàng)中后項(xiàng)與前項(xiàng)之差等于非零常數(shù)的數(shù)列; ( )

 、岬炔顢(shù)列的公差是該數(shù)列中任何相鄰兩項(xiàng)的差。 ( )

  6、思考:如何證明一個(gè)數(shù)列是等差數(shù)列。

  二、實(shí)戰(zhàn)操作:

  例1、(1)求等差數(shù)列8,5,2,的第20項(xiàng)。

 。2) 是不是等差數(shù)列 中的項(xiàng)?如果是,是第幾項(xiàng)?

 。3)已知數(shù)列 的公差 則

  例2、已知數(shù)列 的通項(xiàng)公式為 ,其中 為常數(shù),那么這個(gè)數(shù)列一定是等差數(shù)列嗎?

  例3、已知5個(gè)數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個(gè)數(shù)。

  數(shù)學(xué)等差數(shù)列教案 4

  [教學(xué)目標(biāo)]

  1.知識(shí)與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問(wèn)題。

  2.過(guò)程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過(guò)程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過(guò)階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力。

  3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時(shí)總結(jié)的好習(xí)慣。

  [教學(xué)重難點(diǎn)]

  1.教學(xué)重點(diǎn):等差數(shù)列的概念的`理解,通項(xiàng)公式的推導(dǎo)及應(yīng)用。

  2.教學(xué)難點(diǎn):

 。1)對(duì)等差數(shù)列中“等差”兩字的把握;

 。2)等差數(shù)列通項(xiàng)公式的推導(dǎo)。

  [教學(xué)過(guò)程]

  一.課題引入

  創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)

  二、新課探究

 。ㄒ唬┑炔顢(shù)列的定義

  1、等差數(shù)列的定義

  如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。

 。1)定義中的關(guān)健詞有哪些?

 。2)公差d是哪兩個(gè)數(shù)的差?

 。ǘ┑炔顢(shù)列的通項(xiàng)公式

  探究1:等差數(shù)列的通項(xiàng)公式(求法一)

  如果等差數(shù)列首項(xiàng)是,公差是,那么這個(gè)等差數(shù)列如何表示?呢?

  根據(jù)等差數(shù)列的定義可得:

  因此等差數(shù)列的通項(xiàng)公式就是:,

  探究2:等差數(shù)列的通項(xiàng)公式(求法二)

  根據(jù)等差數(shù)列的定義可得:

  將以上-1個(gè)式子相加得等差數(shù)列的通項(xiàng)公式就是:,

  三、應(yīng)用與探索

  例1、(1)求等差數(shù)列8,5,2,…,的第20項(xiàng)。

 。2)等差數(shù)列-5,-9,-13,…,的第幾項(xiàng)是–401?

  (2)、分析:要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出通項(xiàng)公式,并判斷是否存在正整數(shù)n,使得成立,實(shí)質(zhì)上是要求方程的正整數(shù)解。

  例2、在等差數(shù)列中,已知=10,=31,求首項(xiàng)與公差d.

  解:由,得。

  在應(yīng)用等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d過(guò)程中,對(duì)an,a1,n,d這四個(gè)變量,知道其中三個(gè)量就可以求余下的一個(gè)量,這是一種方程的思想。

  鞏固練習(xí)

  1.等差數(shù)列{an}的前三項(xiàng)依次為a-6,-3a-5,-10a-1,則a=()。

  2.一張?zhí)葑幼罡咭患?jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。求公差d。

  四、小結(jié)

  1.等差數(shù)列的通項(xiàng)公式:

  公差;

  2.等差數(shù)列的計(jì)算問(wèn)題,通常知道其中三個(gè)量就可以利用通項(xiàng)公式an=a1+(n-1)d,求余下的一個(gè)量;

  3.判斷一個(gè)數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

  4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問(wèn)題

  五、作業(yè):

  1、必做題:課本第40頁(yè)習(xí)題2.2第1,3,5題

  2、選做題:如何以最快的速度求:1+2+3+?+100=

  數(shù)學(xué)等差數(shù)列教案 5

  教學(xué)理念:數(shù)學(xué)教學(xué)是思維過(guò)程的教學(xué),如何引導(dǎo)學(xué)生參與到教學(xué)過(guò)程中來(lái),尤其是在思維上深層次的參與,是促進(jìn)學(xué)生良好的認(rèn)知結(jié)構(gòu),培養(yǎng)能力,全面提高素質(zhì)的關(guān)鍵。數(shù)學(xué)教學(xué)中的探究式對(duì)培養(yǎng)和提高學(xué)生的自主性、能動(dòng)性和創(chuàng)造性有著非常重要的意義。

  設(shè)計(jì)思想:本節(jié)借助多媒體輔助手段,創(chuàng)設(shè)問(wèn)題的情境,讓探究式教學(xué)走進(jìn)課堂,保障學(xué)生的主體地位,喚醒學(xué)生的主體意識(shí),發(fā)展學(xué)生的主體能力,塑造學(xué)生的主體人格,讓學(xué)生在參與中學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)合作、學(xué)會(huì)創(chuàng)新。

  一、教材分析:

  教學(xué)內(nèi)容:

  高中數(shù)學(xué)必修第五模塊第二章第二節(jié),等差數(shù)列,兩課時(shí)內(nèi)容,本節(jié)是第一課時(shí),研究等差數(shù)列的定義、通項(xiàng)公式的推導(dǎo),借助生活中豐富的典型實(shí)例,讓學(xué)生通過(guò)分析、推理、歸納等活動(dòng)過(guò)程,從中了解和體驗(yàn)等差數(shù)列的定義和通項(xiàng)公式。

  教學(xué)地位:

  本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點(diǎn)內(nèi)容。在高考中也是重點(diǎn)考察內(nèi)容之一,并且在實(shí)際生活中有著廣泛的應(yīng)用,它起著承前啟后的作用。同時(shí)也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列是學(xué)生探究特殊數(shù)列的開(kāi)始,它對(duì)后續(xù)內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上,還是在方法上都具有積極的意義。

  教學(xué)重點(diǎn):

  理解等差數(shù)列概念,探索并掌握等差數(shù)列的通項(xiàng)公式,會(huì)用公式解決一些簡(jiǎn)單的問(wèn)題,體會(huì)等差數(shù)列與一次函數(shù)之間的關(guān)系。

  教學(xué)難點(diǎn):

  對(duì)等差數(shù)列概念的理解及從函數(shù)、方程角度理解通項(xiàng)公式,概括通項(xiàng)公式推導(dǎo)過(guò)程中體現(xiàn)出的數(shù)學(xué)思想方法。

  二、學(xué)習(xí)者分析:

  高二學(xué)生已經(jīng)具有一定的理性分析能力和概括能力,且對(duì)數(shù)列的知識(shí)有了初步的接觸和認(rèn)識(shí),對(duì)數(shù)學(xué)公式的運(yùn)用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動(dòng)過(guò)程,對(duì)函數(shù)、方程思想體會(huì)逐漸深刻。他們的思維正從屬于經(jīng)驗(yàn)性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗(yàn)材料來(lái)理解抽象的邏輯關(guān)系。

  三、教學(xué)目標(biāo):

  知識(shí)目標(biāo):

  理解等差數(shù)列定義,掌握等差數(shù)列的通項(xiàng)公式。

  能力目標(biāo):

  培養(yǎng)學(xué)生觀察、歸納能力,在學(xué)習(xí)過(guò)程中,體會(huì)數(shù)形結(jié)合思想、歸納思想和化歸思想并加深認(rèn)識(shí);通過(guò)概念的引入與通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用公式解決實(shí)際問(wèn)題的能力。

  情感目標(biāo):

