函數(shù)的概念的數(shù)學(xué)教案
作為一位優(yōu)秀的人民教師,就有可能用到教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。教案應(yīng)該怎么寫呢?以下是小編為大家收集的函數(shù)的概念的數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
函數(shù)的概念的數(shù)學(xué)教案1
教學(xué)目標(biāo):
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.
教學(xué)重點(diǎn):
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點(diǎn):
函數(shù)概念的理解.
教學(xué)過程:
、.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).
設(shè)在一個(gè)變化的過程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問題:
問題一:y=1(xR)是函數(shù)嗎?
問題二:y=x與y=x2x 是同一個(gè)函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認(rèn)識(shí)函數(shù)概念(板書課題).
、.講授新課
[師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.
在(1)中,對(duì)應(yīng)關(guān)系是乘2,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).
在(2)中,對(duì)應(yīng)關(guān)系是求平方,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).
在(3)中,對(duì)應(yīng)關(guān)系是求倒數(shù),即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù) 1x 和它對(duì)應(yīng).
請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?
[生]一對(duì)一、二對(duì)一、一對(duì)一.
[師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?
[生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).
[師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的. 實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書)
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰AB為從集合A到集合B的一個(gè)函數(shù).
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a0)和它對(duì)應(yīng).
反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)= kx (k0)和它對(duì)應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時(shí)B={f(x)|f(x)4ac-b24a };當(dāng)a0時(shí),B={f(x)|f(x)4ac-b24a },它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對(duì)應(yīng).
函數(shù)概念用集合、對(duì)應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個(gè)問題.
y=1(xR)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說y是x的函數(shù).
Y=x與y=x2x 不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個(gè)函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?
(教師提出問題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).
、诜(hào)f:AB表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.
、奂螦中數(shù)的任意性,集合B中數(shù)的惟一性.
、躥表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
、輋(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.
[師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號(hào)來表示
、.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.
解:(1)x-20,即x2時(shí),1x-2 有意義
這個(gè)函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時(shí)3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個(gè)函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的`實(shí)數(shù)的集合;
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的交集);
(5)如果f(x)是由實(shí)際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.
例如:一矩形的寬為x m,長(zhǎng)是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤0而不是全體實(shí)數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問題的實(shí)際意義決定.
[師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.
下面我們來看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?
[生甲]求函數(shù)式的值,嚴(yán)格地說是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.
[師]回答正確,不過要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬萬不可粗心大意噢!
[生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說,判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語:是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)
(無人回答)
[師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問題都要多問幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們?cè)趺淳蜎]想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.
對(duì)于(1)(2)可用直接法根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.
對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,
當(dāng)x[-3,1]時(shí),得y[-1,8]
Ⅳ.課堂練習(xí)
課本P24練習(xí)17.
、.課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來歸納)
Ⅵ.課后作業(yè)
課本P28,習(xí)題1、2. 文 章來
函數(shù)的概念的數(shù)學(xué)教案2
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
(2) 能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個(gè)通俗的例子引出通過某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。
(2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1. 給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的.一次、二次函數(shù),通過畫圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。
66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0*x+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四.課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書設(shè)計(jì)
書本p51 習(xí)題2.1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
函數(shù)的概念的數(shù)學(xué)教案3
教材分析:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
。1)通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
教學(xué)重點(diǎn):
理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語言來刻畫函數(shù);
教學(xué)難點(diǎn):
符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)過程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時(shí)間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;
。3)“八五”計(jì)劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題
備用實(shí)例:
我國2003年4月份非典疫情統(tǒng)計(jì):
日期
22
23
24
25
26
27
28
29
30
新增確診病例數(shù)
106
105
89
103
113
126
98
152
101
3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
。ㄒ唬┖瘮(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域(range).
注意:
1 “y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的.函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對(duì)應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
。2)無窮區(qū)間;
(3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
。ㄓ蓪W(xué)生完成,師生共同分析講評(píng))
。ǘ┑湫屠}
1.求函數(shù)定義域
課本P20例1
解:(略)
說明:
1函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;
2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;
3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個(gè)函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說明:
1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
鞏固練習(xí):
1課本P22第2題
2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?
