數(shù)學(xué)函數(shù)的教案
作為一名為他人授業(yè)解惑的教育工作者,通常需要準(zhǔn)備好一份教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么教案應(yīng)該怎么寫才合適呢?下面是小編精心整理的數(shù)學(xué)函數(shù)的教案 ,僅供參考,歡迎大家閱讀。
數(shù)學(xué)函數(shù)的教案 1
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識(shí)及能力。
重點(diǎn)難點(diǎn):
重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)過程
一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的.國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖1-2,正方形A中有_______個(gè)小方格,即A的面積為______個(gè)單位。
正方形B中有_______個(gè)小方格,即A的面積為______個(gè)單位。
正方形C中有_______個(gè)小方格,即A的面積為______個(gè)單位。
2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:
3、圖1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識(shí),教師板書,A+B=C,接著提出圖1—1中的A.B,C的關(guān)系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖1—3中,A,B,C之間有什么關(guān)系?
2、圖1—4中,A,B,C之間有什么關(guān)系?
3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識(shí)后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯(cuò)例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題
△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個(gè)題目條件不足,第三邊無法求得。
2、練習(xí)P7§1.11
六、作業(yè)
課本P7§1.12、3、4
數(shù)學(xué)函數(shù)的教案 2
二次函數(shù)的教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容:人教版九年義務(wù)教育初中第三冊第108頁
教學(xué)目標(biāo):
1。 1。 理解二次函數(shù)的意義;會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2。 2。 通過變式教學(xué),培養(yǎng)學(xué)生思維的敏捷性、廣闊性、深刻性;
3。 3。 通過二次函數(shù)的教學(xué)讓學(xué)生進(jìn)一步體會(huì)研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認(rèn)識(shí)。
教學(xué)重點(diǎn):二次函數(shù)的意義;會(huì)畫二次函數(shù)圖象。
教學(xué)難點(diǎn):描點(diǎn)法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學(xué)過程設(shè)計(jì):
一 創(chuàng)設(shè)情景、建模引入
我們已學(xué)習(xí)了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個(gè)例子:
1。寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2。 ①
2。寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個(gè)關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個(gè)關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識(shí)。(板書課題)
二 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的二次函數(shù)。
注意:(1)必須a≠0,否則就不是二次函數(shù)了。而b,c兩數(shù)可以是零。(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實(shí)數(shù)。
練習(xí):1。舉例子:請同學(xué)舉一些二次函數(shù)的例子,全班同學(xué)判斷是否正確。
2。出難題:請同學(xué)給大家出示一個(gè)函數(shù),請同學(xué)判斷是否是二次函數(shù)。
。ㄈ魧W(xué)生考慮不全,教師給予補(bǔ)充。如:;;; 的形式。)
。ㄍㄟ^學(xué)生觀察、歸納定義加深對概念的理解,既培養(yǎng)了學(xué)生的實(shí)踐能力,有培養(yǎng)了學(xué)生的探究精神。并通過開放性的練習(xí)培養(yǎng)學(xué)生思維的`發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學(xué)習(xí),我們已經(jīng)知道研究函數(shù)一般應(yīng)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。二次函數(shù)我們也會(huì)按照定義、圖象、性質(zhì)、求解析式幾個(gè)方面進(jìn)行研究。
(在這里指出學(xué)習(xí)函數(shù)的一般方法,旨在及時(shí)進(jìn)行學(xué)法指導(dǎo);并將此方法形成技能,以指導(dǎo)今后的學(xué)習(xí);進(jìn)一步培養(yǎng)終身學(xué)習(xí)的能力。)
三 嘗試模仿、鞏固提高
讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究
1。 1。 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請同學(xué)們畫出函數(shù)y=x2的圖象。
(學(xué)生分別畫圖,教師巡視了解情況。)
2。 2。 模仿鞏固:教師將了解到的各種不同圖象用實(shí)物投影向大家展示,到底哪一個(gè)對呢?下面師生共同畫出函數(shù)y=x2的圖象。
解:一、列表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=x2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
二、描點(diǎn)、連線: 按照表格,描出各點(diǎn)。然后用光滑的曲線,按照x(點(diǎn)的橫坐標(biāo))由小到大的順序把各點(diǎn)連結(jié)起來。
對照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點(diǎn)注意。
練習(xí):畫出函數(shù);的圖象(請兩個(gè)同學(xué)板演)
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=0。5X2 | 4。5 | 2 | 0。5 | 0 | 0。5 | 02 | 4。5 |
Y=-X2 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
畫好之后教師根據(jù)情況講評,并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
。ㄟ@里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會(huì)畫圖象的方法;并及時(shí)安排練習(xí)鞏固剛剛學(xué)到的新知識(shí),通過觀察,感悟拋物線名稱的由來。)
三 運(yùn)用新知、變式探究
畫出函數(shù) y=5x2圖象
學(xué)生在畫圖象的過程當(dāng)中遇到函數(shù)值較大的困難,不知如何是好。
x | -0。5 | -0。4 | -0。3 | -0。2 | -0。1 | 0 | 0。1 | 0。2 | 0。3 | 0。4 | 0。5 |
Y=5x2 | 1。25 | 0。8 | 0。45 | 0。2 | 0。05 | 0 | 0。05 | 0。2 | 0。45 | 0。8 | 1。25 |
教師出示已畫好的圖象讓學(xué)生觀察
注意:1。 畫圖象應(yīng)描7個(gè)左右的點(diǎn),描的點(diǎn)越多圖象越準(zhǔn)確。
2。 自變量X的取值應(yīng)注意關(guān)于Y軸對稱。
3。 對于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分?jǐn)?shù)。
四。 四。 歸納小結(jié)、延續(xù)探究
教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進(jìn),互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點(diǎn)是坐標(biāo)原點(diǎn);當(dāng)a>0時(shí),圖象的開口向上,最低點(diǎn)為(0,0);當(dāng)a<0時(shí),圖象的開口向下,最高點(diǎn)為(0,0)。
五 回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點(diǎn)、或全面,總之是人人有所得,個(gè)個(gè)有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。
(在整個(gè)一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵(lì)學(xué)生大膽思考,積極嘗試,不怕困難,一個(gè)人完不成,講不透,第二個(gè)人、第三個(gè)人補(bǔ)充,直到完成整個(gè)例題。這樣上課氣氛非;钴S,學(xué)生之間常會(huì)因?yàn)槟硞(gè)觀點(diǎn)的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時(shí)地對某些觀點(diǎn)作出判斷,或與學(xué)生一同討論。)
數(shù)學(xué)函數(shù)的教案 3
一、教學(xué)目的
1.使學(xué)生初步理解二次函數(shù)的概念。
2.使學(xué)生會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。
3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):對二次函數(shù)概念的初步理解。
難點(diǎn):會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。
三、教學(xué)過程
復(fù)習(xí)提問
1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?
