- 相關推薦
函數(shù)的奇偶性說課稿(精選9篇)
作為一名教師,通常會被要求編寫說課稿,是說課取得成功的前提。那么問題來了,說課稿應該怎么寫?下面是小編為大家收集的函數(shù)的奇偶性說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
函數(shù)的奇偶性說課稿 篇1
一、教材分析
1.教材所處的地位和作用
"奇偶性"是人教A版第一章"集合與函數(shù)概念"的第3節(jié)"函數(shù)的基本性質"的第2小節(jié)。
奇偶性是函數(shù)的一條重要性質,教材從學生熟悉的 及 入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結構看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎。因此,本節(jié)課起著承上啟下的重要作用。
2.學情分析
從學生的認知基礎看,學生在初中已經(jīng)學習了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學習了函數(shù)單調性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。
從學生的思維發(fā)展看,高一學生思維能力正在由形象經(jīng)驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題。
3.教學目標
基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:
【知識與技能】
1.能判斷一些簡單函數(shù)的奇偶性。
2.能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。
【過程與方法】
經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價值觀】
通過自主探索,體會數(shù)形結合的思想,感受數(shù)學的對稱美。
從課堂反應看,基本上達到了預期效果。
4.教學重點和難點
重點:函數(shù)奇偶性的概念和幾何意義。
幾年的教學實踐證明,雖然"函數(shù)奇偶性"這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗 成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把"函數(shù)的奇偶性概念"設計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。
難點:奇偶性概念的數(shù)學化提煉過程。
由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的`概念造成了一定的困難。因此我把"奇偶性概念的數(shù)學化提煉過程"設計為本節(jié)課的難點。
二、教法與學法分析
1、教法
根據(jù)本節(jié)教材內容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應看,基本上達到了預期效果。
2、學法
讓學生在"觀察一歸納一檢驗一應用"的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學生掌握知識。
三、教學過程
具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學以致用。下面我對這六個環(huán)節(jié)進行說明。
。ㄒ唬┰O疑導入、觀圖激趣
由于本節(jié)內容相對獨立,專題性較強,所以我采用了"開門見山"導入方式,直接點明要學的內容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。
用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數(shù)圖象。通過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。
。ǘ┲笇в^察、形成概念
在這一環(huán)節(jié)中共設計了2個探究活動。
探究1 、2 數(shù)學中對稱的形式也很多,這節(jié)課我們就以函數(shù) 和 =︱x︱以及 和 為例展開探究。這個探究主要是通過學生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學生很快就說出函數(shù)圖象關于Y軸(原點)對稱。接著學生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導學生先把它們具體化,再用數(shù)學符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學生發(fā)現(xiàn)兩個函數(shù)的對稱性反應到函數(shù)值上具有的特性, ( )然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。
在這個過程中,學生把對圖形規(guī)律的感性認識,轉化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。
。ㄈ 學生探索、領會定義
探究3 下列函數(shù)圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數(shù)具有奇偶性的前提條件是——定義域關于原點對稱。(突破了本節(jié)課的難點)
(四)知識應用,鞏固提高
在這一環(huán)節(jié)我設計了4道題
例1判斷下列函數(shù)的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。
例1設計意圖是歸納出判斷奇偶性的步驟:
。1) 先求定義域,看是否關于原點對稱;
。2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數(shù)的奇偶性:
例3 判斷下列函數(shù)的奇偶性:
例2、3設計意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?
例4(1)判斷函數(shù) 的奇偶性。
(2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?
例4設計意圖加強函數(shù)奇偶性的幾何意義的應用。
在這個過程中,我重點關注了學生的推理過程的表述。通過這些問題的解決,學生對函數(shù)的奇偶性認識、理解和應用都能提升很大一個高度,達到當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實錄中充分展示了教法、學法中的互動模式,"問題"貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學法的特色。
在本節(jié)課的最后對知識點進行了簡單回顧,并引導學生總結出本節(jié)課應積累的解題經(jīng)驗。知識在于積累,而學習數(shù)學更在于知識的應用經(jīng)驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數(shù)學綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學以致用
必做題:課本第36頁練習第1-2題。
選做題:課本第39頁習題1.3A組第6題。
思考題:課本第39頁習題1.3B組第3題。
設計意圖:面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步達到不同的人在數(shù)學上得到不同的發(fā)展。
函數(shù)的奇偶性說課稿 篇2
各位老師,大家好!