  ①通過(guò)個(gè)性化的學(xué)習(xí)增強(qiáng)學(xué)生的自信心和意志力。

 、谕ㄟ^(guò)師生、生生的合作學(xué)習(xí),增強(qiáng)學(xué)生團(tuán)隊(duì)協(xié)作能力的培養(yǎng),增強(qiáng)主動(dòng)與他人合作交流的意識(shí)。

 、垠w驗(yàn)從特殊到一般,又到特殊的認(rèn)知規(guī)律,培養(yǎng)學(xué)生勇于創(chuàng)新的科學(xué)精神。

  四、教法和學(xué)法的分析:

  通過(guò)探究式教學(xué)方法充分利用現(xiàn)實(shí)情景,盡可能的增加教學(xué)過(guò)程的趣味性、實(shí)踐性。利用多媒體課件和實(shí)例等豐富學(xué)生的學(xué)習(xí)資源,強(qiáng)調(diào)學(xué)生動(dòng)手操作試驗(yàn)和主動(dòng)參與,在教師的啟發(fā)指導(dǎo)下,讓學(xué)生自己去分析、探索,在探索過(guò)程中研究和領(lǐng)悟得出的結(jié)論,從而使學(xué)生即獲得知識(shí)又發(fā)展智能的目的。

  2、在學(xué)法上,引導(dǎo)學(xué)生多角度,多層面認(rèn)識(shí)事物,學(xué)會(huì)探究。教師是學(xué)生的學(xué)習(xí)的組織者、促進(jìn)著、合作者,在本節(jié)課的備課和教學(xué)過(guò)程中,為學(xué)生的動(dòng)手實(shí)踐,自主探索與合作交流的機(jī)會(huì)搭建平臺(tái),鼓勵(lì)學(xué)生提出自己的見(jiàn)解,學(xué)會(huì)提出問(wèn)題解決問(wèn)題,通過(guò)恰當(dāng)?shù)慕虒W(xué)方式讓學(xué)生學(xué)會(huì)自我調(diào)適,自我選擇。

  五、教學(xué)媒體和教學(xué)技術(shù)的選用

  多媒體計(jì)算機(jī)和幾何畫(huà)板

  通過(guò)計(jì)算機(jī)模擬演示,使學(xué)生獲得感性知識(shí)的同時(shí),為掌握理性知識(shí)創(chuàng)造條件,這樣做,可以使學(xué)生有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性原則和可接受性原則。本節(jié)課打破傳統(tǒng)的一言堂的格局代之以人為本、民主、開(kāi)放、特色和建立在信息網(wǎng)絡(luò)平臺(tái)上的現(xiàn)代教學(xué)格局。

  六、教學(xué)程序:

  (一)設(shè)置問(wèn)題,引導(dǎo)發(fā)現(xiàn)形成概念w。

  師:看大屏幕。

  情景1(播放奧運(yùn)會(huì)女子舉重場(chǎng)面)

  2008年北京奧運(yùn)會(huì),女子舉重共設(shè)置7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):

  48,53,58,63

  情景2水庫(kù)的管理員為了保證優(yōu)質(zhì)魚(yú)類有良好的.生活環(huán)境,定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚(yú)。如果一個(gè)水庫(kù)的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位組成數(shù)列(單位:m)

  18,15.5,13,10.5,8,5.5

  情景3我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計(jì)算下一期的利息。按照單利計(jì)算本利和的公式是:

  本利和=本金(1+利率存期)

  時(shí)間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅)

  各年末本利和(單位:元)

  10072,10144,10216,10288,10360

  師:思考上述各組數(shù)據(jù)反映了什么樣的信息?

  每行數(shù)有何共同特點(diǎn)?請(qǐng)同學(xué)們互相討論。

 。▽W(xué)生紛紛議論,有的幾個(gè)人在一起商量)

 。◤暮暧^上:情景1讓學(xué)生體驗(yàn)成功申辦奧運(yùn)會(huì)的喜悅心情,激發(fā)勇于拼搏的堅(jiān)強(qiáng)意志;情景2讓學(xué)生認(rèn)識(shí)到保護(hù)水資源,保護(hù)生態(tài)平衡的意識(shí);情景3倡導(dǎo)節(jié)約意識(shí),納稅意識(shí)。)

  從微觀上,數(shù)學(xué)研究的對(duì)象是數(shù),我們拋開(kāi)具體的背景,從表格中抽象出一般數(shù)列。

  48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360

  師:(啟發(fā)學(xué)生)你能用數(shù)學(xué)語(yǔ)言來(lái)描述上述數(shù)列的共同特征嗎?

  學(xué)生1:后一項(xiàng)與它的前一項(xiàng)的差等于常數(shù)。

  師:反例:1,3,5,6,12,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎?

  學(xué)生1:不一樣,要加上同一個(gè)常數(shù)。

  學(xué)生2:每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。

  師:反例:1,3,4,5,6,7,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎?

  學(xué)生2:不一樣,必須從第二項(xiàng)開(kāi)始。

  學(xué)生3:從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)。

 。ń處煱褜W(xué)生的回答寫(xiě)在黑板上,通過(guò)反例,使學(xué)生深刻理解幾組數(shù)列的共同特征:

  = 1 GB3 ①同一個(gè)常數(shù);= 2 GB3 ②從第二項(xiàng)起)

  師:能不能用數(shù)學(xué)語(yǔ)言表示?

  學(xué)生4:

  師:等價(jià)嗎?

  學(xué)生4:應(yīng)加上(d是常數(shù))

 。ㄗ寣W(xué)生充分討論,注意文字語(yǔ)言與數(shù)學(xué)符號(hào)語(yǔ)言的轉(zhuǎn)化的嚴(yán)謹(jǐn)性)

  師:對(duì)式子進(jìn)行變形可得。

  這樣的數(shù)列在生活中的例子,誰(shuí)能再舉幾個(gè)?

  學(xué)生5:某劇場(chǎng)前8排的座位數(shù)分別是

  52,50,48,46,44,42,40,38.

  學(xué)生6:全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼分別是

  21,21.5,22,22.5,23,23.5,24,24.5,25

  學(xué)生7:馬路邊的路燈,相鄰兩盞之間的距離構(gòu)成的數(shù)列。

  師:如何用數(shù)列表示?

  學(xué)生8:設(shè)相鄰兩盞之間的距離為a,該數(shù)列為

  a,a,a,a,……,為常數(shù)列,即常數(shù)列都具有這種特征。

 。ㄗ寣W(xué)生舉例,加深感性認(rèn)識(shí))

  師:滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個(gè)名字?

  學(xué)生(共同):等差數(shù)列。

  師:(學(xué)生敘述,板書(shū)定義)

  一般的,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首相。

  提出課題《等差數(shù)列》

  對(duì)定義進(jìn)行分析,強(qiáng)調(diào):= 1 GB3 ①同一個(gè)常數(shù);= 2 GB3 ②從第二項(xiàng)起。注意對(duì)概念嚴(yán)謹(jǐn)性的分析。

  師:回到表格中,分別說(shuō)出它們的公差。

  學(xué)生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72

  師:在計(jì)算年末本利和的問(wèn)題中求時(shí),能不能不按本利和=本金(1+利率存期)

  求而按數(shù)列的特征求呢?

  學(xué)生:若能求得通項(xiàng)公式,問(wèn)題就很好解決。

 。ㄔ偬岢鰡(wèn)題,引導(dǎo)發(fā)現(xiàn)求通項(xiàng)公式的必要性)

 。ǘ﹩l(fā)、引導(dǎo)推出等差數(shù)列的通項(xiàng)公式

  師:把問(wèn)題推廣到一般情況。若一個(gè)數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項(xiàng)公式是什么?