(1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2 — 2。
2.什么是一無二次方程?
3.怎樣用找點(diǎn)法畫函數(shù)的圖象?
新課
1.由具體問題引出二次函數(shù)的定義。
(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。
。2)已知一個(gè)矩形的周長是60m,一邊長是Lm,寫出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長L之間的函數(shù)關(guān)系式。
。3)農(nóng)機(jī)廠第一個(gè)月水泵的產(chǎn)量為50臺(tái),第三個(gè)月的'產(chǎn)量y(臺(tái))與月平均增長率x之間的函數(shù)關(guān)系如何表示?
解:(1)函數(shù)解析式是S=πR2;
。2)函數(shù)析式是S=30L—L2;
(3)函數(shù)解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例啟發(fā)學(xué)生歸納出:
。1)函數(shù)解析式均為整式;
。2)處變量的最高次數(shù)是2。
我們說三個(gè)式子都表示的是二次函數(shù)。
一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。
2.畫二次函數(shù)y=x2的圖象。
數(shù)學(xué)函數(shù)的教案 4
教學(xué)目標(biāo):
1.使學(xué)生應(yīng)用由定義求導(dǎo)數(shù)的三個(gè)步驟推導(dǎo)四種常見函數(shù)的導(dǎo)數(shù)公式;
2.掌握并能運(yùn)用這四個(gè)公式正確求函數(shù)的導(dǎo)數(shù).
教學(xué)重點(diǎn):四種常見函數(shù)的導(dǎo)數(shù)公式及應(yīng)用
教學(xué)難點(diǎn): 四種常見函數(shù)的導(dǎo)數(shù)公式
教學(xué)過程:
一.創(chuàng)設(shè)情景
我們知道,導(dǎo)數(shù)的幾何意義是曲線在某一點(diǎn)處的切線斜率,物理意義是運(yùn)動(dòng)物體在某一時(shí)刻的瞬時(shí)速度.那么,對于函數(shù) ,如何求它的導(dǎo)數(shù)呢?
由導(dǎo)數(shù)定義本身,給出了求導(dǎo)數(shù)的最基本的方法,但由于導(dǎo)數(shù)是用極限來定義的,所以求導(dǎo)數(shù)總是歸結(jié)到求極限這在運(yùn)算上很麻煩,有時(shí)甚至很困難,為了能夠較快地求出某些函數(shù)的導(dǎo)數(shù),這一單元我們將研究比較簡捷的求導(dǎo)數(shù)的方法,下面我們求幾個(gè)常用的函數(shù)的導(dǎo)數(shù).
二.新課講授
1.函數(shù) 的導(dǎo)數(shù)
根據(jù)導(dǎo)數(shù)定義,因?yàn)?/p>
所以
函數(shù) 導(dǎo)數(shù)
表示函數(shù) 圖像(圖3.2-1)上每一點(diǎn)處的切線的斜率都為0.若 表示路程關(guān)于時(shí)間的`函數(shù),則 可以解釋為某物體的瞬時(shí)速度始終為0,即物體一直處于靜止?fàn)顟B(tài).
2.函數(shù) 的導(dǎo)數(shù)
因?yàn)?/p>
所以
函數(shù) 導(dǎo)數(shù) 表示函數(shù) 圖像(圖3.2-2)上每一點(diǎn)處的切線的斜率都為1.若 表示路程關(guān)于時(shí)間的函數(shù),則 可以解釋為某物體做瞬時(shí)速度為1的勻速運(yùn)動(dòng).
3.函數(shù) 的導(dǎo)數(shù)
因?yàn)?/p>
所以
函數(shù) 導(dǎo)數(shù)
表示函數(shù) 圖像(圖3.2-3)上點(diǎn) 處的切線的斜率都為 ,說明隨著 的變化,切線的斜率也在變化.另一方面,從導(dǎo)數(shù)作為函數(shù)在一點(diǎn)的瞬時(shí)變化率來看,表明:當(dāng) 時(shí),隨著 的增加,函數(shù) 減少得越來越慢;當(dāng) 時(shí),隨著 的增加,函數(shù) 增加得越來越快.若 表示路程關(guān)于時(shí)間的函數(shù),則 可以解釋為某物體做變速運(yùn)動(dòng),它在時(shí)刻 的瞬時(shí)速度為 .
4.函數(shù) 的導(dǎo)數(shù)
因?yàn)?/p>
所以
函數(shù) 導(dǎo)數(shù) (2)推廣:若 ,則
三.課堂練習(xí)
1.課本P13探究1
2.課本P13探究2
4.求函數(shù) 的導(dǎo)數(shù)
四.回顧總結(jié)
函數(shù) 導(dǎo)數(shù)
五.布置作業(yè)
數(shù)學(xué)函數(shù)的教案 5
教材分析:
“指數(shù)函數(shù)”是在學(xué)生系統(tǒng)地學(xué)習(xí)了函數(shù)概念及性質(zhì),掌握了指數(shù)與指數(shù)冪的運(yùn)算性質(zhì)的基礎(chǔ)上展開研究的.作為重要的基本初等函數(shù)之一,指數(shù)函數(shù)既是函數(shù)近代定義及性質(zhì)的第一次應(yīng)用,也為今后研究其他函數(shù)提供了方法和模式,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ).指數(shù)函數(shù)在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.
