七年級數(shù)學上冊教案15篇(精品)
作為一名老師,總歸要編寫教案,教案有助于順利而有效地開展教學活動。寫教案需要注意哪些格式呢?以下是小編整理的七年級數(shù)學上冊教案,歡迎閱讀與收藏。
七年級數(shù)學上冊教案1
學習目標:
知識:對頂角鄰補角概念,對頂角的性質(zhì)。
方法:圖形結合、類比。
情感:合作交流,主動參與的意識。
學習重點:
對頂角的概念、性質(zhì)。
學習難點及突破策略:
“對頂角相等”的探究;小組討論
教學流程:
【導課】
同學們,你們看我左手拿著一塊布,右手拿著一把剪刀,現(xiàn)在我用剪刀把布片剪開,同學們仔細觀察,隨著兩把手之間的角逐漸變小,剪刀刃之間的角怎樣變化?(學生答:也相應變小)如果把剪刀的構造看作兩條相交的直線,這就關系到兩條相交直線所成的角的問題(板書課題)。
【閱讀質(zhì)疑,自主探究】
請大家閱讀課本P,回答以下問題(自探提綱):
1、兩條相交的直線所成的四個角中,兩兩相配共能組成幾組對角?各組對角間存在著怎樣的位置關系?存在怎樣的大小關系?
2、什么樣的兩個角互為鄰補角?什么樣的.兩個角互為對頂角?
3、對頂角有什么性質(zhì)?你是怎樣得到的?
【多元互動,合作探究】
同學們閱讀教材后,對自己不能解決的問題分小組討論,然后老師針對自探提綱的問題讓學生回答。先讓學困生、中等生回答,優(yōu)等生做補充、歸納,特別是問題3的第2問,最后老師強調(diào):
1、注意“互為”的含義。鄰補角和對頂角都是要兩個角互為鄰補角或?qū)斀恰?/p>
2、“鄰補角”這個名稱,即包含了這兩個角的位置關系,還包含了數(shù)量關系,對頂角一定是兩條相交直線所構成的,這是一個前提條件。
3、“對頂角相等”的推導過程。
七年級數(shù)學上冊教案2
【學習目標】
1、使學生能根據(jù)商品銷售問題中的數(shù)量關系找出等量關系,列出方程,掌握商品盈虧的求法;
2、培養(yǎng)學生分析問題,解決實際問題的能力;
3、讓學生在實際生活問題中,感受到數(shù)學的價值。
【學習重點】用列方程的方法解決打折銷售問題。
【學習難點】準確理解打折銷售問題中的利潤(利潤率)、成本、銷售價之間的關系。
《3.4實際問題與一元一次方程》同步練習含解析
1.班主任老師在七年級(1)班新生分組時發(fā)現(xiàn),若每組7人則多2人,若每組8人則少4人,那么這個班的學生人數(shù)是( )人.
A.40 B.44 C.51 D.56
2.某玩具的標價是132元,若降價以9折出售仍可獲利10%,則該玩具的進價是( )元.
A.118 B.108 C.106 D.105
3.某車間有27名工人,生產(chǎn)某種由一個螺栓套兩個螺母的產(chǎn)品,每人每天生產(chǎn)螺母16個或螺栓22個,若分配x名工人生產(chǎn)螺栓,其他工人生產(chǎn)螺母,恰好使每天生產(chǎn)的螺栓和螺母配套,則下面所列方程中正確的'是( )
A.22x=16(27-x) B.16x=22(27-x)
C.2×16x=22(27-x) D.2×22x=16(27-x)
4.甲倉庫與乙倉庫共存糧450 噸、現(xiàn)從甲倉庫運出存糧的60%.從乙倉庫運出存糧的40%.結果乙倉庫所余的糧食比甲倉庫所余的糧食多30 噸.若設甲倉庫原來存糧x噸,則有( )
A.(1-60%)x-(1-40%)(450-x)=30 B.60%x-40%?(450-x)=30
C.(1-40%)(450-x)-(1-60%)x=30 D.40%?(450-x)-60%?x=30
《3.4實際問題與一元一次方程》同步四維訓練含答案
1.(20xx·黑龍江哈爾濱中考)某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1 000個螺母,1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.設安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是(C )
A.2×1 000(26-x)=800x
B.1 000(13-x)=800x
C.1 000(26-x)=2×800x
D.1 000(26-x)=800x
2.(20xx·廣西南寧中考)超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經(jīng)兩次降價后售價為90元,則得到方程(A )
A.0.8x-10=90 B.0.08x-10=90
C.90-0.8x=10 D.x-0.8x-10=90
3.(20xx·黑龍江綏化中考)一個長方形的周長為30 cm,若這個長方形的長減少1 cm,寬增加2 cm就可成為一個正方形,設長方形的長為x cm,可列方程為(D )
A.x+1=(30-x)-2 B.x+1=(15-x)-2
C.x-1=(30-x)+2 D.x-1=(15-x)+2
七年級數(shù)學上冊教案3
教學目標
1.了解的概念和的畫法,掌握的三要素;
2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大小;
3.使學生初步了解數(shù)形結合的思想方法,培養(yǎng)學生相互聯(lián)系的觀點。
教學建議
一、重點、難點分析