。1)f ( x ) = (x-1) 0;g ( x ) = 1
。2)f ( x ) = x;g ( x ) =
(3)f ( x ) = x 2;f ( x ) = (x + 1) 2
(4)f ( x ) = | x |;g ( x ) =
。ㄈ┱n堂練習(xí)
求下列函數(shù)的定義域
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
函數(shù)的概念的數(shù)學(xué)教案4
一、教材分析及處理
函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,函數(shù)的基礎(chǔ)知識(shí)在數(shù)學(xué)和其他許多學(xué)科中有著廣泛的應(yīng)用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)知識(shí);函數(shù)的概念是運(yùn)動(dòng)變化和對(duì)立統(tǒng)一等觀點(diǎn)在數(shù)學(xué)中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個(gè)領(lǐng)域,《函數(shù)》教學(xué)設(shè)計(jì)。
對(duì)函數(shù)概念本質(zhì)的理解,首先應(yīng)通過與初中定義的比較、與其他知識(shí)的聯(lián)系以及不斷地應(yīng)用等,初步理解用集合與對(duì)應(yīng)語言刻畫的函數(shù)概念.其次在后續(xù)的學(xué)習(xí)中通過基本初等函數(shù),引導(dǎo)學(xué)生以具體函數(shù)為依托、反復(fù)地、螺旋式上升地理解函數(shù)的本質(zhì)。
教學(xué)重點(diǎn)是函數(shù)的概念,難點(diǎn)是對(duì)函數(shù)概念的本質(zhì)的理解。
學(xué)生現(xiàn)狀
學(xué)生在第一章的時(shí)候已經(jīng)學(xué)習(xí)了集合的概念,同時(shí)在初中時(shí)已學(xué)過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識(shí)來理解函數(shù)概念,結(jié)合原有的知識(shí)背景,活動(dòng)經(jīng)驗(yàn)和理解走入今天的課堂,如何有效地激活學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與到學(xué)習(xí)活動(dòng)中,達(dá)到理解知識(shí)、掌握方法、提高能力的目的,使學(xué)生獲得有益有效的學(xué)習(xí)體驗(yàn)和情感體驗(yàn),是在教學(xué)設(shè)計(jì)中應(yīng)思考的。
二、教學(xué)三維目標(biāo)分析
1、知識(shí)與技能(重點(diǎn)和難點(diǎn))
(1)、通過實(shí)例讓學(xué)生能夠進(jìn)一步體會(huì)到函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。并且在此基礎(chǔ)上學(xué)習(xí)應(yīng)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用。不但讓學(xué)生能完成本節(jié)知識(shí)的學(xué)習(xí),還能較好的復(fù)習(xí)前面內(nèi)容,前后銜接。
(2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會(huì)求簡(jiǎn)單函數(shù)的定義域、值域、判斷兩個(gè)函數(shù)是否相等等。
(3)、掌握定義域的`表示法,如區(qū)間形式等。
(4)、了解映射的概念。
2、過程與方法
函數(shù)的概念及其相關(guān)知識(shí)點(diǎn)較為抽象,難以理解,學(xué)習(xí)中應(yīng)注意以下問題:
(1)、首先通過多媒體給出實(shí)例,在讓學(xué)生以小組的形式開展討論,運(yùn)用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識(shí),找出不同點(diǎn)與相同點(diǎn),實(shí)現(xiàn)學(xué)生在教學(xué)中的主體地位,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
(2)、面向全體學(xué)生,根據(jù)課本大綱要求授課。
(3)、加強(qiáng)學(xué)法指導(dǎo),既要讓學(xué)生學(xué)會(huì)本節(jié)知識(shí)點(diǎn),也要讓學(xué)生會(huì)自我主動(dòng)學(xué)習(xí)。
3、情感態(tài)度與價(jià)值觀
(1)、通過多媒體給出實(shí)例,學(xué)生小組討論,給出自己的結(jié)論和觀點(diǎn),加上老師的輔助講解,培養(yǎng)學(xué)生的實(shí)踐能力和和大膽創(chuàng)新意識(shí),教案《《函數(shù)》教學(xué)設(shè)計(jì)》。
(2)、讓學(xué)生自己討論給出結(jié)論,培養(yǎng)學(xué)生的自我動(dòng)手能力和小組團(tuán)結(jié)能力。
三、教學(xué)器材
多媒體ppt課件
四、教學(xué)過程