今天我說課的課題是高中數(shù)學人教A版必修一第一章第三節(jié)"函數(shù)的基本性質"中的"函數(shù)的奇偶性",下面我將從教材分析,教法、學法分析,教學過程,教輔手段,板書設計等方面對本課時的教學設計進行說明。
一、教材分析
(一)教材特點、教材的地位與作用
本節(jié)課的主要學習內容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個性質。
函數(shù)的奇偶性是函數(shù)中的一個重要內容,它不僅與現(xiàn)實生活中的對稱性密切相關,而且為后面學習冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的性質打下了堅實的基礎。因此本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。
。ǘ┲攸c、難點
1、本課時的教學重點是:函數(shù)的奇偶性及其幾何意義。
2、本課時的教學難點是:判斷函數(shù)的奇偶性的方法與格式。
。ㄈ┙虒W目標
1、知識與技能:使學生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數(shù)、偶函數(shù)等概念;能運用函數(shù)奇偶性概念解決簡單的問題;使學生領會數(shù)形結合思想方法,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學生體會數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。
二、教法、學法分析
1.教學方法:啟發(fā)引導式
結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節(jié)課準備采用"引導發(fā)現(xiàn)法"進行教學,引導發(fā)現(xiàn)法可激發(fā)學生學習的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構。使用多媒體輔助教學,突出了知識的產(chǎn)生過程,又增加了課堂的趣味性。
2.學法指導:引導學生采用自主探索與互相協(xié)作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習。
三、教輔手段
以學生獨立思考、自主探究、合作交流,教師啟發(fā)引導為主,以多媒體演示為輔的教學方式進行教學
四、教學過程
為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發(fā)展思維。知識應用,鞏固提高。歸納小結,布置作業(yè)。
。ㄒ唬┰O疑導入,觀圖激趣
讓學生感受生活中的美:展示圖片蝴蝶,雪花
學生舉例生活中的對稱現(xiàn)象
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點
以y軸為折痕將紙對折,然后以x 軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的痕跡,然后將紙展開。觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點
。ǘ┲笇в^察,形成概念
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學們作出函數(shù)y=x2的圖象,并觀察這兩個函數(shù)圖象的對稱性如何
給出圖象,然后問學生初中是怎樣判斷圖象關于 軸對稱呢此時提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律
借助課件演示,學生會回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數(shù)學符號表示。
思考:由于對任一x,必須有一-x與之對應,因此函數(shù)的定義域有什么特征
引導學生發(fā)現(xiàn)函數(shù)的定義域一定關于原點對稱。根據(jù)以上特點,請學生用完整的語言敘述定義,同時給出板書:
。1)函數(shù)f(x)的.定義域為A,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)
提出新問題:函數(shù)圖象關于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢 (同時打出 y=1/x的圖象讓學生觀察研究)
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數(shù)的定義:
(2)函數(shù)f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x), 則稱f(x)為奇函數(shù)
強調注意點:"定義域關于原點對稱"的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識,歸納步驟:
。1)求出函數(shù)的定義域,并判斷是否關于原點對稱
(2)驗證f(-x)=f(x)或f(-x)=-f(x) 3)得出結論
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
。1)f(x)= x2+1
。2)f(x)=x3-x
。3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點:既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)
接著進行課堂鞏固,強調非奇非偶函數(shù)的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)
然后根據(jù)前面引入知識中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
函數(shù)f(x)是奇函數(shù)=圖象關于原點對稱
函數(shù)f(x)是偶函數(shù)=圖象關于y軸對稱
給出例2:書P63例3,再進行當堂鞏固,
1,書P65ex2
2,說出下列函數(shù)的奇偶性:
Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3
歸納:對形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)
(三)學生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)
2,函數(shù)y=0有是什么函數(shù)
。ㄋ模┎贾米鳂I(yè): 課本P39 習題1.3(A組) 第6題, B組第3
五、板書設計
函數(shù)的奇偶性說課稿 篇3
一、教材與學生
1、教材
《數(shù)的奇偶性》是在學生已經(jīng)學習數(shù)的奇數(shù)和偶數(shù)的基礎上進行的。因為這個知識才剛剛從中學數(shù)學,或小學奧數(shù)系列進入教材學生不熟悉,教師也陌生,我就想,能否讓學生親身體會一下奧數(shù)并不神秘,同時能在快樂中去學有價值、有難度的數(shù)學。
2、學生
五年級學生在不斷的學習過程中已經(jīng)具備一定的觀察、思考、分析、交流以及動手操作的能力。但基礎的差異,環(huán)境的不同,后天開發(fā)的不等,故我在循序漸進,步步為營的同時,準備放開手腳,讓學生去動手探索。
二、教學目標
1.讓學生在觀察中自然認識奇數(shù)和偶數(shù);掌握數(shù)加減的奇偶性;
2.運用設疑——猜想——驗證—運用的教學模式,培養(yǎng)的自主探究的能力;
3.讓學生在一系列的活動中思考、學習,增長數(shù)學興趣和增強學習的'內驅力。
三、教法和學法
主要是自主探究與開放式教學相結合。
1、讓學生自主探索規(guī)律,并全程參與。
我想,什么也不能代替學生的親身體驗。這里我講一個小故事——有一天,我感冒了。不想說,也不想動,就說:孩子們,今天講臺就交給你們了,我就是一個擦黑板工。同學們笑了,盡管我講的是租船和租車的復雜問題,但孩子們講的頭頭是道,寫的一絲不茍。為什么不在適當?shù)臅r候把課堂還給學生呢?!
