熟妇人妻中文字幕在线视频_无码人妻精品视频_久久躁夜夜躁狠狠躁_偷碰人妻无码视频

現(xiàn)在位置:范文先生網(wǎng)>資料大全>說(shuō)課稿>勾股定理說(shuō)課稿

勾股定理說(shuō)課稿

時(shí)間:2022-09-13 11:13:43 說(shuō)課稿 我要投稿

【推薦】勾股定理說(shuō)課稿4篇

  在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,常常需要準(zhǔn)備說(shuō)課稿,是說(shuō)課取得成功的前提。說(shuō)課稿要怎么寫(xiě)呢?下面是小編收集整理的勾股定理說(shuō)課稿4篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

【推薦】勾股定理說(shuō)課稿4篇

勾股定理說(shuō)課稿 篇1

  尊敬的各位評(píng)委:

  您們好!我來(lái)自明光市張八嶺中學(xué)。今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育滬科版八年級(jí)下冊(cè)初中數(shù)學(xué)第十九章第一節(jié)的第一課時(shí)。

  下面我從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面對(duì)本課的設(shè)計(jì)進(jìn)行說(shuō)明。

  一、教學(xué)背景分析

  1、教材分析

  本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過(guò)一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問(wèn)題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),同時(shí)在實(shí)際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來(lái),它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學(xué)情分析

  學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過(guò)不少利用圖形面積來(lái)探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

  3、教學(xué)目標(biāo):

  根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

  知識(shí)與技能:了解勾股定理的發(fā)現(xiàn)過(guò)程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問(wèn)題總結(jié)規(guī)律的意識(shí)和能力.

  過(guò)程與方法:在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。

  情感態(tài)度價(jià)值觀:感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

  4、教學(xué)重點(diǎn)、難點(diǎn)

  通過(guò)研究分析可見(jiàn),勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的`生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)重點(diǎn)為勾股定理的證明與運(yùn)用,教學(xué)難點(diǎn)為用面積法證明勾股定理

  二、教材處理

  根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過(guò)程中,我先以數(shù)學(xué)史中的一個(gè)有趣的故事來(lái)激發(fā)學(xué)生學(xué)習(xí)興趣,運(yùn)用直觀教具、多媒體等手段,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

  三、教學(xué)策略

  1、教法

  “教必有法,而教無(wú)定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

  2、學(xué)法

  “授人以魚(yú),不如授人以漁”,通過(guò)設(shè)計(jì)問(wèn)題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  3、教學(xué)手段

  充分利用多媒體,提高教學(xué)效率,增大教學(xué)容量;通過(guò)多媒體演示,激發(fā)學(xué)生學(xué)習(xí)興趣,啟迪學(xué)生思維的發(fā)展;通過(guò)直觀教具,進(jìn)行動(dòng)手操作,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的廣闊性。

  4、教學(xué)模式

  根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。

  四、教學(xué)流程

 。ㄒ唬﹦(chuàng)設(shè)情境,引入新課(時(shí)長(zhǎng)2~3分鐘)

  我利用多媒體課件,給學(xué)生展示一枚1955年由希臘發(fā)行的郵票,并問(wèn)學(xué)生是否想聽(tīng)這枚郵票背后的故事?

  在20xx多年前,古希臘有一位著名的數(shù)學(xué)家——畢達(dá)哥拉斯,有次參加一位政要人物邀請(qǐng)的餐會(huì),這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數(shù)學(xué)家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達(dá)哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是他拿了畫(huà)筆并且蹲在地板上,選了一塊瓷磚以它的對(duì)角線為邊畫(huà)了一個(gè)大正方形,同學(xué)們,你們知道他發(fā)現(xiàn)了什么嗎?