本節(jié)的重點是初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與上點的對應關系的概念包含兩個內(nèi)容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎。
二、知識結構
有了,數(shù)和形得到了初步結合,這有利于對數(shù)學問題的研究,數(shù)形結合是理解數(shù)學、學好數(shù)學的重要思想方法。
三、教法建議
小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念。是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關,但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數(shù)與上的點的對應關系,應該明確的是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應的關系。根據(jù)幾個有理數(shù)在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數(shù)的對應關系及其應用,逐步滲透數(shù)形結合的思想。
四、的相關知識點
1.的概念
(1)規(guī)定了原點、正方向和單位長度的直線叫做。
這里包含兩個內(nèi)容:一是的`三要素:原點、正方向、單位長度缺一不可。二是這三個要素都是規(guī)定的
(2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。
以是理解有理數(shù)概念與運算的重要工具。有了,數(shù)和形得到初步結合,數(shù)與表示數(shù)的圖形(如)相結合的思想是學習數(shù)學的重要思想。另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小。因此,應重視對的學習。
2.的畫法
(1)畫直線(一般畫成水平的)、定原點,標出原點“O”。
(2)取原點向右方向為正方向,并標出箭頭。
(3)選適當?shù)拈L度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數(shù)字時,負數(shù)的次序不能寫錯,如下圖。
3.用比較有理數(shù)的大小
(1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。
(2)由正、負數(shù)在上的位置可知:正數(shù)都有大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。
(3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“ ”的寫法,正確應寫成“ ”。
五、定義的理解
1、規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示。
2、所有的有理數(shù),都可以用上的點表示。例如:在上畫出表示下列各數(shù)的點(如圖2)。
A點表示-4; B點表示-1.5;
O點表示0; C點表示3.5;
D點表示6。
從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負數(shù)在上的位置,可以知道:
正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。
因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用,表示是正數(shù);反之,知道是正數(shù)也可以表示為。
同理,表示是負數(shù);反之是負數(shù)也可以表示為。
3、正常見幾種錯誤
1)沒有方向;
2)沒有原點;
3)單位長度不統(tǒng)一。
七年級數(shù)學上冊教案4
【教學目標】
1、通過豐富的實例,學生進一步認識點、線、面、體的幾何特征,感受它們之間的關系。
2、培養(yǎng)學生操作、觀察、分析、猜測和概括等能力,同時滲透轉(zhuǎn)化、化歸、變換的思想。
3、養(yǎng)成學生積極主動的學習態(tài)度和自主學習的方式。
【重點難點】
重點:認識點、線、面、體的幾何特征,感受它們之間的關系。
難點:在實際背景中體會點的含義。
【教學準備】
圓柱、圓錐、正方體、長方體、球、棱柱、棱錐模型
【教學過程】
一、創(chuàng)設情境
多媒體演示西湖風光,垂柳、波瀾不起的湖面、音樂噴泉、雨天、亭子……隨著鏡頭的切換,學生在欣賞美麗風景的同時,教師引導學生注意觀察:垂柳像什么?平靜的湖面像什么?湖中的小船像什么?隨著音樂起伏的噴泉又像什么?在岸邊的亭子中我們尋找到了哪些幾何圖形?從中感受生活中的點、線、面、體.
設計意圖:從西湖風光引入新課,引導學生觀察生活中的美妙畫面,不僅能激發(fā)學生的學習興趣,而且讓學生對點、線、面、體有了初步的形象認識,感知知識來源于生活.如“點”是沒有大小的,學生難以真正理解,可以借助湖中的小船、地圖上用點表示城市的.位里這些生活實例,讓學生體會到“點”的含義.
二、討論(動態(tài)研究)
課件演示:燦爛的星空,有流星劃過天際;汽車雨刷;長方形繞它的一邊快速轉(zhuǎn)動;問:這些圖形給我們什么樣的印象?
觀察、討論.讓學生共同體會“點動成線、線動成面、面動成體,’.