2、大膽開放,拋棄束縛。
我的教學不想拘泥于一點,不想修建一個房屋讓孩子們在里面玩,在思維的國度,應該是平等的,自由的。這難道不是北大的思想嗎?開放式教學不是我們北大附中的精髓嗎?
因此我打破了教材的局限,設計了一個嶄新的思路——
四、教學設計和思路
。ㄒ唬┯螒驅,感受奇偶性
1、游戲一:6只小鴨子、5只蝴蝶找伴
2、游戲二:轉輪盤
。1)講要求:指針停在幾上就再走幾步;
。2)獨白:
A請他們全班去吃飯,地方嗎
B學生開心極了,當聽到是東方餃子王………一片贊嘆。
C結果:乘興而來,敗興而歸,有的指責我—騙人
。ㄎ摇以趺打_人了?)
討論:為什么會出現(xiàn)這種情況呢?
如果游戲一是感知數(shù)的奇偶,開始了微笑,那么游戲二就徹底激發(fā)了學生的學習的積極性和主動性,在笑聲中,嘆息聲中,在失敗中開始了思索,在思索中尋找答案。
。ù藭r學生議論紛紛,正是引出偶數(shù)、奇數(shù)的最佳時機)
3、板書課題,加以破題,加以過渡。
。ǘ┎孪腧炞C,認識奇偶性
1、為什么沒有人中獎呢?(學生猜想,教師板書)
2、真的是這樣嗎?(教師加以驗證)
。ㄎ以隍炞C的同時,表揚學生達到了一年級水平,二年級的高度,三年級的容量,學生在笑聲中體驗了愉悅,在開心中學到了知識,增長了能力)
。ǘ谖艺宫F(xiàn)了驗證的過程后,開始表揚自己,這個人多帥,多聰明,像不像我——————,哈哈不服氣,你來呀。
。ㄈ┐竽懖孪,細心求證
1、獨立來寫(寫出了加法,又寫出了減法,我提示—有沒有乘除呢?)
2、小組合作驗證糾偏
3、小組展示(滿滿的一黑板,加減乘除都有。而且欲罷不能,我就在表揚學生的基礎上,圈出我們今天應該掌握的加法的奇偶性。)
。ㄋ模┢露染毩暎瑢訉蛹由
1、填空
2、判斷(這些內容,由淺入深,由難及易,層層推進)
3、填表(著重講解了這一道題—因為它是例題,我把填表作為要點,學會觀察與思考,從而得到規(guī)律。)
4、動手(有動腦的,動口的,這里的翻杯子就是動手了。)
五、課堂小結,課后延伸
1、說說我們這節(jié)課探索了什么?你發(fā)現(xiàn)了什么?或者有什么想說的?
2、思考題
那如果是4個杯子全部杯口朝上放在桌上,每次翻動其中的3只杯子,能否經(jīng)過若干次翻轉,使得4個杯子全部杯口朝下?最少幾次?