  對(duì)學(xué)生的回答進(jìn)行引導(dǎo),梳理,總結(jié),可以得到有關(guān)三個(gè)正方形面積的結(jié)論。進(jìn)而引入本節(jié)課的標(biāo)題:19.1 勾股定理(板書(shū))

  (以小故事激發(fā)學(xué)生的興趣,隨后以開(kāi)放式的問(wèn)題形式,讓學(xué)生觀察猜想。本環(huán)節(jié)體現(xiàn)了人文關(guān)懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)

 。ǘ┮龑(dǎo)學(xué)生,探究新知(教學(xué)時(shí)長(zhǎng)15~20分鐘)

  1、初步感知定理:

 。1)用什么方法來(lái)探求:勾股定理即直角三角形三邊數(shù)量關(guān)系呢?

  回憶我們?cè)?jīng)利用圖形面積探索過(guò)數(shù)學(xué)公式,大家還記得在哪用過(guò)嗎?

 。▽W(xué)生討論)

  課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式的引出.

  今天,讓我們?cè)囈辉囃ㄟ^(guò)計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系. (從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長(zhǎng)之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺(jué)得解決今天問(wèn)題的方法并不陌生,增強(qiáng)探索問(wèn)題的信心.)

  (2)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個(gè)正方形有什么關(guān)系?

  讓學(xué)生通過(guò)觀察,計(jì)算出三個(gè)正方形的面積可以發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AB。

 。ㄟ@樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。)

 。3)緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學(xué)生可以同樣求出兩個(gè)小正方形面積,只是求大正方形的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。

  給出書(shū)中的定理(板書(shū))并用彎曲的手臂形象地表示勾、股、弦的概念,板書(shū)勾股定理,進(jìn)而給出字母表達(dá)式.

  通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。

  2、證明結(jié)論(教學(xué)時(shí)長(zhǎng)8~10分鐘):

  出示書(shū)中圖19—3,與學(xué)生共同分析證明并板書(shū)過(guò)程。通過(guò)給出定理的證明過(guò)程讓學(xué)生體會(huì)到數(shù)學(xué)知識(shí)從特殊性到一般性,并對(duì)一般性結(jié)論進(jìn)行論證的嚴(yán)謹(jǐn)性。

  3、勾股定理簡(jiǎn)介:(教學(xué)時(shí)長(zhǎng)1~2分鐘)

  借助多媒體課件,通過(guò)介紹古代在勾股定理研究方面取得的成就,感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體會(huì)古人偉大的智慧。

  (三)反饋訓(xùn)練,鞏固新知(教學(xué)時(shí)長(zhǎng)6~8分鐘)

  讓學(xué)生完成兩項(xiàng)任務(wù):

  任務(wù)一:教材練習(xí)第一題;

  任務(wù)二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?

  2,?ABC中c為最長(zhǎng)邊,a=3,b=4,則c=?

  任務(wù)一和任務(wù)二中第一題都是基礎(chǔ)題,對(duì)于任務(wù)二中第二題是提高題,對(duì)于做錯(cuò)的學(xué)生進(jìn)行引導(dǎo)讓其思考,再告知錯(cuò)誤的原因。通過(guò)練習(xí),讓學(xué)生更好的體會(huì)到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關(guān)系,讓學(xué)生能夠更好的將數(shù)與形緊密聯(lián)系起來(lái)進(jìn)行思考。

  (四)歸納小結(jié),深化新知(教學(xué)時(shí)長(zhǎng)1~2分鐘)

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么???

  通過(guò)小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。

  (五)布置作業(yè),拓展新知(教學(xué)時(shí)長(zhǎng)1~2分鐘)

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

 。┌鍟(shū)設(shè)計(jì),明確新知

  本節(jié)課的板書(shū)設(shè)計(jì),它分為三塊:一塊是復(fù)習(xí)引入,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。

  以上內(nèi)容,我僅從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專(zhuān)家領(lǐng)導(dǎo)對(duì)本次說(shuō)課提出寶貴的意見(jiàn),謝謝!