  啟發(fā)學(xué)生:(歸納、猜想)可用首相與公差表示數(shù)列中任意一項(xiàng)。

  學(xué)生10:即:

  即:

  即:

  由此可得:

  師:從第幾項(xiàng)開(kāi)始?xì)w納的?

  學(xué)生10:第二項(xiàng),所以n≥2。

  師:n=1時(shí)呢?

  數(shù)學(xué)等差數(shù)列教案 6

  一、知識(shí)與技能

  1.了解公差的概念,明確一個(gè)數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等差數(shù)列;

  2.正確認(rèn)識(shí)使用等差數(shù)列的各種表示法,能靈活運(yùn)用通項(xiàng)公式求等差數(shù)列的首項(xiàng)、公差、項(xiàng)數(shù)、指定的項(xiàng)

  二、過(guò)程與方法

  1.通過(guò)對(duì)等差數(shù)列通項(xiàng)公式的推導(dǎo)培養(yǎng)學(xué)生:的觀察力及歸納推理能力;

  2.通過(guò)等差數(shù)列變形公式的教學(xué)培養(yǎng)學(xué)生:思維的深刻性和靈活性

  三、情感態(tài)度與價(jià)值觀

  通過(guò)等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識(shí)

  教學(xué)過(guò)程

  導(dǎo)入新課

  師:上兩節(jié)課我們學(xué)習(xí)了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項(xiàng)公式、遞推公式、圖象法。這些方法從不同的角度反映數(shù)列的特點(diǎn)。下面我們看這樣一些數(shù)列的例子:(課本P41頁(yè)的4個(gè)例子)

 。1)0,5,10,15,20,25,…;

 。2)48,53,58,63,…;

 。3)18,15.5,13,10.5,8,5.5…;

  (4)10 072,10 144,10 216,10 288,10 366,…

  請(qǐng)你們來(lái)寫(xiě)出上述四個(gè)數(shù)列的第7項(xiàng)。

  生:第一個(gè)數(shù)列的第7項(xiàng)為30,第二個(gè)數(shù)列的第7項(xiàng)為78,第三個(gè)數(shù)列的第7項(xiàng)為3,第四個(gè)數(shù)列的第7項(xiàng)為10 510

  師:我來(lái)問(wèn)一下,你依據(jù)什么寫(xiě)出了這四個(gè)數(shù)列的第7項(xiàng)呢?以第二個(gè)數(shù)列為例來(lái)說(shuō)一說(shuō)

  生:這是由第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律性我得到了這個(gè)數(shù)列的第7項(xiàng)為78

  師:說(shuō)得很有道理!我再請(qǐng)同學(xué)們仔細(xì)觀察一下,看看以上四個(gè)數(shù)列有什么共同特征?我說(shuō)的是共同特征

  生:1每相鄰兩項(xiàng)的差相等,都等于同一個(gè)常數(shù)

  師:作差是否有順序,誰(shuí)與誰(shuí)相減?

  生:1作差的順序是后項(xiàng)減前項(xiàng),不能顛倒

  師:以上四個(gè)數(shù)列的共同特征:從第二項(xiàng)起,每一項(xiàng)與它前面一項(xiàng)的差等于同一個(gè)常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個(gè)名字叫——等差數(shù)列

  這就是我們這節(jié)課要研究的內(nèi)容

  推進(jìn)新課

  等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)

 。1)公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來(lái)求;

  (2)對(duì)于數(shù)列{an},若an-a n-1=d(與n無(wú)關(guān)的數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差

  師:定義中的關(guān)鍵字是什么?(學(xué)生:在學(xué)習(xí)中經(jīng)常遇到一些概念,能否抓住定義中的關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他學(xué)科的重要一環(huán)。因此教師:應(yīng)該教會(huì)學(xué)生:如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生:分析問(wèn)題、認(rèn)識(shí)問(wèn)題的能力)

  生:從“第二項(xiàng)起”和“同一個(gè)常數(shù)”

  師:很好!

  師:請(qǐng)同學(xué)們思考:數(shù)列(1)、(2)、(3)、(4)的通項(xiàng)公式存在嗎?如果存在,分別是什么?

  生:數(shù)列(1)通項(xiàng)公式為5n-5,數(shù)列(2)通項(xiàng)公式為5n+43,數(shù)列(3)通項(xiàng)公式為2.5n-15.5,…

  師:好,這位同學(xué)用上節(jié)課學(xué)到的知識(shí)求出了這幾個(gè)數(shù)列的通項(xiàng)公式,實(shí)質(zhì)上這幾個(gè)通項(xiàng)公式有共同的特點(diǎn),無(wú)論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來(lái)共同思考

 。酆献魈骄浚

  等差數(shù)列的通項(xiàng)公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得到的,若一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則據(jù)其定義可得什么?

  生:a2-a1=d,即a2=a1+d

  師:對(duì),繼續(xù)說(shuō)下去!

  生:a3-a2=d,即a3=a2+d=a1+2d;

  a4-a3=d,即a4=a3+d=a1+3d;

  ……

  師:好!規(guī)律性的東西讓你找出來(lái)了,你能由此歸納出等差數(shù)列的通項(xiàng)公式嗎?

  生:由上述各式可以歸納出等差數(shù)列的通項(xiàng)公式是an=a1+(n-1)d

  師:很好!這樣說(shuō)來(lái),若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)a1和公差d,便可求得其通項(xiàng)an了。需要說(shuō)明的是:此公式只是等差數(shù)列通項(xiàng)公式的猜想,你能證明它嗎?

  生:前面已學(xué)過(guò)一種方法叫迭加法,我認(rèn)為可以用。證明過(guò)程是這樣的:

  因?yàn)閍2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d。將它們相加便可以得到:an=a1+(n-1)d

  師:太好了!真是活學(xué)活用。∵@樣一來(lái)我們通過(guò)證明就可以放心使用這個(gè)通項(xiàng)公式了

 。劢處煟壕v]

  由上述關(guān)系還可得:am=a1+(m-1)d,

  即a1=am-(m-1)d

  則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

  即等差數(shù)列的第二通項(xiàng)公式an=am+(n-m)d。(這是變通的通項(xiàng)公式)

  由此我們還可以得到

 。劾}剖析]

  【例1】(1)求等差數(shù)列8,5,2,…的第20項(xiàng);

 。2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?

  師:這個(gè)等差數(shù)列的首項(xiàng)和公差分別是什么?你能求出它的第20項(xiàng)嗎?

  生:1這題太簡(jiǎn)單了!首項(xiàng)和公差分別是a1=8,d=5-8=2-5=-3。又因?yàn)閚=20,所以由等差數(shù)列的通項(xiàng)公式,得a20=8+(20-1)×(-3)=-49

  師:好!下面我們來(lái)看看第(2)小題怎么做

  生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項(xiàng)公式為an=-5-4(n-1)

  由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。

  師:剛才兩個(gè)同學(xué)將問(wèn)題解決得很好,我們做本例的目的是為了熟悉公式,實(shí)質(zhì)上通項(xiàng)公式就是an,a1,d,n組成的方程(獨(dú)立的量有三個(gè))。

  說(shuō)明:(1)強(qiáng)調(diào)當(dāng)數(shù)列{an}的項(xiàng)數(shù)n已知時(shí),下標(biāo)應(yīng)是確切的數(shù)字;(2)實(shí)際上是求一個(gè)方程的'正整數(shù)解的問(wèn)題。這類問(wèn)題學(xué)生:以前見(jiàn)得較少,可向?qū)W生:著重點(diǎn)出本問(wèn)題的實(shí)質(zhì):要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出數(shù)列的通項(xiàng)公式an,判斷是否存在正整數(shù)n,使得an=-401成立。

  【例2】已知數(shù)列{an}的通項(xiàng)公式an=pn+q,其中p、q是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?