學(xué)情分析:
通過初中階段的學(xué)習(xí)和高中對函數(shù)、指數(shù)的運(yùn)算等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)已經(jīng)有了一定的認(rèn)識(shí),學(xué)生對用“描點(diǎn)法”描繪出函數(shù)圖象的方法已基本掌握,已初步了解數(shù)形結(jié)合的思想.另外,學(xué)生對由特殊到一般再到特殊的數(shù)學(xué)活動(dòng)過程已有一定的體會(huì).
教學(xué)目標(biāo):
知識(shí)與技能:理解指數(shù)函數(shù)的概念和意義,能正確作出其圖象,掌握指數(shù)函數(shù)的性質(zhì)并能自覺、靈活地應(yīng)用其性質(zhì)(單調(diào)性、中介值)比較大。
過程與方法:
(1) 體會(huì)從特殊到一般再到特殊的研究問題的方法,培養(yǎng)學(xué)生觀察、歸納、猜想、概括的能力,讓學(xué)生了解數(shù)學(xué)來源于生活又在生活中有廣泛的應(yīng)用;理解并掌握探求函數(shù)性質(zhì)的一般方法;
(2) 從數(shù)和形兩方面理解指數(shù)函數(shù)的性質(zhì),體會(huì)數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想方法,提高思維的靈活性,培養(yǎng)學(xué)生直觀、嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).
情感、態(tài)度與價(jià)值觀:
(1)體驗(yàn)從特殊到一般再到特殊的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題,激發(fā)學(xué)生自主探究的精神,在探究過程中體驗(yàn)合作學(xué)習(xí)的樂趣;
(2)讓學(xué)生在數(shù)形結(jié)合中感悟數(shù)學(xué)的統(tǒng)一美、和諧美,進(jìn)一步培養(yǎng)學(xué)生的學(xué)習(xí)興趣.
教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點(diǎn):指數(shù)函數(shù)概念的引入及指數(shù)函數(shù)性質(zhì)的應(yīng)用
教法研究:
本節(jié)課準(zhǔn)備由實(shí)際問題引入指數(shù)函數(shù)的概念,這樣可以讓學(xué)生知道指數(shù)函數(shù)的概念來源于客觀實(shí)際,便于學(xué)生接受并有利于培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
利用函數(shù)圖象來研究函數(shù)性質(zhì)是函數(shù)中的一個(gè)非常重要的思想,本節(jié)課將是利用特殊的指數(shù)函數(shù)圖象歸納總結(jié)指數(shù)函數(shù)的性質(zhì),這樣便于學(xué)生研究其變化規(guī)律,理解其性質(zhì)并掌握一般地探求函數(shù)性質(zhì)的方法 同時(shí)運(yùn)用現(xiàn)代信息技術(shù)學(xué)習(xí)、探索和解決問題,幫助學(xué)生理解新知識(shí)
本節(jié)課使用的教學(xué)方法有:直觀教學(xué)法、啟發(fā)引導(dǎo)法、發(fā)現(xiàn)法
教學(xué)過程:
一、問題情境 :
問題1:某種細(xì)胞分裂時(shí),由一個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),以此類推,一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞個(gè)數(shù)y與x的函數(shù)關(guān)系式是什么?
問題2:一種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過一年剩余質(zhì)量約是原來的 ,設(shè)該物質(zhì)的初始質(zhì)量為1,經(jīng)過 年后的剩余質(zhì)量為 ,你能寫出 之間的函數(shù)關(guān)系式嗎?
分析可知,函數(shù)的關(guān)系式分別是 與
問題3:在問題1和2中,兩個(gè)函數(shù)的自變量都是正整數(shù),但在實(shí)際問題中自變量不一定都是正整數(shù),比如在問題2中,我們除了關(guān)心1年、2年、3年后該物質(zhì)的剩余量外,還想知道3個(gè)月、一年半后該物質(zhì)的剩余量,怎么辦?
這就需要對函數(shù)的定義域進(jìn)行擴(kuò)充,結(jié)合指數(shù)概念的的擴(kuò)充,我們也可以將函數(shù)的定義域擴(kuò)充至全體實(shí)數(shù),這樣就得到了一個(gè)新的函數(shù)——指數(shù)函數(shù).
二、數(shù)學(xué)建構(gòu) :
1]定義:
一般地,函數(shù) 叫做指數(shù)函數(shù),其中 .
問題4:為什么規(guī)定 ?
問題5:你能舉出指數(shù)函數(shù)的例子嗎?
閱讀材料(“放射性碳法”測定古物的年代):
在動(dòng)植物體內(nèi)均含有微量的放射性 ,動(dòng)植物死亡后,停止了新陳代謝, 不在產(chǎn)生,且原有的 會(huì)自動(dòng)衰變.經(jīng)過5740年( 的'半衰期),它的殘余量為原來的一半.經(jīng)過科學(xué)測定,若 的原始含量為1,則經(jīng)過x年后的殘留量為 = .
這種方法經(jīng)常用來推算古物的年代.
練習(xí)1:判斷下列函數(shù)是否為指數(shù)函數(shù).
。1) (2)
(3) (4)
說明:指數(shù)函數(shù)的解析式y(tǒng)= 中, 的系數(shù)是1.
有些函數(shù)貌似指數(shù)函數(shù),實(shí)際上卻不是,如y= +k (a>0且a 1,k Z);
有些函數(shù)看起來不像指數(shù)函數(shù),實(shí)際上卻是,如y= (a>0,且a 1),因?yàn)樗梢曰癁閥= ,其中 >0,且 1
2]通過圖象探究指數(shù)函數(shù)的性質(zhì)及其簡單應(yīng)用:利用幾何畫板及其他多媒體軟件和學(xué)生一起完成
問題6:我們研究函數(shù)的性質(zhì),通常都研究哪些性質(zhì)?一般如何去研究?
函數(shù)的定義域,值域,單調(diào)性,奇偶性等;
利用函數(shù)圖象研究函數(shù)的性質(zhì)
問題7:作函數(shù)圖象的一般步驟是什么?
列表,描點(diǎn),作圖
探究活動(dòng)1:用列表描點(diǎn)法作出 , 的圖像(借助幾何畫板演示),觀察、比較這兩個(gè)函數(shù)的圖像,我們可以得到這兩個(gè)函數(shù)哪些共同的性質(zhì)?請同學(xué)們仔細(xì)觀察.