函數(shù)的奇偶性說課稿 篇4
一、教材分析
函數(shù)是中學數(shù)學的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學之中。函數(shù)的奇偶性是函數(shù)中的一個重要內容,它不僅與現(xiàn)實生活中的對稱性密切相關聯(lián),而且為后面學習指、對、冪函數(shù)的性質作好了堅實的準備和基礎。因此,本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。
二、教學目標
1.知識目標:
理解函數(shù)的奇偶性及其幾何意義;學會運用函數(shù)圖象理解和研究函數(shù)的性質;學會判斷函數(shù)的奇偶性。
2.能力目標:
通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生觀察、歸納、抽象的能力,滲透數(shù)形結合的數(shù)學思想。
3.情感目標:
通過函數(shù)的奇偶性教學,培養(yǎng)學生從特殊到一般的概括歸納問題的能力。
三、教學重點和難點
教學重點:函數(shù)的奇偶性及其幾何意義。
教學難點:判斷函數(shù)的奇偶性的方法與格式。
四、教學方法
為了實現(xiàn)本節(jié)課的教學目標,在教法上我采取:
1、通過學生熟悉的函數(shù)知識引入課題,為概念學習創(chuàng)設情境,拉近未知與已知的距離,激發(fā)學生求知欲,()調動學生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹?shù)耐评,并順利地完成書面表達。
五、學習方法
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
六、教學程序
。ㄒ唬﹦(chuàng)設情景,揭示課題
"對稱"是大自然的一種美,這種"對稱美"在數(shù)學中也有大量的反映,讓我們看看下列各函數(shù)有什么共性?
觀察下列函數(shù)的`圖象,總結各函數(shù)之間的共性。
f(x)= x2 f(x)=x
x
通過討論歸納:函數(shù) 是定義域為全體實數(shù)的拋物線;函數(shù)f(x)=x是定義域為全體實數(shù)的直線;各函數(shù)之間的共性為圖象關于 軸對稱。觀察一對關于 軸對稱的點的坐標有什么關系?
歸納:若點 在函數(shù)圖象上,則相應的點 也在函數(shù)圖象上,即函數(shù)圖象上橫坐標互為相反數(shù)的點,它們的縱坐標一定相等。
。ǘ┗咏涣 研討新知
函數(shù)的奇偶性定義:
1.偶函數(shù)
一般地,對于函數(shù) 的定義域內的任意一個 ,都有 ,那么 就叫做偶函數(shù)。(學生活動)依照偶函數(shù)的定義給出奇函數(shù)的定義。
2.奇函數(shù)
一般地,對于函數(shù) 的定義域的任意一個 ,都有 ,那么 就叫做奇函數(shù)。
注意:
1.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質。
2.由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個 ,則 也一定是定義域內的一個自變量(即定義域關于原點對稱)。
3.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關于 軸對稱;奇函數(shù)的圖象關于原點對稱。
(三)質疑答辯,排難解惑,發(fā)展思維。
例1.判斷下列函數(shù)是否是偶函數(shù)。
解:函數(shù) 不是偶函數(shù),因為它的定義域關于原點不對稱。
函數(shù) 也不是偶函數(shù),因為它的定義域為 ,并不關于原點對稱。
例2.判斷下列函數(shù)的奇偶性
(1) (2) (3) (4)
解:(略)
小結:利用定義判斷函數(shù)奇偶性的格式步驟:
、偈紫却_定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;
、诖_定 ;
、圩鞒鱿鄳Y論:
若 ;
若 .
例3.判斷下列函數(shù)的奇偶性:
、
、
分析:先驗證函數(shù)定義域的對稱性,再考察 .
解:(1) >0且 > = < < ,它具有對稱性。因為 ,所以 是偶函數(shù),不是奇函數(shù)。
。2)當 >0時,-<0,于是
當<0時,->0,于是
綜上可知,在r-∪r+上, 是奇函數(shù)。
例4.利用函數(shù)的奇偶性補全函數(shù)的圖象。
教材p41思考題:
規(guī)律:偶函數(shù)的圖象關于 軸對稱;奇函數(shù)的圖象關于原點對稱。
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。
例5.已知 是奇函數(shù),在(0,+∞)上是增函數(shù)。
證明: 在(-∞,0)上也是增函數(shù)。
證明:(略)
小結:偶函數(shù)在關于原點對稱的區(qū)間上單調性相反;奇函數(shù)在關于原點對稱的區(qū)間上單調性一致。
(四)鞏固深化,反饋矯正
(1)課本p42 練習1.2 p46 b組題的1.2.3
。2)判斷下列函數(shù)的奇偶性,并說明理由。
、
②
③
、
。ㄎ澹w納小結,整體認識
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱,單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調性和奇偶性這兩個性質。
(六)設置問題,留下懸念
1.書面作業(yè):課本p46習題a組1.3.9.10題
2.設 >0時,
試問:當<0時, 的表達式是什么?