勾股定理說(shuō)課稿 篇2

  一、教材分析:

  (一)教材的地位與作用

  從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

  從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;勾股定理又是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

  根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決、情感態(tài)度。其中情感態(tài)度方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感。

 。ǘ┲攸c(diǎn)與難點(diǎn)

  為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

  二、教學(xué)與學(xué)法分析

  教學(xué)方法葉圣陶說(shuō)過(guò)"教師之為教,不在全盤(pán)授予,而在相機(jī)誘導(dǎo)。"因此教師利用幾何直觀提出問(wèn)題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

  學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過(guò)程。

  三、教學(xué)過(guò)程

  我國(guó)數(shù)學(xué)文化源遠(yuǎn)流長(zhǎng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。

  首先,情境導(dǎo)入古韻今風(fēng)

  給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊(yùn)含著怎么樣數(shù)學(xué)奧秘呢?寓教于樂(lè),激發(fā)學(xué)生好奇、探究的欲望。

  第二步追溯歷史解密真相

  勾股定理的探索過(guò)程是本節(jié)課的重點(diǎn),依照數(shù)學(xué)知識(shí)的循序漸進(jìn)、螺旋上升的原則,我設(shè)計(jì)如下三個(gè)活動(dòng)。

  從上面低起點(diǎn)的問(wèn)題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長(zhǎng)之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計(jì)算更具說(shuō)服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會(huì)想到用"數(shù)格子"的方法,這種方法雖然簡(jiǎn)單易行,但對(duì)于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用"割"和"補(bǔ)"的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認(rèn)知規(guī)律。教師給出邊長(zhǎng)單位長(zhǎng)度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的.錯(cuò)誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示"割"的方法,"補(bǔ)"的方法,有的學(xué)生可能會(huì)發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對(duì)于這兩種新方法教師應(yīng)給于表?yè)P(yáng),肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類(lèi)比、遷移以及探索問(wèn)題的能力。

  使用幾何畫(huà)板動(dòng)態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時(shí),改變?nèi)呴L(zhǎng)度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強(qiáng)調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對(duì)勾股定理理解的同時(shí)也拓展了學(xué)生的視野。

  以上三個(gè)環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語(yǔ)言表達(dá)能力。

  感性認(rèn)識(shí)未必是正確的,推理驗(yàn)證證實(shí)我們的猜想。

  第三步推陳出新借古鼎新

  教材中直接給出"趙爽弦圖"的證法對(duì)學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應(yīng)給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對(duì)于不同的拼圖方案給予肯定。從而體現(xiàn)出"學(xué)生是學(xué)習(xí)的主體,教師是組織者、引導(dǎo)者與合作者"這一教學(xué)理念。學(xué)生會(huì)發(fā)現(xiàn)兩種證明方案。

  方案1為趙爽弦圖,學(xué)生講解論證過(guò)程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過(guò)程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過(guò)程,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。對(duì)比"古"、"今"兩種證法,讓學(xué)生體會(huì)"吹盡黃沙始到金"的喜悅,感受到"青出于藍(lán)而勝于藍(lán)"的自豪感。板書(shū)勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號(hào)意識(shí)。

  教師對(duì)"勾、股、弦"的含義以及古今中外對(duì)勾股定理的研究做一個(gè)介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛(ài)國(guó)主義精神。利用勾股樹(shù)動(dòng)態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

  第四步取其精華古為今用

  我按照"理解—掌握—運(yùn)用"的梯度設(shè)計(jì)了如下三組習(xí)題。

  (1)對(duì)應(yīng)難點(diǎn),鞏固所學(xué)。

 。2)考查重點(diǎn),深化新知。

  (3)解決問(wèn)題,感受應(yīng)用。

  第五步溫故反思任務(wù)后延

  在課堂接近尾聲時(shí),我鼓勵(lì)學(xué)生從"四基"的要求對(duì)本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。

  然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

勾股定理說(shuō)課稿 篇3

尊敬的各位評(píng)委、老師,大家好!