引導(dǎo)學(xué)生分析圖象并總結(jié)此時(shí)指數(shù)函數(shù)的性質(zhì)(底數(shù)大于1):
。1)定義域?R
(2)值域?函數(shù)的值域?yàn)?/p>
(3)過哪個(gè)定點(diǎn)?恒過 點(diǎn),即
(4)單調(diào)性? 時(shí), 為 上的增函數(shù)
(5)何時(shí)函數(shù)值大于1?小于1? 當(dāng) 時(shí), ;當(dāng) 時(shí),
問題8::是否所有的指數(shù)函數(shù)都是這樣的性質(zhì)?你能找出與剛才的函數(shù)性質(zhì)不一樣的指數(shù)函數(shù)嗎?
(引導(dǎo)學(xué)生自我分析和反思,培養(yǎng)學(xué)生的反思能力和解決問題的能力).
根據(jù)學(xué)生的發(fā)現(xiàn),再總結(jié)當(dāng)?shù)讛?shù)小于1時(shí)指數(shù)函數(shù)的相關(guān)性質(zhì)并作比較.
問題9:到現(xiàn)在,你能自制一份表格,比較 及 兩種不同情況下 的圖象和性質(zhì)嗎?
。▽W(xué)生完成表格的設(shè)計(jì),教師適當(dāng)引導(dǎo))
數(shù)學(xué)函數(shù)的教案 6
【教學(xué)目標(biāo):】
1.通過對初中銳角三角函數(shù)定義的回憶,掌握任意角三角函數(shù)的定義法,并掌握用單位圓中的有向線段表示三角函數(shù)值.
2.掌握已知角 終邊上一點(diǎn)坐標(biāo),求四個(gè)三角函數(shù)值.(即給角求值問題)
【教學(xué)重點(diǎn):】
任意角的三角函數(shù)的定義.
【教學(xué)難點(diǎn):】
任意角的三角函數(shù)的定義,正弦、余弦、正切這三種三角函數(shù)的幾何表示.
【教學(xué)用具:】
直尺、圓規(guī)、投影儀.
【教學(xué)步驟:】
1.設(shè)置情境
角的范圍已經(jīng)推廣,那么對任一角 是否也能像銳角一樣定義其四種三角函數(shù)呢?本節(jié)課就來討論這一問題.
2.探索研究
。1)復(fù)習(xí)回憶銳角三角函數(shù)
我們已經(jīng)學(xué)習(xí)過銳角三角函數(shù),知道它們都是以銳角 為自變量,以比值為函數(shù)值,定義了角 的正弦、余弦、正切、余切的三角函數(shù),本節(jié)課我們研究當(dāng)角 是一個(gè)任意角時(shí),其三角函數(shù)的定義及其幾何表示.
。2)任意角的三角函數(shù)定義
如圖1,設(shè) 是任意角, 的終邊上任意一點(diǎn) 的坐標(biāo)是 ,當(dāng)角 在第一、二、三、四象限時(shí)的情形,它與原點(diǎn)的距離為 ,則 .
定義:①比值 叫做 的正弦,記作 ,即 .
、诒戎 叫做 的余弦,記作 ,即 .
圖1
③比值 叫做 的正切,記作 ,即 .
同時(shí)提供顯示任意角的三角函數(shù)所在象限的課件
提問:對于確定的角 ,這三個(gè)比值的大小和 點(diǎn)在角 的終邊上的位置是否有關(guān)呢?
利用三角形相似的知識(shí),可以得出對于角 ,這三個(gè)比值的大小與 點(diǎn)在角 的終邊上的位置無關(guān),只與角 的大小有關(guān).
請同學(xué)們觀察當(dāng) 時(shí), 的終邊在 軸上,此時(shí)終邊上任一點(diǎn) 的橫坐標(biāo) 都等于0,所以 無意義,除此之外,對于確定的角 ,上面三個(gè)比值都是惟一確定的.把上面定義中三個(gè)比的前項(xiàng)、后項(xiàng)交換,那么得到另外三個(gè)定義.
、鼙戎 叫做 的余切,記作 ,則 .
、荼戎 叫做 的正割,記作 ,則 .
⑥比值 叫做 的余割,記作 ,則 .
可以看出:當(dāng) 時(shí), 的終邊在 軸上,這時(shí) 的縱坐標(biāo) 都等于0,所以 與 的值不存在,當(dāng) 時(shí), 的值不存在,除此之外,對于確定的角 ,比值 , , 分別是一個(gè)確定的實(shí)數(shù),所以我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數(shù)值的函數(shù),以上六種函數(shù)統(tǒng)稱三角函數(shù).
(3)三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)
對于確定的角 ,如圖2所示, , , 分別對應(yīng)的比值各是一個(gè)確定的`實(shí)數(shù),因此,正弦,余弦,正切分別可看成從一個(gè)角的集合到一個(gè)比值的集合的映射,它們都是以角為自變量,以比值為函數(shù)值的函數(shù),當(dāng)采用弧度制來度量角時(shí),每一個(gè)確定的角有惟一確定的弧度數(shù),這是一個(gè)實(shí)數(shù),所以這幾種三角函數(shù)也都可以看成是以實(shí)數(shù)為自變量,以比值為函數(shù)值的函數(shù).
即:實(shí)數(shù)→角(其弧度數(shù)等于這個(gè)實(shí)數(shù))→三角函數(shù)值(實(shí)數(shù))
。4)三角函數(shù)的一種幾何表示
利用單位圓有關(guān)的有向線段,作出正弦線,余弦線,正切線,如下圖3.
圖3
設(shè)任意角 的頂點(diǎn)在原點(diǎn) ,始邊與 軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn) ,過 作 軸的垂線,垂足為 ;過點(diǎn) 作單位圓的切線,這條切線必然平行于軸,設(shè)它與角 的終邊(當(dāng) 為第一、四象限時(shí))或其反向延長線(當(dāng) 為第二、三象限時(shí))相交于 ,當(dāng)角 的終邊不在坐標(biāo)軸上時(shí),我們把 , 都看成帶有方向的線段,這種帶方向的線段叫有向線段.由正弦、余弦、正切函數(shù)的定義有:
這幾條與單位圓有關(guān)的有向線段 叫做角 的正弦線、余弦線、正切線.當(dāng)角 的終邊在 軸上時(shí),正弦線、正切線分別變成一個(gè)點(diǎn);當(dāng)角 的終邊在 軸上時(shí),余弦線變成一個(gè)點(diǎn),正切線不存在.