教學(xué)內(nèi)容教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖
《函數(shù)》課題的引入(用時(shí)一分鐘)配著簡(jiǎn)單的音樂,從簡(jiǎn)單的例子引入函數(shù)應(yīng)用的廣泛,將同學(xué)們的視線引入函數(shù)的學(xué)習(xí)上聽著悠揚(yáng)的音樂,讓同學(xué)們的視線全注意在老師所講的內(nèi)容上從貼近學(xué)生生活入手,符合學(xué)生的認(rèn)知特點(diǎn)。讓學(xué)生在領(lǐng)略大自然的美妙與和諧中進(jìn)入函數(shù)的世界,體現(xiàn)了新課標(biāo)的理念:從知識(shí)走向生活
知識(shí)回顧:初中所學(xué)習(xí)的函數(shù)知識(shí)(用時(shí)兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡(jiǎn)單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡(jiǎn)單作圖認(rèn)真聽老師回顧初中知識(shí),發(fā)現(xiàn)異同在初中知識(shí)的基礎(chǔ)上引導(dǎo)學(xué)生向更深的內(nèi)容探索、求知。即復(fù)習(xí)了所學(xué)內(nèi)容又做了即將所學(xué)內(nèi)容的鋪墊
思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時(shí)四分鐘)給出兩個(gè)簡(jiǎn)單的問題讓同學(xué)們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認(rèn)識(shí)函數(shù)結(jié)合老師所回顧的知識(shí),結(jié)合自己所掌握的知識(shí),思考老師給出的問題,小組形式作討論,從簡(jiǎn)單問題入手,循序漸進(jìn),引出本節(jié)主要知識(shí),回顧前一節(jié)的集合感念,應(yīng)用到本節(jié)知識(shí),前后聯(lián)系、銜接
新知識(shí)的講解:從概念開始講解本節(jié)知識(shí)(用時(shí)三分鐘)詳細(xì)講解函數(shù)的知識(shí),包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識(shí)講解回到問題身上,解決問題
對(duì)提問的回答(用時(shí)五分鐘)引導(dǎo)學(xué)生自己解決開始所提的兩個(gè)問題,然后同個(gè)互動(dòng)給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來更好的掌握知識(shí)
函數(shù)區(qū)間(用時(shí)五分鐘)引入函數(shù)定義域的表示方法簡(jiǎn)潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎(chǔ)上引入另一種方法
注意點(diǎn)(用時(shí)三分鐘)做個(gè)簡(jiǎn)單的的回顧新內(nèi)容,把難點(diǎn)重點(diǎn)提出來,讓同學(xué)們記住通過問題回答,概念解答,把重難點(diǎn)給出,提醒學(xué)生注意內(nèi)容和知識(shí)點(diǎn)
習(xí)題(用時(shí)十分鐘)給出習(xí)題,分析題意在稿紙上簡(jiǎn)單作答,回答問題通過習(xí)題練習(xí)明確重難點(diǎn),把不懂的地方記住,課后學(xué)生在做進(jìn)一步的聯(lián)系
映射(用時(shí)兩分鐘)從概念方面講解映射的意義,象與原象在新知識(shí)的基礎(chǔ)上了解更多知識(shí),映射的學(xué)習(xí)給以后的知識(shí)內(nèi)容做更好的鋪墊
小結(jié)(用時(shí)五分鐘)簡(jiǎn)單講述本節(jié)的知識(shí)點(diǎn),重難點(diǎn)做筆記前后知識(shí)的連貫,總結(jié),使學(xué)生更明白知識(shí)點(diǎn)
五、教學(xué)評(píng)價(jià)
為了使學(xué)生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認(rèn)識(shí),獲得認(rèn)識(shí)客觀世界的體驗(yàn),本課采用"突出主題,循序漸進(jìn),反復(fù)應(yīng)用"的方式,在不同的場(chǎng)合考察問題的不同側(cè)面,由淺入深。本課在教學(xué)時(shí)采用問題探究式的教學(xué)方法進(jìn)行教學(xué),逐層深入,這樣使學(xué)生對(duì)函數(shù)概念的理解也逐層深入,從而準(zhǔn)確理解函數(shù)的概念。函數(shù)引入中的三種對(duì)應(yīng),與初中時(shí)學(xué)習(xí)函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對(duì)應(yīng)既是函數(shù)知識(shí)的生長(zhǎng)點(diǎn),又突出了函數(shù)的本質(zhì),為從數(shù)學(xué)內(nèi)部研究函數(shù)打下了基礎(chǔ)。