  例題分析:

  師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么?

  生:只要看差an-an-1(n≥2)是不是一個(gè)與n無(wú)關(guān)的常數(shù)

  師:說(shuō)得對(duì),請(qǐng)你來(lái)求解

  生:當(dāng)n≥2時(shí),〔取數(shù)列{an}中的任意相鄰兩項(xiàng)an-1與an(n≥2)〕

  an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù),

  所以我們說(shuō){an}是等差數(shù)列,首項(xiàng)a1=p+q,公差為p

  師:這里要重點(diǎn)說(shuō)明的是:

 。1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…

  (2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)(n,an)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差p,直線在y軸上的截距為q

 。3)數(shù)列{an}為等差數(shù)列的充要條件是其通項(xiàng)an=pn+q(p、q是常數(shù)),稱其為第3通項(xiàng)公式。課堂練習(xí)

 。1)求等差數(shù)列3,7,11,…的第4項(xiàng)與第10項(xiàng)

  分析:根據(jù)所給數(shù)列的前3項(xiàng)求得首項(xiàng)和公差,寫(xiě)出該數(shù)列的通項(xiàng)公式,從而求出所┣笙

  解:根據(jù)題意可知a1=3,d=7-3=4∴該數(shù)列的通項(xiàng)公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39

  評(píng)述:關(guān)鍵是求出通項(xiàng)公式

 。2)求等差數(shù)列10,8,6,…的第20項(xiàng)

  解:根據(jù)題意可知a1=10,d=8-10=-2

  所以該數(shù)列的通項(xiàng)公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28

  評(píng)述:要求學(xué)生:注意解題步驟的規(guī)范性與準(zhǔn)確性

 。3)100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說(shuō)明理由

  分析:要想判斷一個(gè)數(shù)是否為某一個(gè)數(shù)列的其中一項(xiàng),其關(guān)鍵是要看是否存在一個(gè)正整數(shù)n值,使得an等于這個(gè)數(shù)

  解:根據(jù)題意可得a1=2,d=9-2=7。因而此數(shù)列通項(xiàng)公式為an=2+(n-1)×7=7n-5

  令7n-5=100,解得n=15。所以100是這個(gè)數(shù)列的第15項(xiàng)

  (4)-20是不是等差數(shù)列0,-7,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說(shuō)明理由

  解:由題意可知a1=0,因而此數(shù)列的通項(xiàng)公式為

  令,解得。因?yàn)闆](méi)有正整數(shù)解,所以-20不是這個(gè)數(shù)列的項(xiàng)

  課堂小結(jié)

  師:(1)本節(jié)課你們學(xué)了什么?(2)要注意什么?(3)在生:活中能否運(yùn)用?(讓學(xué)生:反思、歸納、總結(jié),這樣來(lái)培養(yǎng)學(xué)生:的概括能力、表達(dá)能力)

  生:通過(guò)本課時(shí)的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式a n-a n-1=d(n≥2);其次要會(huì)推導(dǎo)等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d(n≥1)

  數(shù)學(xué)等差數(shù)列教案 7

  教學(xué)目的:

  1.明確等差數(shù)列的定義,掌握等差數(shù)列的通項(xiàng)公式。

  2.會(huì)解決知道中的三個(gè),求另外一個(gè)的問(wèn)題。

  教學(xué)重點(diǎn):

  等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式。

  教學(xué)難點(diǎn)

  等差數(shù)列的性質(zhì)

  教學(xué)過(guò)程:

  一、復(fù)習(xí)引入:(課件第一頁(yè))

  二、講解新課:

  1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的 差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。

  (課件第二頁(yè))

 、.公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來(lái)求;

  ⑵.對(duì)于數(shù)列{ },若 - =d (與n無(wú)關(guān)的數(shù)或字母),n≥2,n∈n ,則此數(shù)列是等差數(shù)列,d 為公差。

  2.等差數(shù)列的通項(xiàng)公式: 【或 】等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列 的首項(xiàng)是 ,公差是d,則據(jù)其定義可得: 即: 即: 即: …… 由此歸納等差數(shù)列的通項(xiàng)公式可得: (課件第二頁(yè)) 第二通項(xiàng)公式 (課件第二頁(yè))

  三、例題講解

  例1 ⑴求等差數(shù)列8,5,2…的第20項(xiàng)(課本p111) ⑵ -401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?

  例2 在等差數(shù)列 中,已知 , ,求 , ,

  例3將一個(gè)等差數(shù)列的通項(xiàng)公式輸入計(jì)算器數(shù)列 中,設(shè)數(shù)列的第s項(xiàng)和第t項(xiàng)分別為 和 ,計(jì)算 的值,你能發(fā)現(xiàn)什么結(jié)論?并證明你的結(jié)論。

  小結(jié):①這就是第二通項(xiàng)公式的變形,②幾何特征,直線的斜率

  例4 梯子最高一級(jí)寬33cm,最低一級(jí)寬為110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列,計(jì)算中間各級(jí)的寬度。(課本p112例3)

  例5 已知數(shù)列{ }的通項(xiàng)公式 ,其中 、 是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?(課本p113例4)

  分析:由等差數(shù)列的定義,要判定 是不是等差數(shù)列,只要看 (n≥2)是不是一個(gè)與n無(wú)關(guān)的常數(shù)。

  注:①若p=0,則{ }是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,… ②若p≠0, 則{ }是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的.系數(shù)是公差,直線在y軸上的截距為q。③數(shù)列{ }為等差數(shù)列的充要條件是其通項(xiàng) =pn+q (p、q是常數(shù))。稱其為第3通項(xiàng)公式④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個(gè)通項(xiàng)公式中的一個(gè)。

  例6.成等差數(shù)列的四個(gè)數(shù)的和為26,第二項(xiàng)與第三項(xiàng)之積為40,求這四個(gè)數(shù)

  四、練習(xí):

  1.(1)求等差數(shù)列3,7,11,……的第4項(xiàng)與第10項(xiàng)

  (2)求等差數(shù)列10,8,6,……的第20項(xiàng)

  (3)100是不是等差數(shù)列2,9,16,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說(shuō)明理由

 。4)-20是不是等差數(shù)列0,-3 ,-7,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說(shuō)明理由

  2.在等差數(shù)列{ }中,

 。1)已知 =10, =19,求 與d;

  五、課后作業(yè):

  習(xí)題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 .8.9.

  數(shù)學(xué)等差數(shù)列教案 8

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會(huì)等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及蘊(yùn)含的數(shù)學(xué)思想。

  【過(guò)程與方法】在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,提高知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高分析問(wèn)題和解決問(wèn)題的能力。

  【情感態(tài)度與價(jià)值觀】通過(guò)對(duì)等差數(shù)列的研究,具備主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  等差數(shù)列的概念、等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

  【教學(xué)難點(diǎn)】

  等差數(shù)列通項(xiàng)公式的推導(dǎo)。

  三、教學(xué)過(guò)程

  環(huán)節(jié)一:導(dǎo)入新課

  教師PPT展示幾道題目:

  1.我們經(jīng)常這樣數(shù)數(shù),從0開(kāi)始,每隔5一個(gè)數(shù),可以得到數(shù)列:0,5,15,20,25 2.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺(jué)地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。

  在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級(jí)別,其中交情的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):48,53,58,63。

  教師提問(wèn)學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)的差都等于一個(gè)常數(shù),教師引出等差數(shù)列。

  環(huán)節(jié)二:探索新知

  1.等差數(shù)列的'概念

  學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念

  如果一個(gè)數(shù)列,從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。

  問(wèn)題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?

