- 高一上冊數(shù)學教案 推薦度:
- 高一數(shù)學教案 推薦度:
- 高一數(shù)學教案 推薦度:
- 相關(guān)推薦
高一數(shù)學教案(精品3篇)
在教學工作者實際的教學活動中,時常需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。那么你有了解過教案嗎?以下是小編為大家整理的高一數(shù)學教案,歡迎閱讀,希望大家能夠喜歡。
高一數(shù)學教案1
一、目的要求
1.通過本章的引言,使學生初步了解本章所研究的問題是集合與簡易邏輯的有關(guān)知識,并認識到用數(shù)學解決實際問題離不開集合與邏輯的知識。
2.在小學與初中的基礎上,結(jié)合實例,初步理解集合的概念,并知道常用數(shù)集及其記法。
3.從集合及其元素的概念出發(fā),初步了解屬于關(guān)系的意義。
二、內(nèi)容分析
1.集合是中學數(shù)學的一個重要的基本概念。在小學數(shù)學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學習數(shù)學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的基礎。
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學的最開始,是因為在高中數(shù)學中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學習、掌握和使用數(shù)學語言的基礎。例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
2.1.1節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
3.這節(jié)課主要學習全章的引言和集合的基本概念。學習引言是引發(fā)學生的學習興趣,使學生認識學習本章的意義。本節(jié)課的教學重點是集合的基本概念。
4.在初中幾何中,點、直線、平面等概念都是原始的、不定義的概念,類似地,集合則是集合論中的原始的、不定義的概念。在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識。教科書給出的“一般地,某些指定的`對象集在一起就成為一個集合,也簡稱集!边@句話,只是對集合概念的描述性說明。
三、教學過程
提出問題:
教科書引言所給的問題。
組織討論:
為什么“回答有20名同學參賽”不一定對,怎么解決這個問題。
歸納總結(jié):
1.可能有的同學兩次運動會都參加了,因此,不能簡單地用加法解決這個問題。
2.怎么解決這個問題呢?以前我們解一個問題,通常是先用代數(shù)式表示問題中的數(shù)量關(guān)系,再進一步求解,也就是先用數(shù)學語言描述它,把它數(shù)學化。這個問題與我們過去學過的問題不同,是屬于與集合有關(guān)的問題,因此需要先用集合的語言描述它,完全解決問題,還需要更多的集合與邏輯的知識,這就是本章將要學習的內(nèi)容了。
提出問題:
1.在初中,我們學過哪些集合?
2.在初中,我們用集合描述過什么?
組織討論:
什么是集合?
歸納總結(jié):
1.代數(shù):實數(shù)集合,不等式的解集等;
幾何:點的集合等。
2.在初中幾何中,圓的概念是用集合描述的。
新課講解:
1.集合的概念:(具體舉例后,進行描述性定義)
(1)某種指定的對象集在一起就成為一個集合,簡稱集。
(2)元素:集合中的每個對象叫做這個集合的元素。
(3)集合中的元素與集合的關(guān)系:
a是集合A的元素,稱a屬于集合A,記作a∈A;
a不是集合A的元素,稱a不屬于集合A,記作。
例如,設B={1,2,3,4,5},那么5∈B,注:集合、元素概念是數(shù)學中的原始概念,可以結(jié)合實例理解它們所描述的整體與個體的關(guān)系,同時,應著重從以下三個元素的屬性,來把握集合及其元素的確切含義。
、俅_定性:集合中的元素是確定的,即給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
例如,像“我國的小河流”、“年輕人”、“接近零的數(shù)”等都不能組成一個集合。
、诨ギ愋裕杭现械脑厥腔ギ惖模醇现械脑厥菦]有重復的。
此外,集合還有無序性,即集合中的元素無順序。
例如,集合{1,2},與集合{2,1}表示同一集合。
2.常用的數(shù)集及其記法:
全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記作N,非負整數(shù)集內(nèi)排除0的集,表示成或;
全體整數(shù)的集合通常簡稱整數(shù)集,記作Z;
全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q;
全體實數(shù)的集合通常簡稱實數(shù)集,記作R。
注:①自然數(shù)集與非負整數(shù)集是相同的,就是說,自然數(shù)集包括數(shù)0,這與小學和初中學習的可能有所不同;
、诜秦撜麛(shù)集內(nèi)排除0的集,也就是正整數(shù)集,表示成或。其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成或。負整數(shù)集、正有理數(shù)集、正實數(shù)集等,沒有專門的記法。
課堂練習:
教科書1.1節(jié)第一個練習第1題。
歸納總結(jié):
1.集合及其元素是數(shù)學中的原始概念,只能作描述性定義。學習時應結(jié)合實例弄清其含義。
2.集合中元素的特性中,確定性可以用于判定某些對象是否是給定集合的元素,互異性可用于簡化集合的表示,無序性可以用于判定集合間的關(guān)系(如后面要學習的包含或相等關(guān)系等)。
四、布置作業(yè)
教科書1.1節(jié)第一個練習第2題(直接填在教科書上)。
高一數(shù)學教案2
本學期我擔任高一年級(4)、(21)數(shù)學教學工作,一學期來,我自始至終以認真、嚴謹?shù)闹螌W態(tài)度,勤懇、堅持不懈的精神從事教學工作,認真制定計劃,注重教學理論,認真?zhèn)湔n和教學,積極參加教研組活動和備課組活動,上好每一節(jié)課,并能經(jīng)常聽各位優(yōu)秀老師的課,從中吸取教學經(jīng)驗,取長補短,提高自己的教學的業(yè)務水平。按照新課標要求進行施教,讓學生掌握好數(shù)學知識。還注意以德為本,結(jié)合現(xiàn)實生活中的現(xiàn)象層層善誘,多方面、多角度去培養(yǎng)學生的數(shù)學能力。經(jīng)過一個學期的努力,現(xiàn)將具體教學工作總結(jié)如下:
一、課前準備:備好課。
、僬J真鉆研教材,掌握教材的基本思想、基本概念,了解教材的結(jié)構(gòu),重點與難點,掌握知識的邏輯,能運用自如,知道應補充哪些資料,怎樣才能教好。
、诹私鈱W生原有的知識技能,了解他們的.興趣、需要和習慣,知道他們學習新知識可能會有哪些困難,采取相應的預防措施。
、劭紤]教法,解決如何把已掌握的教材傳授給學生,包括如何組織教材、如何安排每節(jié)課的活動。
二、課堂上的情況。
在數(shù)學課上,把抽象的數(shù)學知識與學生的生活緊密聯(lián)系,為學生創(chuàng)設一個富有生活氣息的學習情境,同時,也注重對學生學習能力的培養(yǎng),引導學生在合作交流中學習,在主動探究中學習。課堂上,始終以學生為學習主體,把學習的主動權(quán)交給學生,挖掘?qū)W生潛在的能力,讓學生自主學習,學生自己能完成的,我決不包辦代替。碰到簡單的教學內(nèi)容,我就放手讓學生自學,不懂的地方提出來,由老師和同學們共同解決。讓學生的智慧、能力、情感、心理得到滿足,學生成了學習的主人,學習成了他們的需求,學中有發(fā)現(xiàn),學中有樂趣,學中有收獲,關(guān)注全體學生,注意信息反饋,調(diào)動學生的有意注意,使其保持相對穩(wěn)定性,同時,激發(fā)學生的情感,使他們產(chǎn)生愉悅的心境,創(chuàng)造良好的課堂氣氛,課堂語言簡潔明了,克服了以前重復的毛病,課堂提問面向全體學生,注意引發(fā)學生學數(shù)學的興趣。
三、要提高教學質(zhì)量,還要做好課后輔導工作。
有部分學生愛動、好玩,缺乏自控能力,常在學習上不能按時完成作業(yè),有的學生抄襲作業(yè)。針對這種問題,抓好學生的思想教育。但對于學習差的學生的個別輔導我感到做的不夠,沒有更多的時間去輔導他們,使這部分學生的成績總是不理想。
一份耕耘,一份收獲,教學工作苦樂相伴。在以后的教學工作中,我要不斷總結(jié)經(jīng)驗,力求提高自己的教學水平,還要多下功夫加強對個別差生的輔導,相信一切問題都會迎刃而解,我也相信有耕耘總會有收獲。
高一數(shù)學教案3
平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形 。
教學目標
。1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程。
。2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程。
(3)掌握直線方程各種形式之間的互化。
。4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力。
。5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學,培養(yǎng)學生靈活的思維品質(zhì)和辯證唯物主義觀點。
。6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。
教學建議
1.教材分析
。1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式。
。2)重點、難點分析
①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程。
解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線。本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的`學習起著重要的作用。
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭。學生對點斜式學習的效果將直接影響后繼知識的學習。
、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明。
2.教法建議
。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯。教學中各部分知識之間過渡要自然流暢,不生硬。
。2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應關(guān)系,為繼續(xù)學習曲線方程打下基礎。
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進行正反兩方面的分析論證。教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點
(3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解。
。4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件。兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要。教學中應突出點斜式、兩點式和一般式三個教學高潮。
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程。根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程。
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負實數(shù))。
。6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關(guān)的問題指導學生練習,培養(yǎng)學生的綜合能力。
(7)直線方程的理論在其他學科和生產(chǎn)生活實際中有大量的應用。教學中注意聯(lián)系實際和其它學科,教師要注意引導,增強學生用數(shù)學的意識和能力。
。8)本節(jié)不少內(nèi)容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上。
【高一數(shù)學教案】相關(guān)文章:
高一數(shù)學教案11-05
高一數(shù)學教案11-08
【熱門】高一數(shù)學教案11-26
【薦】高一數(shù)學教案11-27
【熱】高一數(shù)學教案12-05
高一數(shù)學教案【薦】12-02
【精】高一數(shù)學教案12-01
高一數(shù)學教案(精品)10-14
高一數(shù)學教案優(yōu)秀09-05
高一數(shù)學教案(通用)06-29