函數(shù)的奇偶性說課稿 篇5
大家好,我是1號考生。我說課的題目是《函數(shù)的奇偶性》(板書課題),根據(jù)新課標的理念,以教什么,怎么教,為什么這樣教為思路,我從6個方面進行說課。
一、說設計理念
根據(jù)新課程教學理念,在教學中,我以領悟為目的,練習為主線,引導學生自主學習,合作探究,在教學中,注重培養(yǎng)學生邏輯思維能力、創(chuàng)新能力、合作能力、歸納能力、及數(shù)學聯(lián)系生活的能力。即實現(xiàn)數(shù)學教學的知識目標,又實現(xiàn)育人的情感目標。
二、說教材
《函數(shù)的奇偶性》是人教版第一章集合與函數(shù)概念單元的重要知識點。全面介紹了偶函數(shù)的定義及判定,奇函數(shù)的定義及判定等兩部分知識。為后面學習指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)等知識奠定了基礎。
。ㄒ唬┙虒W目標:
依據(jù)本節(jié)課的知識特點及新課標要求,本課的三維教學目標是:
1.知識與技能目標是:理解函數(shù)的奇偶性及其幾何意義,掌握判斷函數(shù)奇偶性的方法。
2.過程與方法目標是:通過學生自主探索,合作學習,培養(yǎng)學生的觀察、分析和歸納等數(shù)學能力,滲透數(shù)形結合的數(shù)學思想。。
3.情感態(tài)度與價值觀目標是:讓學生了解數(shù)學在生活中運用的廣泛性和實用性,引發(fā)學生學習數(shù)學知識的興趣。
。ǘ┲攸c、難點:
重點是:函數(shù)的奇偶性及其幾何意義。
難點是:判斷函數(shù)的奇偶性的方法。
。ㄈ⿲W情分析
本課的授課對象是高一年級的學生,他們思維活躍,求知欲強,他們已經(jīng)初步認識了函數(shù)的概念,高一年級的學生有自主學習、合作探究的能力,但仍需要教師的指導。
三、教法學法
教法:本節(jié)課采用自主探究法、啟發(fā)式教學法、討論交流法等。
學法:引導學生探究合作,歸納總結,注重對學生自主探究問題能力的培養(yǎng),發(fā)揮學習小組的合作作用。
四、教學準備
教師制作多媒體課件,編印導學案;學生預習課文,觀察生活中具有對稱美的物體或圖像。
五、教學過程
本節(jié)課我從導、研、練、拓、升五個環(huán)節(jié)進行說課。
環(huán)節(jié)一:創(chuàng)設情境,導入新課。(導3)、
該環(huán)節(jié),用多媒體向學生展示現(xiàn)實生活中蝴蝶、太陽、湖面倒影等具有對稱性的圖像,再讓學生舉例函數(shù)圖像是否有類似的屬性?通過評價學生回答,引出本節(jié)課的標題:函數(shù)的.奇偶性。
本環(huán)節(jié)的設計意圖是:采用問題探究導入法,有效地引起學生的注意,激發(fā)學生學習本節(jié)課的興趣,便于環(huán)節(jié)二的開展。本環(huán)節(jié)需要3分鐘
環(huán)節(jié)二:合作探究,獲取新知(研20)
該環(huán)節(jié),我分兩個模塊進行。
模塊一:完成偶函數(shù)的定義。(板書知識點的小標題)。該模塊中,讓學生觀察課本圖1.3.7并思考,兩個函數(shù)圖像有什么共同特征?相應的對應表是如何體現(xiàn)這些特征的?進而讓學生觀察討論,得出結論:當自變量x取一對相反數(shù)時,相應的函數(shù)值相同,并引導學生歸納總結出偶函數(shù)的定義:定義域內任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
模塊二:完成奇函數(shù)的定義。(板書知識點的小標題)。該模塊中,學生已經(jīng)學習了偶函數(shù)的定義,根據(jù)偶函數(shù)相同的教學方法引導學生推導出奇函數(shù)的定義,即:定義域內任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
模塊三:完成例題5講解。在引導學生復述偶函數(shù)、奇函數(shù)的定義的基礎上,師生共同完成例題5中的1)2)小題。在這個過程中教師要提醒學生注意函數(shù)定義域的范圍,掌握函數(shù)奇偶性判定的方法。在完成1、2小題的基礎上,讓學生獨立完成3)4)兩個小題。然后在小組內討論交流,教師巡視,以便發(fā)現(xiàn)問題,解決問題。
本環(huán)節(jié)的設計意圖是:采用講授、研討、探究、評價、訓練、等多種教學手段,達成本節(jié)課的三維目標。本環(huán)節(jié)需要25分鐘
環(huán)節(jié)三:強化訓練,目標達成。(練12)
該環(huán)節(jié),讓同學們拿出之前下發(fā)的練習題,每個小組選出一位同學到黑板板演。然后教師對板演情況進行講評,其他同學小組內互相批閱。