  環(huán)節(jié)三:課堂練習(xí)

  搶答:下列數(shù)列是否為等差數(shù)列?

  (1)1,2,4,6,8,10,12,……

  (2)0,1,2,3,4,5,6,……

 。3)3,3,3,3,3,3,3,……

 。4)-8,-6,-4,-2,0,2,4,……

  (5)3,0,-3,-6,-9,……

  環(huán)節(jié)四:小結(jié)作業(yè)

  小結(jié):1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。

  關(guān)鍵字:從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。

  作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問(wèn)題自己編寫(xiě)兩道等差數(shù)列的題目并進(jìn)行求解。

  數(shù)學(xué)等差數(shù)列教案 9

  教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo):理解等差數(shù)列的定義;會(huì)根據(jù)等差數(shù)列的通項(xiàng)公式求某一項(xiàng)的值;會(huì)根據(jù)等差數(shù)列的前幾項(xiàng)求數(shù)列的通項(xiàng)公式。

  過(guò)程與方法目標(biāo):通過(guò)啟發(fā)、討論、引導(dǎo)、邊教邊練邊反饋的方法提高學(xué)生思考問(wèn)題、解決問(wèn)題的能力。

  情感、態(tài)度、價(jià)值觀目標(biāo):培養(yǎng)學(xué)生的邏輯推理能力;培養(yǎng)學(xué)生在探索中學(xué)習(xí)知識(shí)的精神,增強(qiáng)學(xué)生相互合作交流的意識(shí)。

  教學(xué)重點(diǎn):會(huì)求等差數(shù)列的通項(xiàng)公式。

  教學(xué)難點(diǎn):等差數(shù)列的通項(xiàng)公式的推導(dǎo)。

  教學(xué)準(zhǔn)備:課件

  教學(xué)過(guò)程:

  一、創(chuàng)設(shè)情境,引入課題

  如圖1所示:一個(gè)堆放鉛筆的V形架的最下面

  一層放1支鉛筆,往上每一層都比它下面一層多放1

  支,這個(gè)V形架的鉛筆從最下面一層往上面排起的

  鉛筆支數(shù)組成數(shù)列:1,2,3,4,……

 、谀硞(gè)電影院設(shè)置了20排座位,這個(gè)電影院從第1排起各排的座位數(shù)組成數(shù)列:

  38,40,42,44,46,……

  ③全國(guó)統(tǒng)一鞋號(hào)中,成年女鞋的各種尺碼(表示以cm為單位的`鞋底的長(zhǎng)度)由大到小可排列為:25,24.5,24,23.5,23,22.5,22,21.5.

  師生互動(dòng),探索新知

  教師:請(qǐng)同學(xué)們仔細(xì)觀察,你發(fā)現(xiàn)這三組數(shù)列有什么變化規(guī)律?

  生:數(shù)列①?gòu)牡?項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于;

  數(shù)列②從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于;

  數(shù)列③從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于;

  [設(shè)計(jì)說(shuō)明:采用邊教學(xué)邊反饋的方式,有利于教師及時(shí)了解學(xué)生理解新知識(shí)的程度,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心]

  教師引導(dǎo)學(xué)生觀察上面的數(shù)列①、②、③的特點(diǎn)。

  提出問(wèn)題1:上面三個(gè)數(shù)列的共同特點(diǎn)是什么?

  學(xué)生:從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。

  教師:這樣我們就得到了等差數(shù)列的定義。

  <一>等差數(shù)列的定義:如果一個(gè)數(shù)列從它的第2項(xiàng)起每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),則這個(gè)數(shù)列叫做等差數(shù)列;這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。等差數(shù)列的公差d的數(shù)學(xué)表達(dá)式為:。

  基礎(chǔ)訓(xùn)練:

  1、上面數(shù)列

 、俚墓頳=;數(shù)列

 、诘墓頳=;數(shù)列

 、鄣墓頳=

  [設(shè)計(jì)說(shuō)明:有利于學(xué)生掃除語(yǔ)言與符號(hào)轉(zhuǎn)換的障礙]

  2、下面的數(shù)列中,哪些是等差數(shù)列?若是,求出它的公差;若不是,則說(shuō)明理由。

  6,10,14,18,22,……;(2)9,8,7,6,5,4,3,2;(3)3,3,3,3,3,3;(4)1,0,1,0,1,0,1,0.

  提出問(wèn)題2:任何一個(gè)數(shù)列一定是等差數(shù)列嗎?如果是等差數(shù)列,公差一定是正數(shù)嗎?

  師生討論得出結(jié)論:

  3、一個(gè)數(shù)列是等差數(shù)列必須具有這樣的特點(diǎn):從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù);

 。2)等差數(shù)列的公差d可能是正數(shù)、負(fù)數(shù)、零。

  [設(shè)計(jì)說(shuō)明:從具體數(shù)列入手,有利于較多基礎(chǔ)差的學(xué)生理解等差數(shù)的定義,判斷數(shù)列是否為等差數(shù)列轉(zhuǎn)換成具體的步驟:求后面一項(xiàng)與前面一項(xiàng)的差,看這些差是否相等]

  提出問(wèn)題3:等差數(shù)列的公差d的數(shù)學(xué)表達(dá)式為:,揭示了求公差d可以用哪些式子表示?

  師生共同活動(dòng):等,變式:

  提出問(wèn)題4:如果等差數(shù)列只知道首項(xiàng),公差d,那么這個(gè)數(shù)列的其他項(xiàng)如何表示?

  師生共同活動(dòng):

  …,[設(shè)計(jì)說(shuō)明:?jiǎn)栴}3、問(wèn)題4的提出訓(xùn)練學(xué)生的變形思想、遞歸思想,從而引出等差數(shù)列的通項(xiàng)公式及學(xué)生容易理解通項(xiàng)公式的變形公式]

  <二>等差數(shù)列的通項(xiàng)公式:

  數(shù)學(xué)等差數(shù)列教案 10

  教學(xué)目標(biāo):

 。1)理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式;

  (2)利用等差數(shù)列的通項(xiàng)公式能由a1,d,n,an“知三求一”,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;

 。3)通過(guò)作等差數(shù)列的圖像,進(jìn)一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過(guò)等差數(shù)列的通項(xiàng)公式應(yīng)用,滲透方程思想。

  教學(xué)重、難點(diǎn):等差數(shù)列的定義及等差數(shù)列的通項(xiàng)公式。

  知識(shí)結(jié)構(gòu):一般數(shù)列定義通項(xiàng)公式法

  遞推公式法

  等差數(shù)列表示法應(yīng)用

  圖示法

  性質(zhì)列舉法

  教學(xué)過(guò)程:

  (一)創(chuàng)設(shè)情境:

  1.觀察下列數(shù)列:

  1,2,3,4,……;(軍訓(xùn)時(shí)某排同學(xué)報(bào)數(shù))①

  10000,9000,8000,7000,……;(溫州市房?jī)r(jià)平均每月每平方下跌的價(jià)位)②

  2,2,2,2,……;(坐38路公交車(chē)的車(chē)費(fèi))③

  問(wèn)題:上述三個(gè)數(shù)列有什么共同特點(diǎn)?(學(xué)生會(huì)發(fā)現(xiàn)很多規(guī)律,如都是整數(shù),再舉幾個(gè)非整數(shù)等差數(shù)列例子讓學(xué)生觀察)

  規(guī)律:從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一常數(shù)。

  引出等差數(shù)列。

 。ǘ┬抡n講解:

  1.等差數(shù)列定義:

  一般地,如果一個(gè)數(shù)列從第項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母表示。

  問(wèn)題:(a)能否用數(shù)學(xué)符號(hào)語(yǔ)言描述等差數(shù)列的定義?