讓學生舉出更多的“點動成線、線動成面、面動成體”的例子。
小組合作學習,學生利用學具完成教科書第114頁練習(動手轉(zhuǎn)一轉(zhuǎn))
設計意圖:教師利用多媒體動態(tài)演示,讓學生主動參與學習活動,觀察感受,經(jīng)歷體驗圖形的變化過程,通過合作學習,感悟知識的生成、變化、發(fā)展,激發(fā)學生的聯(lián)想與再創(chuàng)造能力。學生自己動手實踐操作,加深學生印象,化解難度。
三、討論(靜態(tài)研究)
教師展示圖片(建筑或生活的實物等),讓學生找找生活中的平面、曲面、直線、點等。
讓學生找出生活中更多的包含平面、曲面、直線、曲線、點的例子。
四、探索
1、課本112頁觀察,并回答它的問題。
引導學生觀察后得出結論:面與面相交得到線,線與線相交得到點。
2、113頁練習(提供實物,議一議,動手摸一摸),思考以下問題:
這些立體圖形是由幾個面圍成的,它們都是平的嗎?圓錐的側面與底面相交成幾條線,是直線還是曲線?正方體有幾個頂點?經(jīng)過每個頂點有幾條邊?
讓學生自己體會并小組討論得出點、線、面、體之間的關系。
五、作業(yè)
1、“當你遠遠地去觀察霓虹燈組成的圖案時,圖案中的每個霓虹燈就是一個點;在交通圖上,點用來表示每個地方;電視屏幕上的畫面也是由一個個小點組成;運用點可以組成數(shù)字和字母,這正是點陣式打印機的原理.”說說你對上述這段敘述的理解和體會.
2、閱讀教科書第119頁的實驗與探究,并思考有關問題。
七年級數(shù)學上冊教案5
【學習目標】:
1、會用尺規(guī)畫一條線段等于已知線段;
2、會比較兩條線段的長短;
3、理解線段中點的 概念,了解“兩點之間,線段最短”的性質(zhì)。
【學習重點】:線段 的中點概念,“兩點之間,線段最短”的性質(zhì)是重點;
【學習難點】:畫一條線段等于已知線段是難點。
【導學指導】
一、溫故知新
1、過A、B、C三點作直線,小 明說有三條,小穎說有一條,小林說不是一條就是三條,你認為______的說法是對的。
二 、自主學習
問題:現(xiàn)有一根長木棒,如何從它上面截下一段,使截下的木棒等于另一根木棒的長 ?
上面的實際問題可以轉(zhuǎn)化為下面的數(shù)學問題:
2、比較兩條線段的長短
兩條線段可能相等,也可能不相等,那么怎樣比較兩條線段的長短呢?
我們先來回答下面的問題。
怎樣比較兩個同學的身高?
一是用尺子測量;二是站在一起比(腳在同一高度)。
如果把兩個同學看成兩條線段,那么比較兩條線段就有兩種方法。
(1)度量法:用刻度尺分別量出兩條線段的長度從而進行比較。
(2)把一條線段移到另一條線段上,使一端對齊,從而進行比較,我們稱為疊合法。
練習題
一、填空
1.我們在用玩具槍瞄準時,總是用一只眼對準準星和目標,用數(shù)學知識解釋為__________________.
2. 三條直線兩兩相交,則交點有_______________個.
二、下列說法中正確的`是( )
A、兩點之間線段最短
B、若兩個角的頂點重合,那么這兩個角是對頂角
C、一條射線把一個角分成兩個角,那么這條射線是角的平分線
D、過直線外一點有兩條直線平行于已知直線
9、下列說法:①平角就是一條直線;②直線比射線線長;③平面內(nèi)三條互不重合的直線的公共點個數(shù)有0個、1個、2個或3個;④連接兩點的線段叫兩點之間的距離;⑤兩條射線組成的圖形叫做角;⑥一條射線把一個角分成兩個角,這條射線是這個角的角平分線,其中正確的有( )
A、0個B、1個C、2個D、3個
同步四維訓練
知識一:直線的性質(zhì)
3.在開會前,工作人員進行會場布置,在主席臺上由兩人拉著一條繩子,然后以“準繩”為基準擺放茶杯,這樣做的理由是(B )
A.兩點之間線段最短
B.兩點確定一條直線
C.垂線段最短
D.過一點可以作無數(shù)條直線
知識點二:線段的作法及比較
4.在跳繩比賽中,要在兩條繩子中挑出較長的一條用于比賽,選擇的方法是(A )
A.把兩條繩子的一端對齊,然后拉直兩條繩子,另一端在外面的即為長繩
B.把兩條繩子接在一起
C.把兩條繩子重合觀察另一端的情況
D.沒有辦法挑選
七年級數(shù)學上冊教案6
教學目標
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學上的常用處理問題的方法。
教學難點 正確理解分類的標準和按照一定的標準進行分類
知識重點 正確理解有理數(shù)的概念
教學過程
探索新知
在前兩個學段,我們已經(jīng)學習了很多不同類型的數(shù),通過上兩節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),,.…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))
通過教師的引導、鼓勵和不斷完善,以及學生自己的`概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),”。
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:
按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的) 分類是數(shù)學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練
1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
2,教科書第10頁練習.