本環(huán)節(jié)的設計意圖是:采取自評和他評相結合的方法,檢查學生的學習效果,便于及時對學生進行查缺補漏。本環(huán)節(jié)需要12分鐘
環(huán)節(jié)四:聯(lián)系生活,拓展延伸(拓5)
這根據(jù)所學知識,讓學生聯(lián)系生活,列舉在教室中具有奇偶性的具體實物,提高學生將知識聯(lián)系生活的能力。
環(huán)節(jié)五:總結提升,布置作業(yè)(升5)
教師對本節(jié)課知識點進行梳理。完成課堂達標測評試題,然后啟發(fā)學生思考這一課的收獲。最后布置兩種作業(yè);A型作業(yè)為總結本節(jié)課的所學知識完成相關練習。擴展型作業(yè)為學生自主查詢函數(shù)奇偶性的相關資料。
本環(huán)節(jié)通過梳理總結,使本課知識要點化,系統(tǒng)化,給學生以強化記憶。所布置的作業(yè),既可以鞏固所學知識,又能把課堂所學應用于實踐當中,從而達到教學的目的。
六、說板書設計
我的板書直觀具體形象地將本節(jié)課的學生重點呈現(xiàn)在黑板之上,方便學生理解掌握。
我的說課到此結束,謝謝各位專家老師!
附:板書設計
函數(shù)的奇偶性說課稿 篇6
一、教學目標
【知識與技能】
理解函數(shù)的奇偶性及其幾何意義.
【過程與方法】
利用指數(shù)函數(shù)的圖像和性質,及單調性來解決問題.
【情感態(tài)度與價值觀】
體會指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學生學習數(shù)學的興趣.
二、教學重難點
【重點】
函數(shù)的奇偶性及其幾何意義
【難點】
判斷函數(shù)的奇偶性的方法與格式.
三、教學過程
(一)導入新課
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應問題:
1 以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形;
問題:將第一象限和第二象限的圖形看成一個整體,則這個圖形可否作為某個函數(shù)y=f(x)的圖象,若能請說出該圖象具有什么特殊的性質?函數(shù)圖象上相應的點的坐標有什么特殊的關系?
答案:(1)可以作為某個函數(shù)y=f(x)的圖象,并且它的圖象關于y軸對稱;
(2)若點(x,f(x))在函數(shù)圖象上,則相應的點(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標互為相反數(shù)的點,它們的縱坐標一定相等.
(二)新課教學
1.函數(shù)的奇偶性定義
像上面實踐操作1中的圖象關于y軸對稱的函數(shù)即是偶函數(shù),操作2中的圖象關于原點對稱的函數(shù)即是奇函數(shù).
(1)偶函數(shù)(even function)
一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學生活動):仿照偶函數(shù)的定義給出奇函數(shù)的定義
(2)奇函數(shù)(odd function)
一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質;
2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
2.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關于y軸對稱;
奇函數(shù)的圖象關于原點對稱.
3.典型例題
(1)判斷函數(shù)的奇偶性
例1.(教材P36例3)應用函數(shù)奇偶性定義說明兩個觀察思考中的四個函數(shù)的奇偶性.(本例由學生討論,師生共同總結具體方法步驟)
解:(略)
總結:利用定義判斷函數(shù)奇偶性的格式步驟:
1 首先確定函數(shù)的定義域,并判斷其定義域是否關于原點對稱;
2 確定f(-x)與f(x)的關系;
3 作出相應結論:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).
(三)鞏固提高
1.教材P46習題1.3 B組每1題
解:(略)
說明:函數(shù)具有奇偶性的一個必要條件是,定義域關于原點對稱,所以判斷函數(shù)的奇偶性應應首先判斷函數(shù)的.定義域是否關于原點對稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
2.利用函數(shù)的奇偶性補全函數(shù)的圖象
(教材P41思考題)
規(guī)律:
偶函數(shù)的圖象關于y軸對稱;
奇函數(shù)的圖象關于原點對稱.