  用遞推公式表示為或

 。╞)例1:觀察下列數(shù)列是否是等差數(shù)列:

  (1)1,-1,1,-1,…

 。2)1,2,4,6,8,10,…

  意在強(qiáng)調(diào)定義中“同一個(gè)常數(shù)”

  (c)例2:求上述三個(gè)數(shù)列的公差;公差d可取哪些值?d>0,d=0,d<0時(shí),數(shù)列有什么特點(diǎn)

 。╠有不同的分類,如按整數(shù)分?jǐn)?shù)分類,再舉幾個(gè)等差數(shù)列的例子觀察d的分類對(duì)數(shù)列的影響)

  說(shuō)明:等差數(shù)列(通?煞Q為數(shù)列)的單調(diào)性:為遞增數(shù)列,為常數(shù)列,為遞減數(shù)列。

  例3:求等差數(shù)列13,8,3,-2,…的`第5項(xiàng)。第89項(xiàng)呢?

  放手讓學(xué)生利用各種方法求a89,從中找出合適的方法,如利用不完全歸納法或累加法,然后引出求一般等差數(shù)列的通項(xiàng)公式。

  2.等差數(shù)列的通項(xiàng)公式:已知等差數(shù)列的首項(xiàng)是,公差是,求

 。1)由遞推公式利用用不完全歸納法得出

  由等差數(shù)列的定義:,……

  ∴,……

  所以,該等差數(shù)列的通項(xiàng)公式:

  (驗(yàn)證n=1時(shí)成立)。

  這種由特殊到一般的推導(dǎo)方法,不能代替嚴(yán)格證明。要用數(shù)學(xué)歸納法證明的。

 。2)累加法求等差數(shù)列的通項(xiàng)公式

  讓學(xué)生體驗(yàn)推導(dǎo)過(guò)程。(驗(yàn)證n=1時(shí)成立)

  3.例題及練習(xí):

  應(yīng)用等差數(shù)列的通項(xiàng)公式

  追問(wèn):(1)-232是否為例3等差數(shù)列中的項(xiàng)?若是,是第幾項(xiàng)?

 。2)此數(shù)列中有多少項(xiàng)屬于區(qū)間[-100,0]?

  法一:求出a1,d,借助等差數(shù)列的通項(xiàng)公式求a20。

  法二:求出d,a20=a5+15d=a12+8d

  在例4基礎(chǔ)上,啟發(fā)學(xué)生猜想證明

  練習(xí):

  梯子的最高一級(jí)寬31cm,最低一級(jí)寬119cm,中間還有3級(jí),各級(jí)的寬度成等差數(shù)列,請(qǐng)計(jì)算中間各級(jí)的寬度。

  觀察圖像特征。

  思考:an是關(guān)于n的一次式,是數(shù)列{an}為等差數(shù)列的什么條件?

  課后反思:這節(jié)課的重點(diǎn)是等差數(shù)列定義和通項(xiàng)公式概念的理解,而不是公式的應(yīng)用,有些應(yīng)試教育的味道。有時(shí)搶學(xué)生的回答,沒(méi)有真正放手讓學(xué)生的思維發(fā)展,學(xué)生活動(dòng)太少,課堂氛圍不好。學(xué)生對(duì)問(wèn)題的反應(yīng)出乎設(shè)計(jì)的意料時(shí),應(yīng)該順著學(xué)生的思維發(fā)展。

  數(shù)學(xué)等差數(shù)列教案 11

  【教學(xué)目標(biāo)】

  一、知識(shí)與技能

  1.掌握等差數(shù)列前n項(xiàng)和公式;

  2.體會(huì)等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程;

  3.會(huì)簡(jiǎn)單運(yùn)用等差數(shù)列前n項(xiàng)和公式。

  二、過(guò)程與方法

  1.通過(guò)對(duì)等差數(shù)列前n項(xiàng)和公式的推導(dǎo),體會(huì)倒序相加求和的思想方法;

  2.通過(guò)公式的運(yùn)用體會(huì)方程的思想。

  三、情感態(tài)度與價(jià)值觀

  結(jié)合具體模型,將教材知識(shí)和實(shí)際生活聯(lián)系起來(lái),使學(xué)生感受數(shù)學(xué)的實(shí)用性,有效激發(fā)學(xué)習(xí)興趣,并通過(guò)對(duì)等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。

  【教學(xué)重點(diǎn)】

  等差數(shù)列前n項(xiàng)和公式的推導(dǎo)和應(yīng)用。

  【教學(xué)難點(diǎn)】

  在等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程中體會(huì)倒序相加的思想方法。

  【重點(diǎn)、難點(diǎn)解決策略】

  本課在設(shè)計(jì)上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過(guò)學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時(shí),借助多媒體的直觀演示,幫助學(xué)生理解,師生互動(dòng)、講練結(jié)合,從而突出重點(diǎn)、突破教學(xué)難點(diǎn)。

  【教學(xué)用具】

  多媒體軟件,電腦

  【教學(xué)過(guò)程】

  一、明確數(shù)列前n項(xiàng)和的定義,確定本節(jié)課中心任務(wù):

  本節(jié)課我們來(lái)學(xué)習(xí)《等差數(shù)列的前n項(xiàng)和》,那么什么叫數(shù)列的前n項(xiàng)和呢,對(duì)于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項(xiàng)和,用sn表示,記sn=a1+a2+a3+…+an,

  如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來(lái)共同探究如何求等差數(shù)列的前n項(xiàng)和。

  二、問(wèn)題牽引,探究發(fā)現(xiàn)

  問(wèn)題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說(shuō)陵寢中有一個(gè)三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見(jiàn)圖),奢靡之程度,可見(jiàn)一斑。你知道這個(gè)圖案一共花了多少圓寶石嗎?

  即: S100=1+2+3+······+100=?

  著名數(shù)學(xué)家高斯小時(shí)候就會(huì)算,聞名于世;那么小高斯是如何快速地得出答案的呢?請(qǐng)同學(xué)們思考高斯方法的特點(diǎn),適合類型和方法本質(zhì)。

  特點(diǎn): 首項(xiàng)與末項(xiàng)的和: 1+100=101,

  第2項(xiàng)與倒數(shù)第2項(xiàng)的和: 2+99 =101,

  第3項(xiàng)與倒數(shù)第3項(xiàng)的和: 3+98 =101,

  · · · · · ·

  第50項(xiàng)與倒數(shù)第50項(xiàng)的和: 50+51=101,

  于是所求的和是: 101×50=5050。

  1+2+3+ ······ +100= 101×50 = 5050

  同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項(xiàng)數(shù)為偶數(shù)相加時(shí)首尾配對(duì),變不同數(shù)的加法運(yùn)算為相同數(shù)的乘法運(yùn)算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項(xiàng)數(shù)為奇數(shù)時(shí)怎么辦呢?

  探索與發(fā)現(xiàn)1:假如讓你計(jì)算從第一層到第21層的珠寶數(shù),高斯的首尾配對(duì)法行嗎?

  即計(jì)算S21=1+2+3+ ······ +21的值,在這個(gè)過(guò)程中讓學(xué)生發(fā)現(xiàn)當(dāng)項(xiàng)數(shù)為奇數(shù)時(shí),首尾配對(duì)出現(xiàn)了問(wèn)題,通過(guò)動(dòng)畫(huà)演示引導(dǎo)幫助學(xué)生思考解決問(wèn)題的辦法,為引出倒序相加法做鋪墊。

  把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個(gè)數(shù)均為21個(gè),共21行。有什么啟發(fā)?