此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應該加上省略號:。
思考:
問題1:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
創(chuàng)新探究
問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學時,要讓學生總結已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇,使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結與作業(yè)
到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結果也不同。
七年級數(shù)學上冊教案7
一、目標
1.用它們拼成各種形狀不同的四邊形,并計算它們的周長。
。ü膭顚W生把長方形和等腰三角形拼和成各種圖形,分別計算出它們的周長和面積)
2.教師揭示以上這些工作實際上是在進行整式的加減運算
3.回顧以上過程 思考:整式的加減運算要進行哪些工作?
生1:“去括號”
生2:“合并同類項”
師生小結:整式的加減實際上是“去括號”和“合并同類項”法則的綜合應用,
二、揭示如何進行整式的加減運算
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.教學例二 例2 求2a2-4a+1與-3a2+2a-5的'差.
(本題首先帶領學生根據(jù)題意列出式子,強調(diào)要把兩個代數(shù)式看成整體,列式時應加上括號)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6
3.拓展練習
(1)求多項式2x -3 +7與6x -5 -2的和.
提問:你有哪些計算方法?(可引導學生進行豎式計算,并在練習中注意豎式計算過程中需要注意什么?)
(2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)
。4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)
4.教學例3
先化簡下式,再求值:
。ㄗ龃祟愵}目應先與學生一起探討一般步驟:
(1)去括號。
(2)合并同類項。
。3)代值)
解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3
=15a2b –5ab2+4ab2 -12a2b)
=3a2b –ab2
三、小結
1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。
2.進行化簡求值計算時
。1)去括號。
。2)合并同類項。
。3)代值
3.通過本節(jié)課的學習你還有哪些疑問?
四、布置作業(yè)
習題4.5 2. (3) ;4. (2);5.。
五、課后反思
省略
七年級數(shù)學上冊教案8
一、教學目標
1、知識與技能
。1)初步了解立體圖形和平面圖形的概念、
。2)能從具體物體中抽象出長方體、正方體、球、圓錐、棱錐、棱柱等立體圖形;能舉出類似長方體、正方體、球、圓錐、棱錐、棱柱的物體實體、
2、過程與方法
。1)過程:在探索實物與立體圖形關系的活動過程中,對具體圖形進行概括,發(fā)展幾何直覺、
。2)方法:能從具體事物中抽象出幾何圖形,并用幾何圖形描述一些現(xiàn)實中的物體、
3、情感、態(tài)度、價值觀
(1)、形成主動探究的意識,豐富學生數(shù)學活動的成功體驗,激發(fā)學生對幾何圖形的好奇心,發(fā)展學生的審美情趣、
二、教學重點、難點:
教學重點:常見幾何體的識別
教學難點:從實物中抽象幾何圖形、
三、教學過程
1、創(chuàng)設情境,導入新課、
。1)同學們,不知你們有沒有仔細地觀察過我們生活的周圍,如果你認真觀察的話,你會發(fā)現(xiàn)我們生活在一個多姿多彩的圖形世界里、引導學生觀察08年奧運村模型圖,你能從中找到一些你熟悉的圖形嗎?
。2)用幻燈片展示一些實物圖片并引導學生觀察、從城市宏偉的建筑到江南水鄉(xiāng)的小橋流水,從高科技產(chǎn)品到日常小玩意,從四通八達的`立交橋到街頭巷尾的交通標志,從古老的剪紙藝術到現(xiàn)代的雕塑,從自然界形態(tài)各異的動物到北京的申奧標志……圖形的世界是豐富多彩的
2、直觀感知,識別圖形
(1)對于各種各樣的物體,數(shù)學中關注是它們的形狀、大小和位置、
。2)展示一個長方體教具,讓學生分別從整體和局部抽象出幾何圖形、觀察長方體教具的外形,從整體上看,它的形狀是長方體,看不同的側面,得到的是正方形或長方形,只看棱、頂點等局部,得到的是線段、點、
七年級數(shù)學上冊教案9
第一課時
教學目的
讓學生通過獨立思考,積極探索,從而發(fā)現(xiàn);初步體會數(shù)形結合思想的作用。
重點、難點
1.重點:通過分析圖形問題中的數(shù)量關系,建立方程解決問題。
2.難點:找出“等量關系”列出方程。
教學過程
一、復習提問
1.列一元一次方程解應用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?