。5)例題講評
數(shù)學(xué)函數(shù)的教案 7
知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標(biāo):會(huì)用變化的量描述事物
情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物
重點(diǎn):函數(shù)的概念
難點(diǎn):函數(shù)的概念
教學(xué)媒體:多媒體電腦,計(jì)算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍
教學(xué)設(shè)計(jì):
引入:
信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
① 這張圖告訴我們哪些信息?
、 這張圖是怎樣來展示這天各時(shí)刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機(jī)上的`刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對應(yīng)的數(shù):
、 這表告訴我們哪些信息?
、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來嗎?
一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對于x的每一個(gè)確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時(shí),其長與面積;
(6) 等腰三角形的底邊長與面積;
(7) 某人的年齡與身高;
活動(dòng)1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時(shí),油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動(dòng)2:練習(xí)教材9頁練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
數(shù)學(xué)函數(shù)的教案 8
教學(xué)目標(biāo)
1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識(shí)問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.
3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進(jìn)行辯證唯物主義的教育.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.
教學(xué)難點(diǎn):函數(shù)單調(diào)性的判定.
教學(xué)過程設(shè)計(jì)
一、引入新課
師:請同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
。ㄓ猛队盎脽艚o出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減小.
師:(手執(zhí)投影棒使之沿曲線移動(dòng))對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時(shí),第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時(shí),就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
。c(diǎn)明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識(shí)的,又是新的知識(shí),引起學(xué)生的注意.)
二、對概念的分析
。ò鍟n題:)
師:請同學(xué)們打開課本第51頁,請××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
。▽W(xué)生朗讀.)
師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學(xué)們思考一個(gè)問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認(rèn)為是一致的.定義中的“當(dāng)x1<x2時(shí),都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個(gè)簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!
(通過教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)
師:現(xiàn)在請同學(xué)們和我一起來看剛才的兩組圖中的第一個(gè)函數(shù)y=f1(x)和y=f2(x)的圖象,體會(huì)這種魅力.
。ㄖ笀D說明.)
師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
。ń處熤笀D說明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識(shí)融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)……
。ú话言捳f完,指一名學(xué)生接著說完,讓學(xué)生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù).
。▽W(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認(rèn)識(shí)定義?
(學(xué)生思索.)
學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會(huì)遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會(huì)學(xué)生如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生分析問題,認(rèn)識(shí)問題的能力.
。ń處熢趯W(xué)生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當(dāng)加重語氣.在學(xué)生感到無從下手時(shí),給以適當(dāng)?shù)奶崾荆?/p>
生:我認(rèn)為在定義中,有一個(gè)詞“給定區(qū)間”是定義中的關(guān)鍵詞語.
師:很好,我們在學(xué)習(xí)任何一個(gè)概念的時(shí)候,都要善于抓住定義中的關(guān)鍵詞語,在學(xué)習(xí)幾個(gè)相近的概念時(shí)還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個(gè)問題,我們能否說一個(gè)函數(shù)在x=5時(shí)是遞增或遞減的?為什么?
生:不能.因?yàn)榇藭r(shí)函數(shù)值是一個(gè)數(shù).
師:對.函數(shù)在某一點(diǎn),由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個(gè)字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋(gè)函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個(gè)我們學(xué)過的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
(在學(xué)生回答問題時(shí),教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個(gè)例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個(gè)區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的.增減性時(shí)必須指明相應(yīng)的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個(gè)區(qū)間的任意兩個(gè)”和“都有”也是關(guān)鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
。▽W(xué)生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個(gè)自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。
師:如果是閉區(qū)間的話,能否取自區(qū)間端點(diǎn)?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個(gè)反例來說明“任意”呢?
。ㄗ寣W(xué)生思考片刻.)
生:可以構(gòu)造一個(gè)反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個(gè)特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯(cuò)了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時(shí),有f(x1)>f(x2);當(dāng)x1=1,x2=2時(shí),有f(x1)<f(x2),這時(shí)就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個(gè)點(diǎn)的情況來判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個(gè)自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
(教師通過一系列的設(shè)問,使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學(xué)生加深對定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
。ㄓ棉q證法的原理來解釋數(shù)學(xué)知識(shí),同時(shí)用數(shù)學(xué)知識(shí)去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個(gè)單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個(gè)問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細(xì),思考問題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會(huì)根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.
(指出用定義證明的必要性.)
師:怎樣用定義證明呢?請同學(xué)們思考后在筆記本上寫出證明過程.
。ń處熝惨暎⒅付ㄒ幻械人降膶W(xué)生在黑板上板演.學(xué)生可能會(huì)對如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)
師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個(gè)實(shí)數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個(gè)數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個(gè)自變量,當(dāng)x1<x2時(shí),
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個(gè)自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因?yàn)閤1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個(gè)步驟,請同學(xué)們記住.需要指出的是第二步,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。
。▽W(xué)生的做法進(jìn)行分析,把證明過程步驟化,可以形成思維的定勢.在學(xué)生剛剛接觸一個(gè)新的知識(shí)時(shí),思維定勢對理解知識(shí)本身是有益的,同時(shí)對學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認(rèn)為這個(gè)函數(shù)不是整個(gè)定義域內(nèi)的減函數(shù),因?yàn)樗环蠝p函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認(rèn)為,因?yàn)橛蓤D象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個(gè)單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個(gè)單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時(shí)不要寫成閉區(qū)間.
上是減函數(shù).
。ń處熝惨暎畬W(xué)生證明中出現(xiàn)的問題給予點(diǎn)拔.可依據(jù)學(xué)生的問題,給出下面的提示:
。1)分式問題化簡方法一般是通分.
。2)要說明三個(gè)代數(shù)式的符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個(gè)負(fù)數(shù)的時(shí)候,不等號方向要改變.
對學(xué)生的解答進(jìn)行簡單的分析小結(jié),點(diǎn)出學(xué)生在證明過程中所出現(xiàn)的問題,引起全體學(xué)生的重視.)