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù).
(四)小結作業(yè)
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱.單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數(shù)的圖象充分理解好單調性和奇偶性這兩個性質.
課本P46 習題1.3(A組) 第9、10題, B組第2題.
四、板書設計
函數(shù)的奇偶性
一、偶函數(shù):一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
二、奇函數(shù):一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
三、規(guī)律:
偶函數(shù)的圖象關于y軸對稱;
奇函數(shù)的圖象關于原點對稱.
函數(shù)的奇偶性說課稿 篇7
教學目標:了解奇偶性的含義,會判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對稱性與函數(shù)奇偶性的關系。
重點:判斷函數(shù)的奇偶性
難點:函數(shù)圖象對稱性與函數(shù)奇偶性的關系。
一、復習引入
1、函數(shù)的單調性、最值
2、函數(shù)的奇偶性
。1)奇函數(shù)
。2)偶函數(shù)
。3)與圖象對稱性的關系
(4)說明(定義域的要求)
二、例題分析
例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)
。1) (2)
。3) (4)
例2、證明函數(shù) 在R上是奇函數(shù)。
例3、試判斷下列函數(shù)的奇偶性
三、隨堂練習
1、函數(shù) ( )
是奇函數(shù)但不是偶函數(shù) 是偶函數(shù)但不是奇函數(shù)
既是奇函數(shù)又是偶函數(shù) 既不是奇函數(shù)又不是偶函數(shù)
2、下列4個判斷中,正確的`是_______.
(1) 既是奇函數(shù)又是偶函數(shù);
。2) 是奇函數(shù);
。3) 是偶函數(shù);
。4) 是非奇非偶函數(shù)
3、函數(shù) 的圖象是否關于某直線對稱?它是否為偶函數(shù)?
函數(shù)的奇偶性說課稿 篇8
教學目標
1.使學生理解奇函數(shù)、偶函數(shù)的概念;
2.使學生掌握判斷某些函數(shù)奇偶性的方法;
3.培養(yǎng)學生判斷、推理的能力、加強化歸轉化能力的訓練;
教學重點
函數(shù)奇偶性的概念
教學難點
函數(shù)奇偶性的判斷
教學方法
講授法
教具裝備
幻燈片3張
第一張:上節(jié)課幻燈片A。
第二張:課本P58圖2—8(記作B)。
第三張:本課時作業(yè)中的預習內容及提綱。
教學過程
(I)復習回顧
師:上節(jié)課我們學習了函數(shù)單調性的概念,請同學們回憶一下:增函數(shù)、減函數(shù)的定義,并復述證明函數(shù)單調性的步驟。
生:(略)
師:這節(jié)課我們來研究函數(shù)的另外一個性質——奇偶性(導入課題,板書課題)。
(II)講授新課
。ù虺龌脽羝珹)
師:請同學們觀察圖形,說出函數(shù)y=x2的圖象有怎樣的對稱性?
生:(關于y軸對稱)。
師:從函數(shù)y=f(x)=x2本身來說,其特點是什么?
生:(當自變量取一對相反數(shù)時,函數(shù)y取同一值)。
師:(舉例),例如:
f(-2)=4, f(2)=4,即f(-2)= f(-2);
f(-1)=1,f(1)=1,即f(-1)= f(1);
……
由于(-x)2=x2 ∴f(-x)= f(x).
以上情況反映在圖象上就是:如果點(x,y)是函數(shù)y=x2的圖象上的任一點,那么,與它關于y軸的對稱點(-x,y)也在函數(shù)y=x2的圖象上,這時,我們說函數(shù)y=x2是偶函數(shù)。
一般地,(板書)如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)= f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
例如:函數(shù)f(x)=x2+1, f(x)=x4-2等都是偶函數(shù)。
。ù虺龌脽羝珺)
師:觀察函數(shù)y=x3的圖象,當自變量取一對相反數(shù)時,它們對應的函數(shù)值有什么關系?
生:(也是一對相反數(shù))
師:這個事實反映在圖象上,說明函數(shù)的圖象有怎樣的對稱性呢?