不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據(jù)這個等量關系,確定如何設未知數(shù)。
(3)當長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發(fā)現(xiàn)了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積最大呢?并加以驗證。
實際上,如果兩個正數(shù)的和不變,當這兩個數(shù)相等時,它們的積最大,通過以后的學習,我們就會知道其中的道理。
三、鞏固練習
教科書第14頁練習1、2。
第l題等量關系是:圓柱的體積=長方體的體積。
第2題等量關系是:玻璃杯中的水的體積十瓶內(nèi)剩下的水的體積=原來整瓶水的體積。
四、小結
運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯(lián)系實際,積極探索,找出等量關系。
五、作業(yè)
教科書第16頁,習題6.3.1第1、2、3。
第二課時
教學目的
通過分析儲蓄中的數(shù)量關系、商品利潤等有關知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優(yōu)惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的.利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學問題,然后分析數(shù)學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據(jù)題意首先尋找“等量關系”。
五、作業(yè)
教科書第16頁,習題6.3.1,第4、5題。
三課時
教學目的
借助“線段圖”分析復雜的行程問題中的數(shù)量關系,從而建立方程解決實際問題,發(fā)展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數(shù)。
教學過程
一、復習
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數(shù)量關系是什么?
路程=速度×時間 速度=路程 / 時間
二、新授
例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉(xiāng)看望爺爺,在行駛了三分之一路程后,估計繼續(xù)乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?
畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數(shù)的方法不同,所列方程的復雜程度一般也不同,因此在設未知數(shù)時要有所選擇。
三、鞏固練習
教科書第17頁練習1、2。
四、小結
有關行程問題的應用題常見的一個數(shù)量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數(shù)使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據(jù)這個等量關系確定怎樣設未知數(shù)。
四、作業(yè)
教科書習題6.3.2,第1至5題。
第四課時
教學目的
1.理解用一元一次方程解工程問題的本質(zhì)規(guī)律;通過對“工程問題”的分析進一步培養(yǎng)學生用代數(shù)方法解決實際問題的能力。
2.理解和掌握基本的數(shù)學知識、技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經(jīng)驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全
部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經(jīng)知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數(shù),因此,設師傅做了x天,則徒弟做(x+1)天,根據(jù)等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現(xiàn)
由甲獨做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1.本節(jié)課主要分析了工作問題中工作量、工作效率和工作時間之
間的關系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業(yè)
教科書習題6.3.3第1、2題。
七年級數(shù)學上冊教案10
一:說教材:
1教材的地位和作用
本節(jié)課是在學習了有理數(shù)加減法及乘除法法則的基礎上學習的。本節(jié)課對前面所學知識是一個很好的小結,同時也為后面的有理數(shù)混合運算做好鋪墊,很好地鍛煉了學生的運算能力,并在現(xiàn)實生活中有比較廣泛的應用。
3教育目標
。1)、知識與能力
、倌馨凑沼欣頂(shù)加減乘除的運算順序,正確熟練地進行運算。
②培養(yǎng)學生的觀察能力、分析能力和運算能力。
。2)、過程與方法
培養(yǎng)學生在解決應用題前認真審題,觀察題目已知條件,確定解題思路,列出代數(shù)式,并確定運算順序,計算中按步驟進行,最后要驗算的好習慣。
。3)、情感態(tài)度價值觀
通過本例的學習,學生認識到如何利用有理數(shù)的四則運算解決實際問題,并認識到小學算術里的四則混合運算順序同樣適用于有理數(shù)系,學生會感受到知識普適性美。
4教學重點和難點
重點和難點是如何利用有理數(shù)列式解決實際問題及正確而
合理地進行計算。
二:說教法
鑒于七年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。嘗試指導法,以學生為主體,以訓練為主線。為了突出學生的主體性,使學生積極參與到數(shù)學活動中來,采用了問題性教學模式!耙詫W生為主體、以問題為中心、以活動為基礎、以培養(yǎng)分析問題和解決問題能力為目標。
三:說學法指導
本例將指導學生通過觀察、討論、動手等活動,主動探索,發(fā)現(xiàn)問題;互動合作,解決問題;歸納概括,形成能力。增強數(shù)學應用意識,合作意識,養(yǎng)成及時歸納總結的良好學習習慣。
四:師生互動活動設計
教師用投影儀出示例題,學生用搶答等多種形式完成最終的解題。
五:說教學程序
。ㄕn本36頁)例9:某公司去年1~3月份平均每月虧損1。5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1。7萬元,11~12月份平均每月虧損2。3萬元,這個公司去年盈虧情況如何?
師生共析:認真審題,觀察、分析本題的問題共同回答以下問題:
1全年哪幾個月是虧損的?哪幾個月是的盈利的?
2各月虧損與盈利情況又如何?
3如果盈利記為“ ”,虧損記為“—”,那么全年虧損多少?
盈利多少?
6你能將虧損情況與盈利情況用算式列出來嗎?
。5)通過算式你能說出這個公司去年盈虧情況如何嗎?