  1+ 2 + 3 + …… +20 +21

  21 + 20 + 19 + …… + 2 +1

  S21=1+2+3+…+21=(21+1)×21÷2=231

  這個(gè)方法也很好,那么項(xiàng)數(shù)為偶數(shù)這個(gè)方法還行嗎?

  探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?

  學(xué)生探究的同時(shí)通過(guò)動(dòng)畫(huà)演示幫助學(xué)生思考剛才的方法是否同樣可行?請(qǐng)同學(xué)們自主探究一下(老師演示動(dòng)畫(huà)幫助學(xué)生)

  S8=5+6+7+8+9+10+11+12=

  【設(shè)計(jì)意圖】進(jìn)一步引導(dǎo)學(xué)生探究項(xiàng)數(shù)為偶數(shù)的等差數(shù)列求和時(shí)倒序相加是否可行。從而得出倒序相加法適合任意項(xiàng)數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!

  好,這樣我們就找到了一個(gè)好方法——倒序相加法!現(xiàn)在來(lái)試一試如何求下面這個(gè)等差數(shù)列的前n項(xiàng)和?

  問(wèn)題2:等差數(shù)列1,2,3,…,n, … 的前n項(xiàng)和怎么求呢?

  解:(根據(jù)前面的學(xué)習(xí),請(qǐng)學(xué)生自主思考獨(dú)立完成)

  【設(shè)計(jì)意圖】強(qiáng)化倒序相加法的理解和運(yùn)用,為更一般的等差數(shù)列求和打下基礎(chǔ)。

  至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項(xiàng)和公式了。

  問(wèn)題3:對(duì)于一般的等差數(shù)列{an}首項(xiàng)為a1,公差為d,如何推導(dǎo)它的前n項(xiàng)和sn公式呢?

  即求 =a1+a2+a3+……+an=

  ∴(1)+(2)可得:2

  ∴

  公式變形:將代入可得:

  【設(shè)計(jì)意圖】學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的前n項(xiàng)和公式,從而完成本節(jié)課的中心任務(wù)。在這個(gè)過(guò)程中放手讓學(xué)生自主推導(dǎo),同時(shí)也復(fù)習(xí)等差數(shù)列的通項(xiàng)公式和基本性質(zhì)。

  三、公式的認(rèn)識(shí)與理解:

  1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個(gè)公式為:

 。ü揭唬

  (公式二)

  探究: 1、(1)相同點(diǎn): 都需知道a1與n;

 。2)不同點(diǎn): 第一個(gè)還需知道an ,第二個(gè)還需知道d;

  (3)明確若a1,d,n,an中已知三個(gè)量就可求Sn。

  2、兩個(gè)公式共涉及a1, d, n, an,Sn五個(gè)量,“知三”可“求二”。

  2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項(xiàng)和公式與梯形面積公式有什么聯(lián)系?

  用梯形面積公式記憶等差數(shù)列前 n 項(xiàng)和公式,這里對(duì)圖形進(jìn)行了割、補(bǔ)兩種處理,對(duì)應(yīng)著等差數(shù)列 n 項(xiàng)和的兩個(gè)公式.,請(qǐng)學(xué)生聯(lián)想思考總結(jié)來(lái)有助于記憶。

  【設(shè)計(jì)意圖】幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強(qiáng)化記憶

  四、公式應(yīng)用、講練結(jié)合

  1、練一練:

  有了兩個(gè)公式,請(qǐng)同學(xué)們來(lái)練一練,看誰(shuí)做的快做的對(duì)!

  根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn :

  (1)a1=5,an=95,n=10

  解:500

 。2)a1=100,d=-2,n=50

  解:

  【設(shè)計(jì)意圖】熟悉并強(qiáng)化公式的理解和應(yīng)用,進(jìn)一步鞏固“知三求二”。

  下面我們來(lái)看兩個(gè)例題:

  2、例題1:

  2000年11月14日教育部下發(fā)了<<關(guān)于在中小學(xué)實(shí)施“校校通”工程的通知>>。某市據(jù)此提出了實(shí)施“校校通”工程的總目標(biāo):從2001年起用10年時(shí)間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng)。據(jù)測(cè)算,2001年該市用于“校校通”工程的經(jīng)費(fèi)為500萬(wàn)元。為了保證工程的順利實(shí)施,計(jì)劃每年投入的`資金都比上一年增加50萬(wàn)元。那么從2001年起的未來(lái)10年內(nèi),該市在“校校通”工程中的總投入是多少?

  解:設(shè)從2001年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個(gè)等差數(shù)列,其中 a1=500, d=50

  那么,到2010年(n=10),投入的資金總額為

  答: 從2001年起的未來(lái)10年內(nèi),該市在“校校通”工程中的總投入是7250萬(wàn)元。

  【設(shè)計(jì)意圖】讓學(xué)生體會(huì)數(shù)列知識(shí)在生活中的應(yīng)用及簡(jiǎn)單的數(shù)學(xué)建模思想方法。

  3、例題2:

  已知一個(gè)等差數(shù)列{an}的前10項(xiàng)的和是310,前20項(xiàng)的和是1220,由這些條件可以確定這個(gè)等差數(shù)列的前n項(xiàng)和的公式嗎?

  解:

  法1:由題意知

  ,

  代入公式得:

  解得,

  法2:由題意知

  ,

  代入公式得:

  ,

  即,

  ②①得,故

  由得故

  【設(shè)計(jì)意圖】掌握并能靈活應(yīng)用公式并體會(huì)方程的思想方法。

  4、反饋達(dá)標(biāo):

  練習(xí)一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n

  解:由解n=27

  練習(xí)2: 已知{an}為等差數(shù)列,求公差。

  解:由公式得

  即d=2

  【設(shè)計(jì)意圖】進(jìn)一強(qiáng)化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項(xiàng)和公差這兩個(gè)基本元)。

  五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵(lì)學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達(dá)能力)

  1、倒序相加法求和的思想及應(yīng)用;

  2、等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程;

  3、掌握等差數(shù)列的兩個(gè)求和公式,;

  4、前n項(xiàng)和公式的靈活應(yīng)用及方程的思想。

  …………

  六、作業(yè)布置:

 。ㄒ唬⿻(shū)面作業(yè):

  1、已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。

  2、在a,b之間插入10個(gè)數(shù),使它們同這兩個(gè)數(shù)成等差數(shù)列,求這10個(gè)數(shù)的和。

 。ǘ┱n后思考:

  思考:等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法除了倒序相加法還有沒(méi)有其它方法呢?