在培養(yǎng)學(xué)生的能力上,本課也進(jìn)行了整體設(shè)計(jì),通過探究、思考,培養(yǎng)了學(xué)生的實(shí)踐能力、觀察能力、判斷能力;通過揭示對(duì)象之間的內(nèi)在聯(lián)系,培養(yǎng)了學(xué)生的辨證思維能力;通過實(shí)際問題的解決,培養(yǎng)了學(xué)生的分析問題、解決問題和表達(dá)交流能力;通過案例探究,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)與探究能力。
雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學(xué)設(shè)計(jì),學(xué)生基本上能很好地理解了函數(shù)概念的本質(zhì),達(dá)到了課程標(biāo)準(zhǔn)的要求,體現(xiàn)了課改的教學(xué)理念。
函數(shù)的概念的數(shù)學(xué)教案5
學(xué)習(xí)目標(biāo):
(1)理解函數(shù)的概念
(2)會(huì)用集合與對(duì)應(yīng)語言來刻畫函數(shù),
(3)了解構(gòu)成函數(shù)的要素。
重點(diǎn):
函數(shù)概念的理解
難點(diǎn):
函數(shù)符號(hào)y=f(x)的理解
知識(shí)梳理:
自學(xué)課本P29—P31,填充以下空格。
1、設(shè)集合A是一個(gè)非空的實(shí)數(shù)集,對(duì)于A內(nèi) ,按照確定的對(duì)應(yīng)法則f,都有 與它對(duì)應(yīng),則這種對(duì)應(yīng)關(guān)系叫做集合A上的一個(gè)函數(shù),記作 。
2、對(duì)函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。
3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要
。
4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):
① ;② 。
5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a
(1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。
(2)滿足不等式a
(3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ;
分別滿足x≥a,x>a,x≤a,x
其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。
完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。
例題解析
題型一:函數(shù)的概念
例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )
練習(xí):設(shè)M={x| },N={y| },給出下列四個(gè)圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個(gè)。
題型二:相同函數(shù)的判斷問題
例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與
、 與 其中表示同一函數(shù)的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )
A. 和 B. 和
C. 和 D. 和
題型三:函數(shù)的定義域和值域問題
例3:求函數(shù)f(x)= 的定義域
練習(xí):課本P33練習(xí)A組 4.
例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。
當(dāng)堂檢測(cè)
1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的'是( A )
A、 B、
C、 D、
2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、給出下列四個(gè)命題:
、 函數(shù)就是兩個(gè)數(shù)集之間的對(duì)應(yīng)關(guān)系;
、 若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素;
、 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);
、 定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.
其中正確的有( B )
A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4 個(gè)
4、下列函數(shù)完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( B )
6、設(shè) ,則 等于 ( D )
A. B. C. 1 D.0
7、已知函數(shù) ,求 的值.( )
【函數(shù)的概念的數(shù)學(xué)教案】相關(guān)文章:
函數(shù)的概念的數(shù)學(xué)教案5篇02-07
高一數(shù)學(xué)教案《函數(shù)概念》11-20
高一數(shù)學(xué)教案《1函數(shù)概念》03-09
函數(shù)的概念教學(xué)反思06-03
二次函數(shù)概念教學(xué)反思03-11