生:(函數(shù)的圖象關于原點對稱)。
師:也就是說,如果點(x,y)是函數(shù)y=x3的圖象上任一點,那么與它關于原點對稱的點(-x,-y)也在函數(shù)y=x3的'圖象上,這時,我們說函數(shù)y=x3是奇函數(shù)。
一般地,(板書)如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x) =-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
例如:函數(shù)f(x)=x,f(x) =都是奇函數(shù)。
如果函數(shù)f(x)是奇函數(shù)或偶函數(shù),那么我們就說函數(shù)f(x)具有奇偶性。
注意:從函數(shù)奇偶性的定義可以看出,具有奇偶性的函數(shù):
(1)其定義域關于原點對稱;
。2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判斷某一函數(shù)的奇偶性時。
首先看其定義域是否關于原點對稱,若對稱,再計算f(-x),看是等于f(x)還是等于- f(x),然后下結論;若定義域關于原點不對稱,則函數(shù)沒有奇偶性。
。↖II)例題分析
課本P61例4,讓學生自看去領悟注意的問題并判斷的方法。
注意:函數(shù)中有奇函數(shù),也有偶函數(shù),但是還有些函數(shù)既不是奇函數(shù)也不是偶函數(shù),唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函數(shù)又是偶函數(shù)。
。↖V)課堂練習:課本P63練習1。
。╒)課時小結
本節(jié)課我們學習了函數(shù)奇偶性的定義及判斷函數(shù)奇偶性的方法。特別要注意判斷函數(shù)奇偶性時,一定要首先看其定義域是否關于原點對稱,否則將會導致結論錯誤或做無用功。
。╒I)課后作業(yè)
一、課本p65習題2.3 7。
二、預習:課本P62例5、例6。預習提綱:
1.請自己理一下例5的證題思路。
2.奇偶函數(shù)的圖角各有什么特征?
板書設計
課題
奇偶函數(shù)的定義
注意:
判斷函數(shù)奇偶性的方法步驟。
小結:
教學后記
函數(shù)的奇偶性說課稿 篇9
一、教學目標
(一)通過具體函數(shù),讓學生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學概念的建立過程,培養(yǎng)其抽象概括能力.
。ǘ├斫狻⒄莆蘸瘮(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應用定義判斷一些簡單函數(shù)的奇偶性.
(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數(shù)學既是抽象的又是具體的.
二、任務分析
這節(jié)內容學生在初中雖沒學過,但已經(jīng)學習過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎上,引入奇、偶函數(shù)的概念,便于學生理解.在引入概念時始終結合具體函數(shù)的圖像,增強直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學生理解:奇函數(shù)、偶函數(shù)的定義域是關于原點對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎上,讓學生了解:奇函數(shù)、偶函數(shù)的`矛盾概念——非奇非偶函數(shù).關于單調性與奇偶性關系,引導學生拓展延伸,可以取得理想的效果.
三、教學設計
。ㄒ唬﹩栴}情景
1.觀察如下兩圖(圖略),思考并討論以下問題:
。1)這兩個函數(shù)圖像有什么共同特征?
。2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的?
可以看到兩個函數(shù)的圖像都關于y軸對稱.從函數(shù)值對應表可以看到,當自變量x取一對相反數(shù)時,相應的兩個函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個函數(shù)值對應表,然后說出這兩個函數(shù)有什么共同特征.
可以看到兩個函數(shù)的圖像都關于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數(shù)時,相應的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).
。ǘ┙⒛P
由上面的分析討論引導學生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問題,組織學生討論.
。1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
。╢(x)不一定是偶函數(shù))
。2)奇、偶函數(shù)的圖像有什么特征?
。ㄆ、偶函數(shù)的圖像分別關于原點、y軸對稱)
。3)奇、偶函數(shù)的定義域有什么特征?
。ㄆ、偶函數(shù)的定義域關于原點對稱)
。ㄈ┙忉寫
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=x(1+x),求f(x)的表達式.
解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
。2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內是增函數(shù),還是減函數(shù),并證明你的結論.
解:先結合圖像特征:偶函數(shù)的圖像關于y軸對稱,猜想f(x)在(0,+∞)內是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關于原點對稱的兩個區(qū)間上的單調性有何關系?
[練習]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調性如何.
4.設f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
。ㄋ模┩卣寡由
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個?
2.設f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
。2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?
【函數(shù)的奇偶性說課稿】相關文章:
《數(shù)的奇偶性》說課稿07-19
高三數(shù)學《函數(shù)單調性》說課稿(通用6篇)05-29
函數(shù)心情作文03-07
數(shù)學函數(shù)的教案03-06
初中數(shù)學函數(shù)教案01-03
函數(shù)自我鑒定04-23
函數(shù)的概念教學反思06-03
函數(shù)數(shù)學教案11-27
冪函數(shù)教學反思范文07-02