  【設(shè)計(jì)意圖】通過(guò)布置書(shū)面作業(yè)鞏固所學(xué)知識(shí)及方法,同時(shí)通過(guò)布置課后思考題來(lái)延伸知識(shí)拓展思維。

  附:板書(shū)設(shè)計(jì)

  等差數(shù)列的前n項(xiàng)和

  1、數(shù)列前n項(xiàng)和的定義:

  2、等差數(shù)列前n項(xiàng)和公式的推導(dǎo):

  3、公式的認(rèn)識(shí)與理解:

  公式一:

  公式二:

  四:例題及解答:

  議練活動(dòng):

  數(shù)學(xué)等差數(shù)列教案 12

  教學(xué)目標(biāo)

  1.理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式,并能運(yùn)用通項(xiàng)公式解決簡(jiǎn)單的問(wèn)題

 。1)了解公差的概念,明確一個(gè)數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等差數(shù)列,了解等差中項(xiàng)的概念;

  (2)正確認(rèn)識(shí)使用等差數(shù)列的各種表示法,能靈活運(yùn)用通項(xiàng)公式求等差數(shù)列的首項(xiàng)、公差、項(xiàng)數(shù)、指定的項(xiàng);

 。3)能通過(guò)通項(xiàng)公式與圖像認(rèn)識(shí)等差數(shù)列的性質(zhì),能用圖像與通項(xiàng)公式的關(guān)系解決某些問(wèn)題

  2.通過(guò)等差數(shù)列的圖像的應(yīng)用,進(jìn)一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過(guò)等差數(shù)列通項(xiàng)公式的運(yùn)用,滲透方程思想

  3.通過(guò)等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識(shí);通過(guò)對(duì)等差數(shù)列的研究,使學(xué)生明確等差數(shù)列與一般數(shù)列的內(nèi)在聯(lián)系,從而滲透特殊與一般的辯證唯物主義觀點(diǎn)。

  關(guān)于等差數(shù)列的教學(xué)建議

 。1)知識(shí)結(jié)構(gòu)

 。2)重點(diǎn)、難點(diǎn)分析

 、教學(xué)重點(diǎn)是等差數(shù)列的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,等差數(shù)列是特殊的數(shù)列,定義恰恰是其特殊性、也是本質(zhì)屬性的準(zhǔn)確反映和高度概括,準(zhǔn)確把握定義是正確認(rèn)識(shí)等差數(shù)列,解決相關(guān)問(wèn)題的前提條件。通項(xiàng)公式是項(xiàng)與項(xiàng)數(shù)的函數(shù)關(guān)系,是研究一個(gè)數(shù)列的重要工具,等差數(shù)列的通項(xiàng)公式的結(jié)構(gòu)與一次函數(shù)的解析式密切相關(guān),通過(guò)函數(shù)圖象研究數(shù)列性質(zhì)成為可能。

  ②通過(guò)不完全歸納法得出等差數(shù)列的通項(xiàng)公式,所以是教學(xué)中的一個(gè)難點(diǎn);另外, 出現(xiàn)在一個(gè)等式中,運(yùn)用方程的思想,已知三個(gè)量可以求出第四個(gè)量。由于一個(gè)公式中字母較多,學(xué)生應(yīng)用時(shí)會(huì)有一定的.困難,通項(xiàng)公式的靈活運(yùn)用是教學(xué)的有一難點(diǎn)。

 。3)教法建議

  ①本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等差數(shù)列的定義與表示法,一節(jié)為等差數(shù)列通項(xiàng)公式的應(yīng)用。

  ②等差數(shù)列定義的引出可先給出幾組等差數(shù)列,讓學(xué)生觀察、比較,概括共同規(guī)律,再由學(xué)生嘗試說(shuō)出等差數(shù)列的定義,對(duì)程度差的學(xué)生可以提示定義的結(jié)構(gòu):“……的數(shù)列叫做等差數(shù)列”,由學(xué)生把限定條件一一列舉出來(lái),為等比數(shù)列的定義作準(zhǔn)備。如果學(xué)生給出的定義不準(zhǔn)確,可讓學(xué)生研究討論,用符合學(xué)生的定義但不是等差數(shù)列的數(shù)列作為反例,再由學(xué)生修改其定義,逐步完善定義。

 、鄣炔顢(shù)列的定義歸納出來(lái)后,由學(xué)生舉一些等差數(shù)列的例子,以此讓學(xué)生思考確定一個(gè)等差數(shù)列的條件。

 、苡蓪W(xué)生根據(jù)一般數(shù)列的表示法嘗試表示等差數(shù)列,前提條件是已知數(shù)列的首項(xiàng)與公差。明確指出其圖像是一條直線上的一些點(diǎn),根據(jù)圖像觀察項(xiàng)隨項(xiàng)數(shù)的變化規(guī)律;再看通項(xiàng)公式,項(xiàng) 可看作項(xiàng)數(shù) 的一次型( )函數(shù),這與其圖像的形狀相對(duì)應(yīng)。

 、萦懈F等差數(shù)列的末項(xiàng)與通項(xiàng)是有區(qū)別的,數(shù)列的通項(xiàng)公式 是數(shù)列第 項(xiàng) 與項(xiàng)數(shù) 之間的函數(shù)關(guān)系式,有窮等差數(shù)列的項(xiàng)數(shù)未必是 ,即其末項(xiàng)未必是該數(shù)列的第 項(xiàng),在教學(xué)中一定要強(qiáng)調(diào)這一點(diǎn)。

  ⑥等差數(shù)列前 項(xiàng)和的公式推導(dǎo)離不開(kāi)等差數(shù)列的性質(zhì),所以在本節(jié)課應(yīng)補(bǔ)充一些重要的性質(zhì);另外可讓學(xué)生研究等差數(shù)列的子數(shù)列,有規(guī)律的子數(shù)列會(huì)引起學(xué)生的興趣。

  ⑦等差數(shù)列是現(xiàn)實(shí)生活中廣泛存在的數(shù)列的數(shù)學(xué)模型,如教材中的例題、習(xí)題等,還可讓學(xué)生去搜集,然后彼此交流,提出相關(guān)問(wèn)題,自己嘗試解決,為學(xué)生提供相互學(xué)習(xí)的機(jī)會(huì),創(chuàng)設(shè)相互研討的課堂環(huán)境。

  數(shù)學(xué)等差數(shù)列教案 13

  設(shè)計(jì)思路

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  教學(xué)過(guò)程:

  一、片頭

 。30秒以內(nèi))

  前面學(xué)習(xí)了數(shù)列的概念與簡(jiǎn)單表示法,今天我們來(lái)學(xué)習(xí)一種特殊的數(shù)列-等差數(shù)列。本節(jié)微課重點(diǎn)講解等差數(shù)列的定義, 并且能初步判斷一個(gè)數(shù)列是否是等差數(shù)列。

  30秒以內(nèi)

  二、正文講解(8分鐘左右)

  第一部分內(nèi)容:由三個(gè)問(wèn)題,通過(guò)判斷分析總結(jié)出等差數(shù)列的定義 60 秒

  第二部分內(nèi)容:給出等差數(shù)列的定義及其數(shù)學(xué)表達(dá)式50 秒

  第三部分內(nèi)容:哪些數(shù)列是等差數(shù)列?并且求出首項(xiàng)與公差。根據(jù)這個(gè)練習(xí)總結(jié)出幾個(gè)常用的'結(jié)152秒

  三、結(jié)尾

  (30秒以內(nèi))授課完畢,謝謝聆聽(tīng)!30秒以內(nèi)

  自我教學(xué)反思

  本節(jié)課通過(guò)生活中一系列的實(shí)例讓學(xué)生觀察,從而得出等差數(shù)列的概念,并在此基礎(chǔ)上學(xué)會(huì)判斷一個(gè)數(shù)列是否是等差數(shù)列,培養(yǎng)了學(xué)生觀察、分析、歸納、推理的能力。充分體現(xiàn)了學(xué)生做數(shù)學(xué)的過(guò)程,使學(xué)生對(duì)等差數(shù)列有了從感性到理性的認(rèn)識(shí)過(guò)程。

【數(shù)學(xué)等差數(shù)列教案】相關(guān)文章:

數(shù)學(xué)等差數(shù)列教案02-25

數(shù)學(xué)等差數(shù)列教案05-31

數(shù)學(xué)教案:等差數(shù)列02-22

等差數(shù)列數(shù)學(xué)教案06-13

數(shù)學(xué)等差數(shù)列教案9篇02-25

等差數(shù)列數(shù)學(xué)教學(xué)教案優(yōu)秀02-12

高中數(shù)學(xué)等差數(shù)列教案09-25

數(shù)學(xué)等差數(shù)列教案集合【12篇】05-31

等差數(shù)列教學(xué)反思04-14