- 相關(guān)推薦
數(shù)學(xué)教案-直角三角形全等的判定
教學(xué)建議
直角三角形全等的判定
知識(shí)結(jié)構(gòu)
重點(diǎn)與難點(diǎn)分析:
本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識(shí)結(jié)構(gòu)完整、知識(shí)理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問題、動(dòng)手試驗(yàn)、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動(dòng),將教與學(xué)融為一體。具體說明如下:
。1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教
本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠兀繉W(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
。2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號(hào)語言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。
教法建議:
由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”
本節(jié)課開始,讓同學(xué)們自己思考問題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語言、圖形語言、符號(hào)語言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問題解決問題的思考方法。
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握已知斜邊、直角邊畫直角三角形的畫圖方法;
。2)掌握斜邊、直角邊公理;
。3)能夠運(yùn)用HL公理及其他三角形全等的判定方法進(jìn)行證明和計(jì)算.
2、能力目標(biāo):
。1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
。2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.
3、情感目標(biāo):
(1)在公理的形成過程中滲透:實(shí)驗(yàn)、觀察、歸納;
(2)通過知識(shí)的縱橫遷移感受數(shù)學(xué)的系統(tǒng)特征。
教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。
教學(xué)難點(diǎn):靈活應(yīng)用五種方法(SAS、ASA、AAS、SSS、HL)來判定直角三角形全等。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:自學(xué)輔導(dǎo)
教學(xué)過程(325224.com):
1、新課引入
投影顯示
問題:判定三角形全等的方法有四種,若這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠兀?/p>
這個(gè)問題讓學(xué)生思考分析討論后回答,教師補(bǔ)充完善。
2、公理的獲得
讓學(xué)生概括出HL公理。然后和學(xué)生一起畫圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫圖法)
公理:有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
應(yīng)用格式: (略)
強(qiáng)調(diào)說明:
。1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫出結(jié)論。
。2)、判定兩個(gè)直角三角形全等的方法。
。3)特殊三角形研究思想。
3、公理的應(yīng)用
(1)講解例1(投影例1)
例1求證:有一條直角邊和斜邊上的高對(duì)應(yīng)相等的兩個(gè)直角三角形全等。
學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。找學(xué)生代表口述證明思路。
分析:首先要分清題設(shè)和結(jié)論,然后按要求畫出圖形,根據(jù)題意寫出、已知求證后,再寫出證明過程。
證明:(略)
(2)講解例2。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。)
例2:如圖2,△ABC中,AD是它的角平分線,且BD=CD,DE、DF分別垂直于AB、AC,垂足為E、F.
求證:BE=CF
分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF
證明:(略)
。3)講解例3(投影例3)
例3:如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過A的一條直線,且B、C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E,求證:
(1)BD=DE+CE
(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖4位置時(shí)(BD<CE),其余條件不變,問BD與DE、CE的關(guān)系如何,請(qǐng)證明;
(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖5時(shí)(BD>CE),其余條件不變,BD與DE、CE的關(guān)系怎樣?請(qǐng)直接寫出結(jié)果,不須證明
學(xué)生口述證明思路,教師強(qiáng)調(diào)說明:閱讀問題的思考方法及思想。
4、課堂小結(jié):
(1)判定直角三角形全等的方法:5個(gè)(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。
(2)直角三角形判定方法的綜合運(yùn)用
讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。
5、布置作業(yè):
a、書面作業(yè)P79#7、9
b、上交作業(yè)P80#5、6
板書設(shè)計(jì):
探究活動(dòng)
直角形全等的判定
如圖(1)A、E、F、C在一條直線上,AE=CF,過E、F分別作DE⊥AC,BF⊥AC,
若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動(dòng)變?yōu)槿鐖D(2)時(shí),其余條件不變,上述結(jié)論是否成立,請(qǐng)說明理由。
【數(shù)學(xué)教案-直角三角形全等的判定】相關(guān)文章:
直角三角形全等的判定教學(xué)反思03-28
《三角形全等的判定》教學(xué)反思04-29
三角形全等的判定教學(xué)反思03-17
三角形全等的判定說課稿11-19
八年級(jí)數(shù)學(xué)教案:全等三角形的判定11-18
矩形的判定教學(xué)反思02-26
七年級(jí)數(shù)學(xué)教案平行線的判定12-29
平行線的判定教學(xué)反思03-20
全等三角形教學(xué)反思08-21