  我說(shuō)課的題目是華師版八年級(jí)上冊(cè)第十四章第一節(jié)第一課時(shí)《勾股定理》。

  教材分析:

  如果說(shuō)數(shù)學(xué)思想是解決數(shù)學(xué)問(wèn)題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識(shí)的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。

  勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

  新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛(ài)表現(xiàn)、好靜不好動(dòng)的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:

  1、探索并利用拼圖證明勾股定理。

  2、利用勾股定理解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題。

  3、感受數(shù)學(xué)文化,體會(huì)解決問(wèn)題方法的多樣性和數(shù)形結(jié)合的思想。

  本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:

  勾股定理的證明和簡(jiǎn)單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

  為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對(duì)教法和學(xué)法分析如下:

  教法分析:

  新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動(dòng)手操作、講解為中心,讓學(xué)生親歷親為,體會(huì)做數(shù)學(xué)的過(guò)程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來(lái),提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂(lè),為終身學(xué)習(xí)和發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動(dòng)的時(shí)間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。

  學(xué)法分析

  學(xué)法是學(xué)生再生知識(shí)的法寶,為了把學(xué)生學(xué)習(xí)過(guò)程當(dāng)作認(rèn)知事物的過(guò)程來(lái)解決,教學(xué)中我首先引導(dǎo)學(xué)生先動(dòng)手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來(lái),我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過(guò)學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書(shū)寫(xiě)格式,培養(yǎng)學(xué)生的邏輯思維能力和語(yǔ)言表達(dá)能力。

  為了充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的.方式循序見(jiàn)進(jìn)的設(shè)計(jì)教學(xué)流程。

  以學(xué)生必讀課本48—52頁(yè),選讀課本55、56頁(yè)的課前預(yù)習(xí)為前提,共分四個(gè)環(huán)節(jié)來(lái)進(jìn)行教學(xué)

  1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。

  2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對(duì)定理的證明。

  3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個(gè)性補(bǔ)充和老師適當(dāng)?shù)膫(gè)性化追加的形式實(shí)現(xiàn)對(duì)定理的靈活應(yīng)用。

  4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識(shí)、情感兩方面實(shí)現(xiàn)對(duì)本節(jié)內(nèi)容的鞏固與升華。

  說(shuō)創(chuàng)新點(diǎn):

  為了給學(xué)生營(yíng)造一個(gè)和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動(dòng)手操作能力的培養(yǎng),化繁為簡(jiǎn),化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動(dòng)手操作、講解等直觀方式代替老師畫(huà)圖、剪圖、講評(píng)費(fèi)時(shí)費(fèi)力的方式,既讓每個(gè)學(xué)生都能積極的參與進(jìn)來(lái),培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的效果。

  教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個(gè)性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價(jià)值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。

  以學(xué)生個(gè)性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開(kāi)放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時(shí)間;同時(shí),我注重對(duì)學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時(shí)由“勾股樹(shù)”到“智慧樹(shù)”的希望寄語(yǔ)。

勾股定理說(shuō)課稿 篇4

  尊敬的各位領(lǐng)導(dǎo)、各位老師,大家好:

  我叫李朝紅,是第十四中學(xué)的一名教師。我今天說(shuō)課的題目《勾股定理的逆定理》,選自人教課標(biāo)實(shí)驗(yàn)版教科書(shū)數(shù)學(xué)八年級(jí)下冊(cè)第十八章第二節(jié),本節(jié)課共分兩個(gè)課時(shí),我今天分析的是第一個(gè)課時(shí),下面我將從教材、教法學(xué)法、教學(xué)過(guò)程、教學(xué)反思四個(gè)方面進(jìn)行闡述。

  一、教材分析

  1、教材的地位和作用:

  在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,全等三角形的判定等相關(guān)知識(shí),為本節(jié)課的學(xué)習(xí)打好了基礎(chǔ),學(xué)習(xí)好本節(jié)課不但可以鞏固學(xué)生已有的知識(shí),而且為后面利用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形等相關(guān)知識(shí)的學(xué)習(xí)做好了鋪墊。

  2、教學(xué)目標(biāo)

  教學(xué)目標(biāo)支配著教學(xué)過(guò)程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵?紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo)

  知識(shí)與技能:掌握勾股定理的逆定理,會(huì)用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形。

  過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成

  過(guò)程,體會(huì)數(shù)形結(jié)合和由特殊到一般的'數(shù)學(xué)思想,進(jìn)一步提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。

  情感、態(tài)度、價(jià)值觀:在探究勾股定理的逆定理的活動(dòng)中,滲透與他人交流、合作的意識(shí)和探究精神.