四、課堂小結(jié)
師:請同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
。ㄕ堃粋(gè)思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)
生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個(gè)關(guān)鍵詞語;在寫單調(diào)區(qū)間時(shí)不要輕易用并集的符號連接;最后在用定義證明時(shí),應(yīng)該注意證明的四個(gè)步驟.
五、作業(yè)
1.課本P53練習(xí)第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學(xué)設(shè)計(jì)說明
是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數(shù)的大小、對函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用.對學(xué)生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學(xué)生對此有一定的感性認(rèn)識(shí),對概念的理解有一定好處,但另一方面學(xué)生也會(huì)覺得是已經(jīng)學(xué)過的知識(shí),感覺乏味.因此,在設(shè)計(jì)教案時(shí),加強(qiáng)了對概念的分析,希望能夠使學(xué)生認(rèn)識(shí)到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對概念的分析是在引進(jìn)一個(gè)新概念時(shí)必須要做的,對概念的深入的正確的理解往往是學(xué)生認(rèn)知過程中的難點(diǎn).因此在本教案的設(shè)計(jì)過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學(xué)生對如何學(xué)會(huì)、弄懂一個(gè)概念有初步的認(rèn)識(shí),并且在以后的學(xué)習(xí)中學(xué)有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個(gè)難點(diǎn),學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習(xí)的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學(xué)作一定的鋪墊.
數(shù)學(xué)函數(shù)的教案 9
知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標(biāo):會(huì)用變化的量描述事物
情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物
重點(diǎn):函數(shù)的概念
難點(diǎn):函數(shù)的概念
教學(xué)媒體:多媒體電腦,計(jì)算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍
教學(xué)設(shè)計(jì):
引入:
信息:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?
新課:
問題:
(1)如圖是某日的氣溫變化圖。
、龠@張圖告訴我們哪些信息?
、谶@張圖是怎樣來展示這天各時(shí)刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機(jī)上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對應(yīng)的數(shù):
、龠@表告訴我們哪些信息?
教學(xué)引入:
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形。現(xiàn)在請同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。
動(dòng)畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點(diǎn)到各頂點(diǎn)的長度。
[學(xué)生活動(dòng):各自測量。]
鼓勵(lì)學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動(dòng)畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的'性質(zhì)?
[學(xué)生活動(dòng):尋找矩形性質(zhì)。]
動(dòng)畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動(dòng);尋找菱形性質(zhì)。]
動(dòng)畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?
[學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個(gè)角是直角的菱形叫做正方形!
“有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
②這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來嗎?
一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對于x的每一個(gè)確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
范例:例1判斷下列變量之間是不是函數(shù)關(guān)系:
(1)長方形的寬一定時(shí),其長與面積;
(2)等腰三角形的底邊長與面積;
(3)某人的年齡與身高;
活動(dòng)1:閱讀教材7頁觀察1.后完成教材8頁探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1)寫出表示y與x的函數(shù)關(guān)系式.
(2)指出自變量x的取值范圍.
(3)汽車行駛200km時(shí),油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0≤x≤500
(3)x=200,y=30
活動(dòng)2:練習(xí)教材9頁練習(xí)
小結(jié):
(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):略
數(shù)學(xué)函數(shù)的教案 10
教學(xué)目標(biāo):
、僬莆諏(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。
教學(xué)重點(diǎn)與難點(diǎn):
對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計(jì):
⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的'大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logл0.5 ,lnл
師:請同學(xué)們觀察一下⑴中這兩個(gè)對數(shù)有何特征?
生:這兩個(gè)對數(shù)底相等。
師:那么對于兩個(gè)底相等的對數(shù)如何比大小?
生:可構(gòu)造一個(gè)以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0 調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞 增,所以loga5.1 板書: 解:。┊(dāng)0 ∵5.1<5.9 loga5.1="">loga5.9 、ⅲ┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù), ∵5.1<5.9 ∴l(xiāng)oga5.1 師:請同學(xué)們觀察一下⑵中這三個(gè)對數(shù)有何特征? 生:這三個(gè)對數(shù)底、真數(shù)都不相等。 師:那么對于這三個(gè)對數(shù)如何比大? 生:找“中間量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1, log0.50.6<1,所以logл0.5< log0.50.6< lnл。 板書:略。 師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函 數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù) 函數(shù)圖象的位置關(guān)系來比大小。 2 函數(shù)的定義域, 值 域及單調(diào)性。 例 2 ⑴求函數(shù)y=的定義域。 、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3) 師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要 使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式, 被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于 零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求 它們共同作用的結(jié)果。) 生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。 板書: 解:∵ 2x-1≠0 x≠0.5 log0.8x-1≥0 , x≤0.8 x>0 x>0 ∴x(0,0.5)∪(0.5,0.8〕 師:接下來我們一起來解這個(gè)不等式。 分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零, 再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。 師:請你寫一下這道題的解題過程。 生:<板書> 解: x2+2x-3>0 x<-3 x="">1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的解為:1 例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。 、舮=log0.5(x- x2) ⑵y=loga(x2+2x-3)(a>0,a≠1) 師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。 下面請同學(xué)們來解⑴。 生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。 知識(shí)技能目標(biāo) 1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說出它的性質(zhì); 2、利用反比例函數(shù)的圖象解決有關(guān)問題。 過程性目標(biāo) 1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì); 2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問題。 教學(xué)過程 一、創(chuàng)設(shè)情境 上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。 二、探究歸納 1、畫出函數(shù)的圖象。 分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。 解 1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對應(yīng)值: 2、描點(diǎn):用表里各組對應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。 3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支。這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。 上述圖象,通常稱為雙曲線(hyperbola)。 