【師生行為】:由教師指導學生列出算式并指出運算順序(有理數(shù)加減乘除混合運算,如無括號,則按“先乘除后加減”的順序進行。)再由學生自主完成運算。
【教法說明】:此題一方面可以復習加法運算,另一方面為以后學習有理數(shù)混合運算做準備,特別注意運算順序。同時訓練了學生的觀察,分析題目的能力。為以后解決實際問題做準備。
。ㄈ簹w納小結
今天我們通過例9的.學習懂得了遇到實際問題應把實際問題通過“觀察—分析—動手”的過程用數(shù)學的形式表現(xiàn)出來,直觀準確的解決問題。
六:說板書設計
板書要少而精,直觀性要強。能使學生清楚的看到本節(jié)課的重點,模仿示范例題熟練而準確的完成練習。也能體現(xiàn)出學生做題時出現(xiàn)的問題,便于及時糾正。
七年級數(shù)學上冊教案11
一、教學目標:
通過觀察生活中的大量物體,認識基本的幾何體,數(shù)學教案-北師大版數(shù)學(七年級上)新教材教案 生活中的圖形(一)。
經(jīng)過比較不同的物體學會觀察物體間的不同特征,體會幾何體間的聯(lián)系與區(qū)別。
二、教學過程:
1、引入:
。1)幻燈投影P2的'彩圖,利用現(xiàn)實生活的背景讓學生說出熟悉的幾何體(如球體、長方體、正方體等)
。2)展出圓柱、圓錐、正方體、棱柱、球的模型,讓學生分別說出這幾種幾何體的名稱。
2、過程:
。1)組織學生分組討論圓柱、圓錐的共同點與異同點,然后學生回答。
(2)組織學生分組討論棱柱、圓錐的共同點與異同點,老師巡場指導。
(3)學生回答問題。老師鼓勵學生大膽說出自己的答案,并對每一種答案再交由學生共同討論它的正確性。
。4)幻燈演示,棱柱的兩種類型:直棱柱與斜棱柱,一般棱柱僅指直棱柱。
。5)組織學生討論
如何對以上幾何體進行分類:
1)按底面
2)按側面
學生上臺動手將這幾種幾何體進行分類,老師讓學生試著說明歸類的理由是什么?無論學生說什么老師都應用鼓勵的目光讓學生說出自己的答案。
3、議一議:
投影P3的圖片讓學生感知這是現(xiàn)實生活中的一角,可能是書房的一角可能是教室的一角,讓學生分組討論:
。1)、上圖中哪些物體的形狀與長方體、正方體類似?
(學生在回答桌面時老師應指出桌面是指整個層面)
。2)上圖中哪些物體的形狀與圓柱、圓錐類似?掛籃球的網(wǎng)袋是否類似于圓錐?為什么?
。3)請找出上圖中與筆筒形狀類似的物體?
。4)請找出上圖中與地球形狀類似的物體?
4、想一想:
生活中還有哪些物體的形狀類似于棱柱、圓柱、圓錐與球。
5、小結:
與學生總結本節(jié)課所學的內(nèi)容,通過感知不同的物體體驗現(xiàn)實生活中原來有如此多的幾何體,幾何體在我們的生活中無處不在。我們也學會簡單地區(qū)別不同的物體。
6、作業(yè):
P4習題
七年級數(shù)學上冊教案12
教學目標:
知識與能力
能正確運用角度表示方向,并能熟練運算和角有關的問題。
過程與方法
能通過實際操作,體會方位角在是實際生活中的應用,發(fā)展抽象思維。
情感、態(tài)度、價值觀
能積極參與數(shù)學學習活動,培養(yǎng)學生對數(shù)學的好奇心和求知欲。
教學重點:方位角的表示方法。
教學難點:方位角的準確表示。
教學準備:預習書上有關內(nèi)容
預習導學:
如圖所示,請說出四條射線所表示的方位角?
教學過程;
一、創(chuàng)設情景,談話導入
在現(xiàn)實生活中,有一種角經(jīng)常用于航空、航海,測繪中領航員常用地圖和羅盤進行這種角的測定,這就是方位角,方位角應用比較廣泛,什么是方位角呢?
二、精講點拔,質(zhì)疑問難
方位角其實就是表示方向的角,這種角以正北,正南方向為基準描述物體的方向,如“北偏東30°”,“南偏西40°”等,方位角不能以正東,正西為基準,如不能說成“東偏北60°,西偏南50°”等,但有時如北偏東45°時,我們可以說成東北方向。
三、課堂活動,強化訓練
例1如圖:指出圖中射線OA、OB所表示的方向。
(學生個別回答,學生點評)
例2若燈塔位于船的北偏東30°,那么船在燈塔的什么方位?