  3、重點(diǎn)難點(diǎn)

  本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)

  重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。

  難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。

  二、教法學(xué)法分析

  八年級(jí)學(xué)生的特點(diǎn)是思維比較活躍,喜歡發(fā)表自己的見(jiàn)解,善于進(jìn)行小組合作學(xué)習(xí),所以我將采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)相結(jié)合的方法,老師為主導(dǎo),學(xué)生為主體,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,讓學(xué)生動(dòng)手操作,動(dòng)腦思考,動(dòng)口表達(dá),積極參與到本節(jié)課的教學(xué)過(guò)程中來(lái),在鍛煉學(xué)生思考、觀察、實(shí)踐能力的同時(shí),使其科學(xué)文化修養(yǎng)與思想道德修養(yǎng)進(jìn)一步提升。

  教法學(xué)法分析完畢,我再來(lái)分析一下教學(xué)過(guò)程,這是我本次說(shuō)課的重點(diǎn)。

  三、教學(xué)過(guò)程分析:

 。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

  1、展示圖片:古埃及人制作直角的方法

  2、讓學(xué)生試一試用一根繩子確定直角

  設(shè)計(jì)意圖:通過(guò)古埃及人制作直角的方法,提出讓學(xué)生動(dòng)手操作,進(jìn)而使學(xué)生產(chǎn)生好奇心:“這樣就能確定直角嗎”,激發(fā)學(xué)生的求知欲,點(diǎn)燃其學(xué)習(xí)的激情,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性 ,同時(shí)也使學(xué)生感受到幾何來(lái)源于生活,服務(wù)于生活的道理,體會(huì)數(shù)學(xué)的價(jià)值。

  (二)動(dòng)手檢測(cè),提出假設(shè)

  在本環(huán)節(jié)中通過(guò)情境中的問(wèn)題,引導(dǎo)學(xué)生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

  上面三組線段為邊畫(huà)出三角形,猜測(cè)驗(yàn)證出其形狀。

  再引導(dǎo)啟發(fā)誘導(dǎo)學(xué)生從上面的活動(dòng)中歸納思考:如果一個(gè)三角形的三邊a,b,c滿足a2+b2=c2,那這個(gè)三角形是直角三角形嗎?在整個(gè)過(guò)程的活動(dòng)中,盡量給學(xué)生足夠的時(shí)間和空間,以平等身份參與到學(xué)生活動(dòng)中來(lái),對(duì)其實(shí)踐活動(dòng)予以指導(dǎo)。讓學(xué)生通過(guò)作圖、測(cè)量等實(shí)踐活動(dòng),給出合理的假設(shè)與猜測(cè)。整個(gè)環(huán)節(jié)通過(guò)設(shè)置的問(wèn)題串,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口相結(jié)合,激活學(xué)生的思維,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,合理的推測(cè)能力,嚴(yán)密的邏輯思維能力和靈活的動(dòng)手實(shí)踐能力。

  (三) 探索歸納,證明假設(shè):

  勾股定理逆定理的證明與以往不同,需要構(gòu)造直角三角形才能完成,如何構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵。如果直接將問(wèn)題拋給學(xué)生證明,他們定會(huì)無(wú)從下手,所以為了解決這一問(wèn)題,突破這個(gè)難點(diǎn),我先

  1、 讓學(xué)生畫(huà)了一個(gè)三邊長(zhǎng)度為3cm,4cm,5cm的三角形和一個(gè)以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個(gè)三角形上看出現(xiàn)了什么情況?并請(qǐng)學(xué)生簡(jiǎn)單說(shuō)明理由。通過(guò)操作驗(yàn)證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,

  2、 然后在黑板上畫(huà)一個(gè)三邊長(zhǎng)為a、b、c,且滿足 a2+b2=c2的△ABC,與一個(gè)以a、b為直角邊的直角三角形,讓學(xué)生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說(shuō)明理由。通過(guò)推理證明得出勾股定理的逆定理。

  在這個(gè)過(guò)程中,首先讓學(xué)生從特殊的實(shí)例中動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的判定,進(jìn)而由特殊到一般發(fā)現(xiàn)三邊長(zhǎng)為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關(guān)系。