提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么? 學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。 學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。 1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同? 2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定? 3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律? 反比例函數(shù)有下列性質(zhì): 。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少; (2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。 注 1、雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn); 2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對稱。 以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義? 在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。 在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。 三、實(shí)踐應(yīng)用 例1若反比例函數(shù)的`圖象在第二、四象限,求m的值。 分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。 解由題意,得解得。 例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。 分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。 解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。 例3已知反比例函數(shù)的圖象過點(diǎn)(1,—2)。 (1)求這個(gè)函數(shù)的解析式,并畫出圖象; (2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對稱點(diǎn)是否還在圖象上? 分析(1)反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象; 。2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對稱點(diǎn)是否在圖象上。 解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。 而反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。 所以,k=—2。 即反比例函數(shù)的解析式為:。 (2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以, 點(diǎn)A的坐標(biāo)為。 點(diǎn)A關(guān)于x軸的對稱點(diǎn)不在這個(gè)圖象上; 點(diǎn)A關(guān)于y軸的對稱點(diǎn)不在這個(gè)圖象上; 點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)在這個(gè)圖象上; 例4已知函數(shù)為反比例函數(shù)。 。1)求m的值; 。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化? 。3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。 解(1)由反比例函數(shù)的定義可知:解得,m=—2。 。2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。 。3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大, 所以當(dāng)x=時(shí),y最大值=; 當(dāng)x=—3時(shí),y最小值=。 所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。 例5一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。 。1)寫出用高表示長的函數(shù)關(guān)系式; 。2)寫出自變量x的取值范圍; 。3)畫出函數(shù)的圖象。 解(1)因?yàn)?00=5xy,所以。 。2)x>0。 (3)圖象如下: 說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。 四、交流反思 本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。 1、反比例函數(shù)的圖象是雙曲線(hyperbola)。 2、反比例函數(shù)有如下性質(zhì): 。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少; (2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。 五、檢測反饋 1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象: 。1);(2)。 2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求: 。1)y和x的函數(shù)關(guān)系式; (2)當(dāng)時(shí),y的值; (3)當(dāng)x取何值時(shí),? 3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。 4、已知反比例函數(shù)經(jīng)過點(diǎn)A(2,—m)和B(n,2n),求: 。1)m和n的值; 。2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1<0 反函數(shù) 就關(guān)系而言,一般是雙向的 ,函數(shù)也如此 ,設(shè)y=f(x)為已知的函數(shù),若對每個(gè)y∈Y,有唯一的x∈X,使f(x)=y(tǒng),這是一個(gè)由y找x的過程 ,即x成了y的函數(shù) ,記為x=f -1(y)。稱f -1為f的反函數(shù)。習(xí)慣上用x表示自變量 ,故這個(gè)函數(shù)仍記為y=f -1(x) ,例如 y=sinx與y=arcsinx 互為反函數(shù)。在同一坐標(biāo)系中,y=f(x)與y=f -1(x)的圖形關(guān)于直線y=x對稱。 隱函數(shù) 若能由函數(shù)方程 F(x,y)=0 確定y為x的函數(shù)y=f(x),即F(x,f(x))≡0,就稱y是x的隱函數(shù)。 思考:隱函數(shù)是否為函數(shù)?因?yàn)樵谄渥兓倪^程中并不滿足“一對一”和“多對一” 多元函數(shù) 設(shè)點(diǎn)(x1,x2,…,xn) ∈GRn,UR1 ,若對每一點(diǎn)(x1,x2,…,xn)∈G,由某規(guī)則f有唯一的 u∈U與之對應(yīng):f:G→U,u=f(x1,x2,…,xn),則稱f為一個(gè)n元函數(shù),G為定義域,U為值域。 基本初等函數(shù)及其圖像 冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、反三角函數(shù)稱為基本初等函數(shù)。 ①冪函數(shù):y=xμ(μ≠0,μ為任意實(shí)數(shù))定義域:μ為正整數(shù)時(shí)為(-∞,+∞),μ為負(fù)整數(shù)時(shí)是(-∞,0)∪(0,+∞);μ=(α為整數(shù)),當(dāng)α是奇數(shù)時(shí)為( -∞,+∞),當(dāng)α是偶數(shù)時(shí)為(0,+∞);μ=p/q,p,q互素,作為的復(fù)合函數(shù)進(jìn)行討論。略圖如圖2、圖3。 、谥笖(shù)函數(shù):y=ax(a>0 ,a≠1),定義成為( -∞,+∞),值域?yàn)椋? ,+∞),a>0 時(shí)是嚴(yán)格單調(diào)增加的函數(shù)( 即當(dāng)x2>x1時(shí),) ,0<a<1 時(shí)是嚴(yán)格單減函數(shù)。對任何a,圖像均過點(diǎn)(0,1),注意y=ax和y=()x的圖形關(guān)于y軸對稱。如圖4。 ③對數(shù)函數(shù):y=logax(a>0), 稱a為底 , 定義域?yàn)椋?,+∞),值域?yàn)椋ǎ蓿蓿?。a>1 時(shí)是嚴(yán)格單調(diào)增加的,0<a<1時(shí)是嚴(yán)格單減的。不論a為何值,對數(shù)函數(shù)的圖形均過點(diǎn)(1,0),對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù) 。如圖5。 以10為底的對數(shù)稱為常用對數(shù) ,簡記為lgx 。在科學(xué)技術(shù)中普遍使用的是以e為底的對數(shù),即自然對數(shù),記作lnx。 、苋呛瘮(shù):見表2。 正弦函數(shù)、余弦函數(shù)如圖6,圖7所示。 、莘慈呛瘮(shù):見表3。雙曲正、余弦如圖8。 ⑥雙曲函數(shù):雙曲正弦(ex-e-x),雙曲余弦(ex+e-x),雙曲正切(ex-e-x)/(ex+e-x) ,雙曲余切( ex+e-x)/(ex-e-x)。 在數(shù)學(xué)領(lǐng)域,函數(shù)是一種關(guān)系,這種關(guān)系使一個(gè)集合里的每一個(gè)元素對應(yīng)到另一個(gè)(可能相同的)集合里的唯一元素(這只是一元函數(shù)f(x)=y(tǒng)的情況,請按英文原文把普遍定義給出,謝謝)。函數(shù)的概念對于數(shù)學(xué)和數(shù)量學(xué)的每一個(gè)分支來說都是最基礎(chǔ)的。 術(shù)語函數(shù),映射,對應(yīng),變換通常都是同一個(gè)意思。 二次函數(shù) 一般地,自變量x和因變量y之間存在如下關(guān)系: y=ax^2+bx+c 。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。) 則稱y為x的二次函數(shù)。 二次函數(shù)表達(dá)式的`右邊通常為二次三項(xiàng)式。 x是自變量,y是x的函數(shù) 二次函數(shù)的三種表達(dá)式 一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) 頂點(diǎn)式:y=a(x-h)^2+k [拋物線的頂點(diǎn)P(h,k)] 對于二次函數(shù)y=ax^2+bx+c 其頂點(diǎn)坐標(biāo)為 (-b/2a,(4ac-b^2)/4a) 交點(diǎn)式:y=a(x-x?)(x-x ?) [僅限于與x軸有交點(diǎn)A(x? ,0)和 B(x?,0)的拋物線] 其中x1,2= -b±√b^2-4ac 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a 二次函數(shù)的圖像 在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像, 可以看出,二次函數(shù)的圖像是一條拋物線。 拋物線的性質(zhì) 1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。 對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。 特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P ( -b/2a ,(4ac-b^2)/4a ) 當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。 3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。 當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。 |a|越大,則拋物線的開口越小。 4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。 當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左; 當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。 5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。 拋物線與y軸交于(0,c) 6.拋物線與x軸交點(diǎn)個(gè)數(shù) Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。 Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。 一般地,自變量x和因變量y之間存在如下關(guān)系: y=ax^2+bx+c 。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。) 則稱y為x的二次函數(shù)。 二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。 x是自變量,y是x的函數(shù) 二次函數(shù)的三種表達(dá)式 一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) 頂點(diǎn)式:y=a(x-h)^2+k [拋物線的頂點(diǎn)P(h,k)] 對于二次函數(shù)y=ax^2+bx+c 其頂點(diǎn)坐標(biāo)為 (-b/2a,(4ac-b^2)/4a) 交點(diǎn)式:y=a(x-x?)(x-x ?) [僅限于與x軸有交點(diǎn)A(x? ,0)和 B(x?,0)的拋物線] 其中x1,2= -b±√b^2-4ac 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a 二次函數(shù)的圖像 在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像, 可以看出,二次函數(shù)的圖像是一條拋物線。 拋物線的性質(zhì) 1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。 對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。 特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P ( -b/2a ,(4ac-b^2)/4a ) 當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。 3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。 1 2>>尾頁 1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。 (1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。 。2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。 2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。 3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。 高一數(shù)學(xué)對數(shù)函數(shù)教案:教材分析 (1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識(shí)的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的.進(jìn)一步認(rèn)識(shí)與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ)。 。2) 本節(jié)的教學(xué)重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。 (3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。 高一數(shù)學(xué)對數(shù)函數(shù)教案:教法建議 (1) 對數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識(shí),而且畫對數(shù)函數(shù)圖象時(shí),既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。 。2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。 一、教學(xué)目的 1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義. 2.使學(xué)生會(huì)用描點(diǎn)法畫出簡單函數(shù)的圖象. 二、教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn): 1.理解與認(rèn)識(shí)函數(shù)圖象的意義. 2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力. 難點(diǎn): 在畫圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對應(yīng)值問題. 三、教學(xué)過程 1.畫函數(shù)圖象的方法是描點(diǎn)法.其步驟: 。1)列表.要注意適當(dāng)選取自變量與函數(shù)的對應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了. 一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對應(yīng)值列出表來. (2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對,看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的`點(diǎn). 。3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線. 一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線). 2.講解畫函數(shù)圖象的三個(gè)步驟和例.畫出函數(shù)y=x+0。5的圖象. 小結(jié) 本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖. 練習(xí):①選用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線) 、谘a(bǔ)充題:畫出函數(shù)y=5x-2的圖象. 作業(yè):選用課本習(xí)題. 四、教學(xué)注意問題 1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征. 2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性. 3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力。 一、教材分析 本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。 托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測未來的重要工具。 函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。 二、學(xué)生學(xué)習(xí)情況分析 函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認(rèn)識(shí)分三個(gè)階段:(一)初中從運(yùn)動(dòng)變化的角度來刻畫函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);(二)高中用集合與對應(yīng)的觀點(diǎn)來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。 1.有利條件 現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。 初中用運(yùn)動(dòng)變化的觀點(diǎn)對函數(shù)進(jìn)行定義的,它反映了歷史上人們對它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。 2.不利條件 用集合與對應(yīng)的觀點(diǎn)來定義函數(shù),形式和內(nèi)容上都是比較抽象的',這對學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。 三、教學(xué)目標(biāo)分析 課標(biāo)要求:通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會(huì)對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域. 1.知識(shí)與能力目標(biāo): ⑴能從集合與對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性; 、评斫夂瘮(shù)的三要素的含義及其相互關(guān)系; ⑶會(huì)求簡單函數(shù)的定義域和值域 2.過程與方法目標(biāo): 、磐ㄟ^豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型; 、圃诤瘮(shù)實(shí)例中,通過對關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會(huì)對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用. 3.情感、態(tài)度與價(jià)值觀目標(biāo): 感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點(diǎn)。 四、教學(xué)重點(diǎn)、難點(diǎn)分析 1.教學(xué)重點(diǎn):對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù); 重點(diǎn)依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。 突出重點(diǎn):重點(diǎn)的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。 2.教學(xué)難點(diǎn):第一:從實(shí)際問題中提煉出抽象的概念;第二:符號“y=f(x)”的含義的理解. 難點(diǎn)依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。 突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。 五、教法與學(xué)法分析 1.教法分析 本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。 2.學(xué)法分析 在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。 【數(shù)學(xué)函數(shù)的教案 】相關(guān)文章: 函數(shù)的概念的數(shù)學(xué)教案02-07 數(shù)學(xué)函數(shù)的教案 15篇03-06 數(shù)學(xué)函數(shù)的教案 (15篇)03-06 數(shù)學(xué)教案:函數(shù)與方程02-25 數(shù)學(xué)函數(shù)的教案 通用15篇03-06數(shù)學(xué)函數(shù)的教案 11
數(shù)學(xué)函數(shù)的教案 12
數(shù)學(xué)函數(shù)的教案 13
數(shù)學(xué)函數(shù)的教案 14
數(shù)學(xué)函數(shù)的教案 15