(小組討論,個別回答,教師)
例3如圖,貨輪O在航行過程中發(fā)現(xiàn)燈塔A在它的南偏東60°的方向上,同時在它北偏東60°,南偏西10°,西北方向上又分別發(fā)現(xiàn)了客輪B,貨輪C和海島D,仿照表示燈塔方位的方法,畫出表示客輪B、貨輪C、海島D方向的.射線。
(教師分析,一學生上黑板,學生點評)
四、延伸拓展,鞏固內(nèi)化
例4某哨兵上午8時測得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10時,測得該船在哨所的北偏東60°,距哨所8km的地方。
。1)請按比例尺1:000畫出圖形。
。í毩⑼瓿,一同學上黑板,學生點評)
。2)通過測量計算,確定船航行的方向和進度。
。ㄐ〗M討論,得出結論,代表發(fā)言)
五、布置作業(yè)、當堂反饋
練習:請使用量角器、刻度尺畫出下列點的位置。
。1)點A在點O的北偏東30°的方向上,離點O的距離為3cm。
(2)點B在點O的南偏西60°的方向上,離點O的距離為4cm。
。3)點C在點O的西北方向上,同時在點B的正北方向上。
作業(yè):書P1407、9
七年級數(shù)學上冊教案13
教學目標
1.進一步掌握有理數(shù)的運算法則和運算律;
2.使學生能夠熟練地按有理數(shù)運算順序進行混合運算;
3.注意培養(yǎng)學生的運算能力.
教學重點和難點
重點:有理數(shù)的混合運算.
難點:準確地掌握有理數(shù)的運算順序和運算中的符號問題.
課堂教學過程設計
一、從學生原有認知結構提出問題
1.計算(五分鐘練習):
(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;
(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;
(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;
(24)3.4×104÷(-5).
2.說一說我們學過的有理數(shù)的運算律:
加法交換律:a+b=b+a;
加法結合律:(a+b)+c=a+(b+c);
乘法交換律:ab=ba;
乘法結合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、講授新課
前面我們已經(jīng)學習了有理數(shù)的加、減、乘、除、乘方等運算,若在一個算式里,含有以上的混合運算,按怎樣的順序進行運算?
1.在只有加減或只有乘除的`同一級運算中,按照式子的順序從左向右依次進行.
審題:(1)運算順序如何?
(2)符號如何?
說明:含有帶分數(shù)的加減法,方法是將整數(shù)部分和分數(shù)部分相加,再計算結果.帶分數(shù)分成整數(shù)部分和分數(shù)部分時的符號與原帶分數(shù)的符號相同.
七年級數(shù)學上冊教案14
教學目標
1.會利用合并同類項的方法解一元一次方程;(重點)
2.通過對實例的分析、體會一元一次方程作為實際問題的數(shù)學模型的作用.(難點)
教學過程
一、情境導入
1.等式的基本性質(zhì)有哪些?
2.解方程:(1)x-9=8; (2)3x+1=4.
3.下列各題中的兩個項是不是同類項?
(1)3xy與-3xy; (2)0.2ab與0.2ab;
(3)2abc與9bc; (4)3mn與-nm;
(5)4xyz與4xyz; (6)6與x.
4.能把上題中的同類項合并成一項嗎?如何合并?
5.合并同類項的法則是什么?依據(jù)是什么?
二、合作探究
探究點一:利用合并同類項解簡單的一元一次方程
例1解下列方程:
(1)9x-5x=8;
(2)4x-6x-x=15.
解析:先將方程左邊的同類項合并,再把未知數(shù)的系數(shù)化為1.
解:(1)合并同類項,得4x=8.
系數(shù)化為1,得x=2.
(2)合并同類項,得-3x=15.
系數(shù)化為1,得x=-5.
方法總結:解方程的實質(zhì)就是利用等式的性質(zhì)把方程變形為x=a的形式.
探究點二:根據(jù)“總量=各部分量的和”列方程解決問題
例2足球表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑、白皮塊數(shù)目的比為3∶5,一個足球表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少個?
解析:遇到比例問題時可設其中的每一份為x,本題中已知黑、白皮塊數(shù)目比為3∶5,可設黑色皮塊有3x個,則白色皮塊有5x個,然后利用相等關系“黑色皮塊數(shù)+白色皮塊數(shù)=32”列方程.
解:設黑色皮塊有3x個,則白色皮塊有5x個,根據(jù)題意列方程3x+5x=32,解得x=4,則黑色皮塊有3x=12(個),白色皮塊有5x=20(個).
答:黑色皮塊有12個,白色皮塊有20個.
方法總結:解題關鍵是要讀懂題目的意思,根據(jù)題目給出的'條件,找出合適的數(shù)量關系,列出方程,再求解.此題的關鍵是要知道相等關系為:黑色皮塊數(shù)+白色皮塊數(shù)=32,并能用x和比例關系把黑皮與白皮的數(shù)量表示出來.
三、板書設計
1.用合并同類項的方法解簡單的一元一次方程.
解方程的步驟:
(1)合并同類項;
(2)系數(shù)化為1(等式的基本性質(zhì)2).
2.找等量關系列一元一次方程.