  設(shè)計(jì)意圖:讓學(xué)生從特殊的實(shí)例動(dòng)手到證明,進(jìn)而由特殊到一般,順利地利用構(gòu)建法證明了勾股定理的逆定理,整個(gè)過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)從直觀印象向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了“操作——觀察——猜測(cè)——探索——論證”的過(guò)程,體驗(yàn)了“特殊到一般,個(gè)性到共性”的偉大數(shù)學(xué)思想在實(shí)際中的應(yīng)用。

  這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。

 。ㄋ模⿲W(xué)以致用、鞏固提升

  本著由淺入深的原則,安排了三個(gè)題。第一題比較簡(jiǎn)單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學(xué)生仿照課本上的例題,獨(dú)立完成,教師提醒書(shū)寫(xiě)格式。并說(shuō)明像15,8,17能夠成為直角三角形的三條邊長(zhǎng)的正整數(shù),我們稱(chēng)為勾股數(shù)。第二題我改變題的形式,把一些符合a+b=c的三角形放入網(wǎng)格中讓學(xué)生運(yùn)用勾股定理及其逆定理來(lái)說(shuō)明理由。第三題是求一個(gè)不規(guī)則四邊形的面積,讓學(xué)生思考如何添加輔助線,把它分成一個(gè)直角三角形和一個(gè)非直角但能判定是直角的三角形,讓學(xué)生運(yùn)用勾股定理及其逆定理證明并求解。

  設(shè)計(jì)意圖:采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)方法相結(jié)合的方法分層練習(xí),由淺入深地逐步提高學(xué)生解決實(shí)際問(wèn)題的能力,達(dá)到鞏固知識(shí),學(xué)以致用的目的

 。ㄎ澹┗仡櫩偨Y(jié),強(qiáng)化認(rèn)知

  課堂小結(jié)以填空體的形式檢測(cè)、歸納總結(jié)

  設(shè)計(jì)意圖:讓學(xué)生以填空題的形式進(jìn)行總結(jié),不僅能夠起到檢測(cè)的目的,而且?guī)椭鷮W(xué)生理清知識(shí)脈絡(luò),起到重點(diǎn)強(qiáng)調(diào),產(chǎn)生高度重視的效果。

  (六)作業(yè)布置

  教材33頁(yè)練習(xí)

  設(shè)計(jì)意圖:加強(qiáng)學(xué)生對(duì)勾股定理逆定理的理解,使學(xué)生的練習(xí)范圍拓展到多個(gè)題型。

  教學(xué)反思:本節(jié)課以學(xué)生為主體、教師為主導(dǎo),通過(guò)啟發(fā)與誘導(dǎo),使學(xué)生動(dòng)手操作、動(dòng)腦思考、動(dòng)口表達(dá),讓學(xué)生在實(shí)踐與探究中發(fā)揮自我,充分調(diào)動(dòng)了學(xué)生的自主性與積極性,整個(gè)過(guò)程注重了學(xué)生課上知識(shí)的形成與鞏固,以及學(xué)生各方面素質(zhì)的培養(yǎng)?傊竟(jié)課的知識(shí)目標(biāo)基本達(dá)成,能力目標(biāo)基本實(shí)現(xiàn),情感目標(biāo)基本落實(shí)。

  以上是我對(duì)本節(jié)課的理解,還望各位老師指正。

【勾股定理說(shuō)課稿】相關(guān)文章:

《勾股定理》的說(shuō)課稿01-18

勾股定理說(shuō)課稿04-18

勾股定理說(shuō)課稿范文(通用12篇)07-14

勾股定理的教學(xué)反思04-22

數(shù)學(xué)勾股定理教案04-28

《勾股定理》教學(xué)反思范文04-27

數(shù)學(xué)《勾股定理》教學(xué)反思04-22

勾股定理2教學(xué)反思錦集11-04

初二數(shù)學(xué)教案《勾股定理》06-06

《探索勾股定理》教學(xué)設(shè)計(jì)(精選11篇)10-25