列方程解應用題的步驟:
(1)設未知數(shù);
(2)分析題意找出等量關系;
(3)根據(jù)等量關系列方程;
(4)解方程并作答.
教學反思
本節(jié)從復習入手,幫助學生回顧合并同類項的相關知識,為學習用合并同類項解方程做好鋪墊.教學中采用引導發(fā)現(xiàn)的方法,課堂訓練中鼓勵自己動手,體現(xiàn)學生在課堂上的主體地位;整個教學過程中充分調(diào)動學生學習積極性,培養(yǎng)學生合作學習,主動探究的習慣.
七年級數(shù)學上冊教案15
學習目標:
1、引導學生正確區(qū)分“線段、射線、直線”,掌握其表示方法,理解并能運用相關性質(zhì)、公理。
2、了解線段中點的概念,能借助刻度尺、圓規(guī)等畫圖工具畫一條線段等于已知線段。
3、引領學生在感受美妙多變的圖形世界中,培養(yǎng)他們的觀察、分析、比較、探究等能力。
重點與難點:了解線段中點的概念,能畫一條線段等于已知線段。發(fā)展學生有條理的思考,并能正確地表述。
學習過程:
一、課前預習導學
1、如圖,點a、b、c、d在直線ab上,則圖中能用字母表示的共有條線段,有條射線,有條直線。
2、從a到b地有①、②、③三條路可以走,每條路長分別為:,則第條路最短,另兩條路的長短關系是。
第1題
第2題
3、如圖,若是中點,是中點,
。1)若,_________;
(2)若,_________。
二、課堂學習1、議一議:
。1)、在平面內(nèi)畫一個點,過這個點畫直線,能畫多少條?
。2)、要在墻上釘牢一根木條,至少要用幾個釘子?為什么?
。3)、如果平面內(nèi)有兩個點,過這兩個點畫直線,又能畫多少條?
總結:“過兩點有______,并且____ ”
思考:過平面上三點中的每兩點畫直線,可畫多少條?
2、做一做:已知兩點a、b
(1)畫線段ab(連接ab)
。2)延長線段ab到點c,使bc=ab
注意:我們把上圖中的點b叫做線段ac的。
3、想一想:(1)如果點b是線段ac的中點,那么線段ab、bc、ac之間有怎樣的數(shù)量關系?與同學交流。
。2)如何用符號語言表述中點的概念?
總結:如果點b是線段ac的中點,那么;
如果,那么b是線段ac的中點。
4、知識運用:
例1、如圖,線段ab=8cm,c是ab的中點,點d在cb上,db=1.5cm.求線段cd的長度。
練習:1、如圖ab=8cm,點c是ab的中點,
點d是cb的中點,則ad=____cm
2、如圖,下列說法,不能判斷點c是線段ab的中點的是( )
a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab
3、已知線段ab=8cm,點c是線段ab上任意一點,點m,n分別是線段ac與線段bc的中點,求線段mn的`長。
三、課堂檢測1.下列說法中,正確的是()
a.射線oa和射線ao表示同一條射線;b.延長直線ab;
c.經(jīng)過兩點有一條直線,并且只有一條直線;d.如果ac=bc,那么點c是線段ab的中點.
2.如果要在墻上固定一根木條,你認為至少要釘子()
a.1根b.2根c.3根d.4根
3.如圖,若是中點,是中點,
。1)若,,_________;(2)若,_________。
4.如圖在平面內(nèi)有a、b、c、d四點,按要求畫圖。
。1)畫直線ab、射線bc、線段bd
。2)連結ac交bd于點o
(3)畫射線cd并反向延長射線cd,
。4)連結ad并延長至點e,使ad=de。
四、課后作業(yè)
1、下列說法中正確的是()
a、連結兩點的線段叫做兩點之間的距離b、直線沒有端點,射線至少有一個端點
c、經(jīng)過平面內(nèi)兩點有且只有一條直線d、運動場上的300m賽跑,表示起點和終點之間的距離是300米
2、如圖,b是線段ad上一點,c是線段bd的中點,ad=10,bc=3,求線段cd、ab的長度
3、如圖,線段ad=8,ab=cd=3,e、f分別是ab、cd的中點,求線段ef的長。
4、已知線段mn=7,點p在直線mn上,且mp=3,則np= 。
5、一條直線上有a,b,c三點,其中ab=4cm,bc=3cm,若o是線段ac的中點,求線段ob的長度。
【七年級數(shù)學上冊教案】相關文章:
數(shù)學七年級上冊教案04-16
七年級數(shù)學上冊教案01-11
七年級上冊數(shù)學教學教案06-01
七年級數(shù)學上冊教案(精選)06-14
數(shù)學新七年級上冊教案模板01-24
七年級上冊數(shù)學教案12-16
七年級上冊數(shù)學教案01-19